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Abstract: Functional Near-Infrared Spectroscopy (fNIRS) is a wearable optical spectroscopy system
originally developed for continuous and non-invasive monitoring of brain function by measuring
blood oxygen concentration. Recent advancements in brain–computer interfacing allow us to control
the neuron function of the brain by combining it with fNIRS to regulate cognitive function. In this
review manuscript, we provide information regarding current advancement in fNIRS and how it
provides advantages in developing brain–computer interfacing to enable neuron function. We also
briefly discuss about how we can use this technology for further applications.

Keywords: functional near-infrared spectroscopy (fNIRS); non-invasive monitoring; brain function;
neuron function; blood oxygen concentration; cognitive function; brain–computer interfacing;
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1. Introduction

A brain–computer interface (BCI) is a system that acquires signals from the brain, trans-
lates the signals, and outputs to devices in order to enact a desired action [1]. A BCI system
is composed of both hardware and software components, and in general, is executed in
five steps, viz., signal acquisition, pre-processing, feature extraction, feature translation,
and device output. BCI systems are classified into several types based on the functional
imaging systems they are interfaced with, such as Electroencephalography (EEG)-BCI,
functional Magnetic Resonance Imaging (fMRI)-BCI, and functional Near-Infrared Spec-
troscopy (fNIRS)-BCI. In this review, we discuss in detail the BCI based on fNIRS and
how it functions, the advantages and disadvantages of its utilities, and its application and
implementation in useful technology, and the future of fNIRS-BCI.

Functional Near-Infrared Spectroscopy (fNIRS) is an optical imaging technique in
which the emitted light in the brain undergoes attenuation due to absorption and scattering.
It utilizes the general transparency property of the bones and skin to gain access to the
tissues that are being monitored. While the absorbed light contributes to the inside of the
medium where it is absorbed, the detector measures the non-absorbed component of the
scattered light (Figure 1). As a result of the hemodynamic response due to the given stimuli,
there is an increase and decrease in oxyhemoglobin (OxyHb) and deoxyhemoglobin (de-
oxyHb), respectively. When the light is emitted, the regional changes in the hemodynamic
response result in regional changes in the light absorption and the absorption spectra of
the chromophores, thereby allowing the quantification of the oxyHb and deoxyHb in a
non-invasive fashion by using the Beer–Lambert law [2,3]. The ratio of the concentrations
of oxyHb as a result of the arterial flow and deoxyHb in venous blood flow against total
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hemoglobin (tHb) is determined by calculating this ratio [4]. fNIRS is a non-invasive and
portable device, allowing it a wider degree of freedom for use. By monitoring a selec-
tive region of the brain that exhibits activity when a passive or active stimulation occurs
(i.e., tapping a finger or flashing lights or performing cognitive tasks), we can attribute
the change in hemoglobin (Hb) concentration to the neuronal activity. Since cranial bones
block lights within the visible range, fNIRS utilizes near-infrared light (650–1000 nm) to
monitor and detect the changes in oxyHb and deoxyHb in the brain [5].

Figure 1. Example of how an emitter–detector pair works along with the optical window looked
at to refine the data. (Reprinted with permission from ref. [6] (Copyright 2012 Elsevier)). Available
online: https://www.sciencedirect.com/science/article/abs/pii/S0966636211004115?via%3Dihub
(accessed on 9 September 2021).

The concept of fNIRS relies on the fact that certain wavelengths of light can penetrate
the skin and skull (Figure 2) [3]. In the experimental setup, the patient wears a fNIRS cap
that consists of sources and detectors. The sources emit near-infrared light at a particular
wavelength while the detectors read the reflected and refracted light at shifted wavelengths.
For a deeper imaging, the distance between the emitter and detector must be increased, but
as the distance increases, the spatial resolution diminishes [7]. The number of emitters and
detectors and the montage are determined based on the prior knowledge of the activation
pattern for the given stimuli.

