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Abstract: Knowing the material properties of the musculoskeletal soft tissue could be important
to develop rehabilitation therapy and surgical procedures. However, there is a lack of devices and
information on the viscoelastic properties of soft tissues around the lumbar spine. The goal of this
study was to develop a portable quantifying device for providing strain and stress curves of muscles
and ligaments around the lumbar spine at various stretching speeds. Each sample was conditioned
and applied for 20 repeatable cyclic 5 mm stretch-and-relax trials in the direction and perpendicular
direction of the fiber at 2, 3 and 5 mm/s. Our device successfully provided the stress and strain
curve of the samples and our results showed that there were significant effects of speed on the
young’s modulus of the samples (p < 0.05). Compared to the expensive commercial device, our
lower-cost device provided comparable stress and strain curves of the sample. Based on our device
and findings, various sizes of samples can be measured and viscoelastic properties of the soft tissues
can be obtained. Our portable device and approach can help to investigate young’s modulus of
musculoskeletal soft tissues conveniently, and can be a basis for developing a material testing device
in a surgical room or various lab environments.

Keywords: quantifying device; soft tissue material properties; lumbar

1. Introduction

The human musculoskeletal soft tissue has viscoelastic properties showing time
and history-dependent behaviors [1,2]. The behaviors can occur because skeletal muscle,
ligament, and tendon are formed by a complex hierarchical structure, consisting of about
80% water, 3% fat, and 10% collagenous fibers, and interact with each other [2]. Knowing
the material properties of the musculoskeletal soft tissue could be important to develop
rehabilitation therapy and surgical procedures.

Especially, due to recent advances in medical technology, image-guided surgeries are
widely performed by using computerized-tomography (CT), magnetic resonance imaging
(MRI), fluoroscopic, or X-ray images [3]. Like cerebral nerve surgery or implant surgery,
these image-guided surgical procedures are performed when a surgeon is not directly able
to see the affected part of the patient or when major nerves and organs in the patients’
body are avoided [3–5]. In the case of performing the image-guided surgery, registration
processes are performed to match the coordinates of the scanned images of a patient and
the actual body part coordinates of the patient [3,4,6–8]. The operation can be performed
in real-time while watching the pre-recorded scanned images on the monitor. During
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the image-guided surgery, over-incision, and a large amount of X-ray exposure can cause
significant side effects to patients. Thereby, advanced image registration technologies are
needed to minimize incision sizes and reduce amounts of X-ray exposure, especially for
spine surgery [9].

To develop advanced image registration technologies, a dynamic biomechanical model
might be needed to explain the mechanical principles of body organs and tissues. In the
biomechanical model, anatomical shape and mechanical and material properties of human
hard and soft tissues are needed. Generally, a tensile testing device is used to determine the
material properties of the tested material. By pulling the material in the opposite direction
at a constant speed, material properties such as yield strength, tensile strength, elongation,
and elastic modulus can be measured. Commercially available tensile testing devices such
as Instron can measure the material properties of soft tissue. However, this device may not
be practical to use in a surgical room as it requires a large room to set up and it is difficult
to move around. A soft tissue elastomer, which is small and portable, has been developed
to measure Young’s modulus of soft tissue with the indentation of the tissue [10]. Thereby,
there is a limitation of measuring the anisotropic, nonlinear, and viscoelastic properties of
soft tissues [10].

Thus, the purpose of this study was to develop a portable quantifying device for
anisotropic and viscoelastic material properties of musculoskeletal soft tissue that has
the following capabilities: (1) controlling speeds of the quantifying device, (2) allowing
a different initial length setup, and (3) providing a strain and stress curve and young’s
modulus of the materials. The feasibility of the quantifying device was demonstrated by
comparing the properties measured using the quantifying device and Instron and lumbar
musculoskeletal soft tissue specimens from a cadaver.

2. Materials and Methods
2.1. A quantifying Device for Soft Tissue Material Properties

The quantifying device (QD) was developed to quantify soft tissue material properties
(Figure 1). The QD consisted of a holding module, linear controller module, and measuring
module. The holding module held the tissue sample by clamping each end of the sample.
Because the initial length of the sample can be different, a manual lever on a linear guide
was added to easily fix the length of the sample without any extra power or controlling
the motor. Various thicknesses of samples could be positioned between two brackets and
there were two screws on the top piece that could adjust the holding thickness so that the
sample can be fixed between the brackets without structural damages to the test sample.
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Then, the young’s modulus (E) can be quantified as Δσ/Δε from the linear region of the 
ascending limb of the graph, similar to previous researches in computing Young’s Modu-
lus in the biological tissue [1] (Figure 2).  
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Figure 1. Quantifying device (QD) consisting of a linear controller module, holding module, and
measuring module.