Figure 2. The process of brain–computer interfaces. The cycle begins with a stimulation that triggers
brain activity. The activity is acquired in a variety of ways and sent to a computer for pre-processing.
After processing the data, certain features are extracted, classified, and an output is determined and
sent. The cycle begins anew after the output creates feedback of a new stimulation.

https://www.sciencedirect.com/science/article/abs/pii/S0966636211004115?via%3Dihub
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The development of fNIRS started in 1992, and the hardware has only been improved
since then. Here, we present a brief history of the important developments of fNIRS
hardware over the years (Table 1). The use of near-infrared spectroscopy (NIRS) to detect
hemoglobin was first reported by Frans Jöbsis in 1977 (https://www.artinis.com/theory-
of-nirs (accessed on 10 July 2021)) [1]. The technology has moved on far from its humble
beginnings, where other modalities such as EEG and fMRI are being used in conjunction
with fNIRS setups and the systems are moving towards commercialization (Figure 3).

Figure 3. Schematic overview of a stationary EEG–fNIRS setup. (Reprinted with permission from
Brain Products Press Release. Copyright 2020. Available online: https://pressrelease.brainproducts.
com/category/2020/ accessed on 10 July 2021).

Table 1. A timeline overview of the development of fNIRS and fields of application. (Reprinted from [1]).

Year Major Events

1977 Jöbsis demonstrates the possibility to detect changes in adult cortical oxygenation during hyperventilation by
near-infrared spectroscopy.

1985 First NIRS clinical studies on newborns and adult cerebrovascular patients (Brazy; Ferrari).
1989 First commercial single-channel CW clinical instrument: NIRO-1000 by Hamamatsu Photonics, Japan.

1991/1992 First fNIRS studies carried out independently by Chance, Kato, Hoshi, and Villringer by using
single-channel instruments.

1993
Publication of the first 6 fNIRS studies.

Simultaneous monitoring of different cortical areas by 5 single-channel instruments (Hoshi).

1994
First application of fNIRS on subjects affected by psychiatric disorders by using a single-channel system (Okada).

Hitachi company (Japan) introduces a 10-channel CW system (Maki).
First simultaneous recording of positron emission tomography and fNIRS data (Hoshi).

https://www.artinis.com/theory-of-nirs
https://www.artinis.com/theory-of-nirs
https://pressrelease.brainproducts.com/category/2020/
https://pressrelease.brainproducts.com/category/2020/
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Table 1. Cont.

Year Major Events

1995
First evidence of a fast optical signal related to neuronal activity (Gratton).

First two-dimensional image of adult occipital cortex activation by a frequency domain spectrometer (Gratton).

1996
First simultaneous recording of fMRI and CW fNIRS data (Kleinschmidt).

First simultaneous recording of fMRI and TRS fNIRS data (Obrig).

1998
First application of fNIRS on newborns using a commercial single-channel CW system (Meek).

First images of the premature infant cortex upon motor stimulation by using a CW–fNIRS prototype (Chance).
First application of the Hitachi 10-channel system in clinics (Watanabe).

1999

First introduction of a 64-channel TRS system for adult optical tomography (Eda).
First introduction of a 32-channel TRS system for infant optical tomography (Hebden).

First optical tomography TRS images of the neonatal head (Benaron).
Introduction of the first compact 8-channel TRS system (Cubeddu).

TechEn company (USA) starts to release its first fNIRS commercial system.
2000 Hitachi company starts to release its first commercial system: (ETG-100, 24 channels).

2001

First fNIRS study using a single-channel CW portable instrument and telemetry (Hoshi).
Shimadzu company (Japan) starts to release its first commercial system: (OMM-2001, 42 channels).

ISS Inc. (USA) starts to release the frequency domain system: Imagent (up to 128 channels).
First three-dimensional CW tomographic imaging of the brain (DYNOT, NIRx Medical Technologies,

US) (Bluestone).
2002 Hitachi company starts to release the ETG-7000 (68 channels).

2003
Hitachi company starts to release the ETG-4000 (52 channels).

Artinis company (The Netherlands) starts to release the Oxymon MkIII (up to 96 channels).

2004
Shimadzu company (Japan) starts to release the NIRStation (64 channels).

First simultaneous recording of DC-magnetoencephalography and CW fNIRS data (Mackert).
2005 Hitachi company starts to release the ETG-7100 (72 channels).
2007 Shimadzu company starts to release the FOIRE-3000 (52 channels).

2009
fNIR Devices company (USA) starts to release a wearable 16-channel system for adult PFC measurements.

Hitachi company starts to release a battery-operated wearable/wireless 22-channel system for adult prefrontal
cortex measurements.

2011 NIRx Medical Technologies company (USA) starts to release a battery-operated wearable/wireless 256-channel
system for adult frontal cortex measurements.

The original equipment was designed by Jöbsis as a single-channel continuous wave
(CW) system and had low spatial resolution and was utilized for qualitative purposes, and
later versions were developed with enhanced resolution [4]. The use of NIRS machines
to obtain changes in HbO and HbR levels was first developed in 1984 by David Delphy.
By 1989, the first commercial system was built by Hamamatsu Photonics. Up until 1993,
most of the experiments utilized a single-node system. Then, Hoshi and Tamura demon-
strated the usefulness of multiple channels by using five single-channel fNIRS machines.
This spurred the creation of the 10-channel CW system by Hitachi in 1994. By 2004, the 64-
channel and 52-channel were the most common types of fNIRS used in various applications
(Figure 4). The first compact wireless systems were four-channel systems that were sold by
fNIRS Devices in 2011. In late 2011, a wearable, wireless battery-operated single-channel
system was introduced by Artinis. The commercial fNIRS system can be used to measure
the hemodynamic response in a resting state or under a challenge condition [8,9].

The focus of this manuscript is to discuss the role of fNIRS-BCI design and application
in the regulation of neuron function [3,9]. By using the hemodynamic response and
acquisition of data by the fNIRS system, it is possible to translate the data to execute a
desired physical activity. Like all BCI systems, fNIRS-BCI follows the same pathway of
signal acquisition, pre-processing, feature extraction, and output (Figure 5).
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Figure 4. The development of fNIRS imaging over time. (Reprinted with permission from ref. [1],
Copyright 2012 Elsevier).

Figure 5. An example of a combined fNIRS and EEG brain–computer interface system. (Reprinted
from [10]).

2. Steps in Implementing fNIRS-BCI

The general steps in implementing BCI comprise: (1) acquiring the brain signals,
(2) pre-processing the acquired data, (3) feature extraction relevant to the nature of the
acquired brain signals, (4) feature selection, and (5) classification. Relationships between
each of these steps are outlined in Figure 6.
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Figure 6. The track an fNIRS-BCI takes in order to receive useable data for an output and the order
we will be following to understand the fNIRS-BCI process.

Correlations between these five steps have been discussed earlier in the text and
shown (Figure 2). The mandatory steps are data acquisition, pre-processing, and feature
selection and they need to be a part of every BCI setup, whereas the optional approaches are
machine learning and AI usages along with continuous data analytics and decision-making
approaches to make the setup more reliable, automated, and accurate. These steps together
form the extract, transform, and load (ETL) layer of a BCI setup (Figure 7).

Figure 7. An example of a combined continuous wave and fNIRS brain–computer interface system.
(Reprinted from [11]).