The linear controller module consisted of a brushless DC servomotor with an EPOS
positioning controller (Maxon, Sachseln, Switzerland) and included an encoder with a
harmonic gear (a reduction ratio of 83:1). The rotation was transmitted through a coupler
to move a linear guide. The positioning controller also included two Hall effect sensors
locating at the bottom of the system unit so that they could function as a limit switch for a
safety mechanism. The controller communicated with the computer via a USB connection.
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The measuring module consisted of a force sensor (Futek, LSB200, Irvine, CA, USA) to
measure the tensile force (up to 445 N) and a digital gauge (Magnescale DK100PR5, Tokyo,
Japan) to measure the elongation of the specimen (up to 100 mm with 4 µm accuracy).
Those specs were sufficient to quantify our study since the elongation was in the order of
mm, and the force was in the order of N. The force sensor was located between the bracket
and the side holder where the linear motor with a guide moved (Figure 1). In this setup,
when the initial length of the specimen was changed with the manual maneuver during
multiple test trials, accurately tracking the linear position of the specimen could be difficult
with the encoder that measured the relative linear position. Thereby, the digital gauge
was added to know the true linear position so that the strain of the specimen could be
computed. The base of the QD holding the modules had a width of 7 cm and a length of
42 cm.

2.2. Quantifying Methods for Soft Tissue Material Properties Using a Strain vs. Stress Curve

Using the QD, tensile force and elongation data can be obtained. The QD can control
the maximum elongation length as well as the elongation velocity. Furthermore, repeatable
elongation can be possible so that multiple strain and stress curves can be obtained. Based
on the known initial dimension of the tissue sample as a length (l), width (w), and depth
(d), stress (σ) was computed as force (F) measured from the force sensor divided by area
(A), and strain (ε) was computed as length measured from the digital gage divided by
the initial length of the tissue sample. Based on the strain and stress curve obtained from
the cyclic testing with various testing speeds, young’s modulus of the material at various
speeds can be quantified using the QD. Each empirical strain vs stress hysteresis curve
from the cyclic testing was resampled for averaging purposes and time normalized to
divide the cyclic data into the ascending limb and descending limb of the hysteresis loop.
The resampled data were further fitted using the 5th order polynomial function. Then, the
young’s modulus (E) can be quantified as ∆σ/∆ε from the linear region of the ascending
limb of the graph, similar to previous researches in computing Young’s Modulus in the
biological tissue [1] (Figure 2).
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Figure 2. An example of the raw and fitted strain vs stress curve in the longitudinal direction.

2.3. Quantification of Young’s Modulus of Soft Tissues Using a Cadaver

One fresh frozen male cadaver was donated from the surgical anatomy education
center at Yonsei university health system. The experiment was conducted at the surgical
anatomy education center at Yonsei University Health System. Prior to the experiment, the
frozen cadaver was thawed and a skilled surgeon prepared the test specimens from the
erector spinae muscle (ESM), quadratus lumborum muscle (QL), psoas major muscle (PM),
anterior longitudinal ligament (ALL), and posterior longitudinal ligament (PLL) from the
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lumbar spine. Considering to obtain young’s modulus of the sample in the longitudinal
and transverse direction of the fiber, a total of ten test samples were prepared (five samples
per direction). Each dimension of the test sample can be found in Table 1. Each test sample
was secured on the holding module as Figure 3a and the initial length was adjusted using
the manual maneuver not to be slacked between the two brackets. Each test sample was
conditioned by a few repeatable cyclic stretches, then applied for 20 repeatable cyclic 5
mm stretch-and-relax trials at 2, 3 and 5 mm/s. Five samples were stretched along with
the fiber and five samples were stretched in the perpendicular direction of the fiber. The
representative raw data obtained from the device was shown in Figure 3b. The force and
length data were collected through Laview at 25 Hz.
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Figure 3. (a) An example of the test sample (Quadratus lumborum) during the test (b) an example of
the force and length raw data from the QD.