2.1. Data Acquisition

The acquisition of the hemodynamic response from the brain is the first step in the
process of obtaining the necessary data. The underlying principle of fNIRS relies on
neurovascular coupling and the Blood Oxygen Dependent (BOLD) response as a result
of a passive or active stimulus. In a typical fNIRS experimental setup, a predetermined
number of optodes, i.e., light sources/emitters and detectors, are placed on the subject’s
head, covering a specific region or the whole brain, called montage. The choice of the
montage is determined by the nature of the experiment and based on the prior knowledge
of the activation region in the brain for a given stimulation [12]. For, e.g., experiments
involving motor tasks, the pairs are placed and the hemodynamic response is acquired
from the motor cortex (Figure 8), whereas for higher cognitive functions or mental imagery,
the emitter/detector pairs are placed around the prefrontal cortex (Figure 9).
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Figure 8. An fNIRS imaging cap designed and built by Artinis for use of monitoring the hemo-
dynamic response. (Reprinted from Artinis OctaMon, with permission from Artinis Medical
Systems. Copyright 2021. Available online: https://www.artinis.com/octamon accessed on
12 September 2021).

Figure 9. An eight-channel fNIRS device built by Artinis for imaging of the prefrontal cortex.
(Reprinted from Artinis OctaMon, with permission from Artinis Medical Systems. Copyright 2021.
Available online: https://www.artinis.com/octamon accessed on 12 September 2021).

The optimal separation between the emitter–detector pairs is about 3 cm and the
penetration depth is half the separation of the source–detector distance (Figure 10). As the
distance between emitter–detector pairs increases, the penetration depth also increases,
but results in a weaker signal. A separation below 1 cm may only penetrate up to the skin
layer, and a separation of over 5 cm results in weak signals. Typically, the emitter–detector
pairs are positioned 3 cm apart. Hence, keeping the distance uniform for all the probes
to the target region is crucial to correlate the results. The number of channels used for a
given montage and the sampling frequency at which the data are acquired are vendor-
specific. The sources emit near-infrared light in the optical window of 700–900 nm, which
is absorbed by the chromophores, oxyHb and deoxyHb, whereas it is transparent to the
skin tissues and bones.

https://www.artinis.com/octamon
https://www.artinis.com/octamon
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Figure 10. The image shows that as the distance between the emitter–detector pair grows, the deeper
the signal penetrates. However, as you increase the depth imaged, the weaker the signal becomes;
therefore, the optimal pair distance is around 3 cm. (Reprinted from [13])

The relative changes in the hemoglobin (Hb) concentration are thus calculated by
the differences in the absorption spectrum of oxyHb and deoxyHb. The quantification of
oxyHb and deoxyHb depends on the type of the source used for light illumination. In
general, there are three techniques used for light illumination, viz., (1) a constant light
illumination through the continuous wave (CW) technique, which gives the measure of
the light attenuation, (2) the frequency domain technique in which the source delivers the
intensity-modulated light, which gives the measure of the light attenuation and the phase
delay, and (3) the time domain method in which the light is illuminated as short pulses
and the detector detects the shape of the scattering pulse. Among the above methods,
fNIRS systems based only on the time and frequency domain techniques can be used to
measure the absolute concentration changes in oxyHb and deoxyHb. The collected fNIRS
signals consist of the raw optical density (OD) data. By using the modified Beer–Lambert
law, the optical density signals are converted into changes in the oxyHb and deoxyHb
concentrations [14].

2.2. Feature Extraction

Pre-processing and feature extraction are followed by signal acquisition, in which
the acquired fNIRS data are cleaned by the removal of various artifacts [15–17]. The
sources associated with the noise in the data are instrumental, physiological, and the
noise associated with experimental error. Instrumental noise is signals that appear in the
environment or the hardware itself [18]. Instrumental noise typically comes in the form
of a constant high-frequency signal. Thus, passing the data through a low-pass filter will
remove the high-frequency signals. Another method of removing noise is by attaching
short separation channels to the fNIRS cap. These channels read data from the scalp, thus
allowing the elimination of this kind of noise within the data [19]. Experimental errors,
such as an accidental shift in the placement of nodes, are difficult to mitigate; however,
some methods are proposed, viz., the Wiener filtering-based method, eigenvector-based
spatial filtering, wavelet-analysis-based methods, and Savitzky–Golay-type filters. Finally,
there is also physiological noise such as the patient’s heartbeat. Using band-pass filtering
(which removes known physiological noise that does not overlap with the hemodynamic
response), ICA, and PCA, these physiological noises can be removed. The complete setup
involves the placement of various components so as to achieve maximum accuracy with
the least amount of noise (Figure 11).
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Figure 11. A diagram of fNIRS emitter–detector pair transceiver. (Reprinted with permission from
ref. [20], Copyright 2011 IEEE).