2.4. Feasibility Test

A feasibility test was performed using the QD. Young’s modulus (E) of the test material
was compared between the value obtained from strength testing machine Instron 5966 and
the value measured from the QD (Figure 4). The test material was a piece of the latex-free
non-woven cohesive flexible bandage (SPICA) used to secure dressings and other devices.
It was chosen because the young’s modulus was close to biological tissue such as muscle
and it had an elastic component and it was easy to cut for making specimens. Two test
samples were made using stacks of the cohesive flexible bandage to compare the young’s
modulus between the two conditions. The first specimen in the longitudinal direction was
fixed in the mechanical jaw holders of an Instron 5966 system (Instron, Norwood, MA,
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USA). Because the mechanical jaw holders could not hold for the width of the 25 mm
flexible bandage, only the longitudinal direction of data was collected.

Table 1. Sample dimension. L denotes length, W denotes width, and T denotes a thickness.

Direction

Specimen
Longitudinal (mm) Transverse (mm)

L W T L W T

Erector Spinae Muscle (ESM) 30 3 4 32 20 8

Quadratus Lumborum (QL) 20 3 8 12 15 6

Psoas Major (PM) 24 9 5 27 16 4

Anterior Longitudinal Ligament (ALL) 11 2 2 11 8 4

Posterior Longitudinal Ligament (PLL) 12 7 3 17 9 4
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Figure 4. The test setup from (a) Instron, and (b) the Quantifying device (QD).

2.5. Statistics

The normality of the data was checked. Most conditions showed normal distribu-
tion; thereby, two-way repeated analysis of variance (ANOVA) tests were performed to
investigate the effect of speed and direction on each specimen’s Young’s modulus (E).
Independent variables were speed and direction, and dependent variables were Young’s
modulus (E) of the ESM, QL, PM, ALL, and PLL. If the sphericity assumption is rejected,
Greenhouse-Geisser correction was used. If there is a significant effect of speed, direction,
or interaction of speed and direction, pair-wise posthoc analysis was performed with
Bonferroni corrections.

3. Results
3.1. Controlling the Speeds of the Quantifying Devices and Allowing a Different Initial
Length Setup

The QD was able to control the speeds of the motor so that the specimen can move
at a slow speed so that the effects of speeds on soft tissue material properties can be
investigated. In our feasibility study, 2 mm/s, 3 mm/s, and 5 mm/s speeds were used
for specimen conditioning and elongation. To obtain the stress and strain curve of each
specimen from the cadaver, the different initial length was set-up by moving the guide of
the handle so that the different length of each specimen from the cadaver can be tested
(Table 1). Thus, our developed QD was able to allow a different initial length setup for
various specimen samples.
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3.2. Strain and Stress Curve of the Specimens from the Cadaver and Young’s Modulus of
the Materials

There was a significant effect of the direction on the young’s modulus of all samples,
namely, ESM, QL, PM, ALL, and PLL (p < 0.001 for all cases). The young’s modulus of
all samples was large in the longitudinal direction compared to the transverse direction
as seen from Figures 5 and 6. Velocity-dependent behaviors of the stress and strain were
found in the specimens (Figures 5 and 6). There was a significant effect of the speed on
the ESM, QL, PM, and PLL (p < 0.001, p = 0.025, p < 0.001, and p < 0.001, respectively), and
there is a marginally significant effect of the speed on the ALL (p = 0.051). Especially, the
speed-dependent differences were large in the specimens elongated in the longitudinal
direction. Table 2 lists the means and SD of the young’s modulus of ESM, PM, QL, ALL,
and PLL in the longitudinal direction and the transverse direction. There was a significant
effect of the interaction between the direction and the speed on the ESM, PM, and PLL
(p < 0.001, p = 0.001, and p < 0.001, respectively). Posthoc analysis revealed that there were
significant differences in the direction between the all samples as p < 0.001, and in the
speed between the 2 mm/s and the 5 mm/s conditions, and the 3 mm/s and the 5 mm/s
conditions of the ESM (p < 0.001 and p = 0.001, respectively), between the 2 mm/s and
the 5 mm/s conditions and the 3 mm/s and the 5 mm/s conditions of the PM (p < 0.001
and p < 0.001, respectively), and between the 2 mm/s and the 3 mm/s conditions of the
PLL (p = 0.002), and the 2 mm/s and the 5 mm/s conditions of the PLL (p < 0.001), and the
3 mm/s and the 5 mm/s of the PLL (p < 0.001).

Table 2. Mean (std) of Young’s Modulus of each specimen.

Specimen 2 mm/s 3 mm/s 5 mm/s

Longitudinal Direction (Mpa)

Erector Spinae Muscle 10.57 (1.52) 10.00 (1.64) 15.84 (2.71) *,+

Quadratus Lumborum 3.45 (0.61) 2.93 (0.83) 3.72 (0.89)

Psoas Major 2.19 (0.26) 2.04 (0.32) 2.87 (0.59) *,+

Anterior Longitudinal Ligament 23.83 (4.95) 20.28 (2.78) * 21.66 (5.17)

Posterior Longitudinal Ligament 141.94 (2.68) 138.23 (2.27) * 126.28 (2.57) *,+

Transverse Direction (Mpa)

Erector Spinae Muscle 0.32 (0.12) 0.33 (0.14) 0.48 (0.20) *

Quadratus Lumborum 0.61 (0.07) 0.56 (0.11) 0.93(0.19) *,+

Psoas Major 0.32 (0.22) 0.40 (0.26) 0.55 (0.30) *

Anterior Longitudinal Ligament 10.46 (0.34) 9.95 (0.34) * 9.06 (0.42) *,+

Posterior Longitudinal Ligament 2.10 (0.25) 1.78 (0.45) 1.88 (0.47)
* indicates p < 0.05 between 2 mm/s and 3 mm/s or 2 mm/s and 5 mm/s, + indicates p < 0.05 between 3 mm/s
and 5 mm/s.

Within the longitudinal direction of the samples, there were significant effects on
Young’s modulus in the ESM between the 2 mm/s and 5 mm/s condition (p < 0.001), and
between the 3 mm/s and 5 mm/s condition (p < 0.001), in the PM between the 2 mm/s and
5 mm/s (p = 0.002), and the 3 mm/s and 5 mm/s condition (p < 0.001), in the ALL between
the 2 mm/s and 3 mm/s condition (p = 0.002), and in the PLL between the 2 mm/s and
3 mm/s condition (p < 0.001), between the 2 mm/s and 5 mm/s condition (p < 0.001), and
between the 3 mm/s and 5 mm/s condition (p < 0.001).

Within the transverse direction of the samples, there were significant effects on Young’s
modulus in the ESM between the 2 mm/s and 5 mm/s condition (p = 0.003), in the QL
between the 2 mm/s and 5 mm/s condition (p = 0.001), and between the 3 mm/s and
5 mm/s condition (p = 0.001), in the PM between the 2 mm/s and 5 mm/s condition
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(p = 0.014), and in the ALL between the 2 mm/s and 3 mm/s condition (p = 0.008), the
2 mm/s and 5 mm/s condition (p < 0.001), and 3 mm/s and 5 mm/s condition (p < 0.001).
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line with shading, mean±1SD for 3mm/s trials; red line with shading, mean ±1 SD for 5 mm/s trials.
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Figure 6. Average Strain and Stress curve of Anterior Longitudinal Ligament (ALL, (a)) and Posterior
Longitudinal Ligament (PLL, (b)). The blue line with shading, mean±1SD for 2 mm/s trials; black line
with shading, mean ±1 SD for 3 mm/s trials; red line with shading, mean ±1 SD for 5 mm/s trials.

3.3. Feasibility Test

As seen from Figure 7, the slopes of elongation trials from Instron were mainly within
the range of confidence interval of the slopes obtained from the QD. The young’s modulus
of the Instron trial 1 was 569.9 kPa and the Instron trial 2 was 578.4 kPa, which were within
the 95% confidence interval value obtained from QD (the lower bound: 560.3 kPa and the
upper bound: 603.0 kPa). While the QD can repeat the stretch-relax of the specimen, the
Instron setup used in this study can only stretch until the specimen is reached to failure.
Thereby, in Figure 7, the range of strain in the Instron trial exceeds the range of strain
obtained from the QD as indicated from the end of the ascending limb of the hysteresis.
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4. Discussion

A QD was developed to quantify the anisotropic and viscoelastic properties of muscu-
loskeletal soft tissues. The device can (1) change the stretching speed and adjust the initial
length, (2) measure the stretching force and displacement of the specimen in real-time, and
(3) provide the young’s modulus of the specimen. In addition to developing the QD, the
feasibility of the device was tested using the ten specimens of lumbar spine soft tissues
from a cadaver, and the values in the cohesive flexible bandage sample were tested from
the Instron and the QD were also compared.

Our uniqueness of the device and study is that the speed of the stress and relaxation
was controlled and the young’s modulus can be measured in the longitudinal and trans-
verse direction in both ligaments and muscles for the first time. Furthermore, based on our
study, the stress and strain curve of the sample obtained from our developed QD and that
from Instron one of the widely used commercial material testing devices were comparable.
Compared to Instron, our device was more flexible to adjust the length of holding the initial
specimen so that not only the longitudinal direction but also the transverse direction of
the sample can be tested for obtaining Young’s modulus. Furthermore, the cost of QD is
1/10 of Instron, which can be further reduced, and also it is more portable compared to
Instron. Therefore, our device can be used in a surgical room or various lab environments
for testing material properties of soft tissues on the fly when surgery is going on.

In our study, the stretching direction and speed influence the young’s modulus of most
test specimens around the lumbar spines indicating the biological tissues had anisotropic
and viscoelastic properties. It has been reported that the muscles and ligaments demon-
strated the behaviors of transversely isotropic so that the larger stress would show in the
longitudinal direction compared to the transverse direction [1,11,12]. In our feasibility
study, all samples showed such behaviors. As the previous study reported the young’s
modulus of ALL and PLL in the longitudinal direction from the lumbar spine was 20 MPa
for ALL and 70 MPa for PLL [13] with considering the subject-variation can be measured
up to 64 MPa that can be seen from [14], our results are acceptable and reasonable.

Various methods have been incorporated to investigate muscle material properties
and demonstrated inconclusive results. Most recently, shear wave elastography has been
used to quantify muscle material properties; however, it has been debating whether the
values are the same as young’s modulus that classically defined [15,16]. In the shear wave
elastography study, the ESM was in the range of approximately 14-18 kPa [17–19]. While
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there is a lack of information on muscle young’s modulus around the lumbar spine similar
to measured from our study, there were few studies that reported muscle young’s modulus
with and without aponeurosis. In one study, the large value of young’s modulus of extensor
digitorum longus without aponeurosis from the rabbit was approximately 446 kPa in the
longitudinal direction and 22 kPa in the transverse direction [11]. In the study investigating
the young’s modulus of skeletal muscle cell that originated from normal adult C3H mouse
leg muscles, 100–700 kPa range was reported [20]. Compared to those previous studies, our
young’s modulus of muscle seemed too high. However, caution might be necessary for the
interpretation of results because experimental conditions, types, and the dimension of the
specimens, the velocity of elongation, and the presence of aponeurosis can have impacts
on the results. Indeed, in a previous study investigating mechanical properties of triceps
surae aponeurosis from cadavers, around 200 MPa in the longitudinal direction and around
0.8 MPa in the transverse direction was found in young’s modulus of medial and lateral
gastrocnemius and soleus aponeurosis [21]. The aponeurosis is a structure transmitting
force generated from a muscle to a tendon, which often includes investigating muscle
mechanical properties since it would be difficult to isolate for material testing [11]. In our
study, it was challenging to make two samples per location due to the narrow thickness of
the muscles and ligaments around the lumbar spine. Thereby, not only muscle tissue but
the connective tissue around the muscles including the aponeurosis and fascia can influence
to have higher young’s modulus than either isolated muscles without aponeurosis and
muscle cells. However, this is a more realistic and practical situation that can be faced
during surgery and developing an anatomically realistic biomechanical model. Thereby, a
more wide range of material properties in both muscles and ligaments and conditions may
need to be considered.

Quantifying the anisotropic and viscoelastic properties of skeletal soft tissues can
facilitate the process of identifying pathological conditions of muscles, ligaments, and
tendons such as high stiffness of muscles might be due to spasticity and contracture of the
muscles, or due to abnormal development because of cancers, aging, or other pathologies.
Furthermore, recent trends of developing image-guided spine surgical procedures utilize
a biomechanical model to develop a minimum incision and minimum exposure to spine
surgery [22]. In that case, knowing the anisotropic and viscoelastic properties of skeletal
soft tissues can help to more accurately co-register the location of the spine. While our
study only investigated ten samples from a cadaver, investigating more samples from a
different type of tissue such as age, gender, and pathological conditions can understand
material properties of soft tissues and develop a more accurate biomechanical model.
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