Generally, feature extraction utilizes heuristics and uses common features to see the
similarities [21–23]. The most common features utilized to distinguish the hemodynamic
response are signal mean, signal slope, signal variance, amplitude, skewness, kurtosis, and
zero crossing.

For the BCI to generate the right output, the features of the hemodynamic response
must be interpreted correctly.

Once the raw data are acquired, relevant features are filtered and extracted, making
use of time domain, frequency domain and time–frequency domain methods. The most
prominent of these is the use of the time–frequency domain for feature extraction purposes,
which includes Wavelet Transform and Hilbert Transform. We discuss these two feature
extraction processes in this paper.

2.2.1. Wavelet Extraction

Wavelet-based pre-processing techniques are employed for the estimation of relevant
features where multiple aspects of signal quality are taken into account. Scaling functions
are used for reconstruction, whereas the order of the wavelets is used for decomposition
purposes [24]. Primarily, the signal is decomposed using wavelet functions and then thresh-
olding operations are conducted in scale to eliminate noisy artifacts. Using the resultant
wavelet coefficients, subsequent classification is performed to maximize the accuracy and
specificity. The classifiers used the most are back propagation neural network (BPNN),
linear discriminant analysis (LDA), and support vector machine (SVM). Out of these, the
most optimal classifier is chosen after a pre-determined set of trials for further analysis [5].
One study reported that neuronal activity is directly proportional to oxyHb levels, where
the circulatory system plays an important part in rapid signal firings [25]. This blood
oxygen level dependence (BOLD) signal acts as a base standard estimate of the change in
blood flow and is utilized in both fNIRS as well as fMRI measurements [26]. This measure
provides a common denominator so that both fMRI and fNIRS can be used in tandem for
brain scans so as to obtain the benefits of both techniques [27]. Moreover, BCI techniques
based on fNIRS and fMRI suffer from a delayed response from the output system as the
hemodynamic response peaks around 6 seconds from the stimulus onset [28,29]. However,
the delayed response is addressed by using a multivariate pattern classification technique,
which reduces the latency by 50% and facilitates the fNIRS-BCI setup to be implemented in
a real-time neurofeedback application [30]. This is achieved by implementing multi-channel
DAC inputs and ADC outputs (Figure 12) [31].
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Figure 12. A proposed system for fNIRS utilizing deep forest algorithm. (Reprinted from [32])

2.2.2. Hilbert Transform

Hilbert transform performs orthogonal phase-shifting operations on a function, notwith-
standing its frequency. This is most useful in modulating signals with single-sided Fourier
transforms. However, it has high latency for low-frequency modulations given its long
delay and implies a computational overhead for maintaining historical data of the sig-
nal [33]. Nevertheless, it is frequently used for the modulation of bandpass signals in BCI
setups [34–36].

Once the mandatory steps of data extraction and feature selection are completed,
filtered clean data and unwanted artifacts are obtained that can be used for further analytics.
Post feature extraction involving normalization and noise reduction, the clean data are
passed through various classification approaches. These classifiers can be linear, Bayesian,
nearest neighbors, discriminant analysis (LDA), or Artificial Neural Networks (ANNs).
The linear model is the simplest, with a weighted approach having signal parameters
attached to each other in a linear fashion, whereas the Bayesian model is a probabilistic
model where variables are proportionated via a directed acyclic graph. LDA is applied via
an n-k support hyperplane with a penalty for miscalculations. ANNs have a multi-layered
structure and employ likelihood algorithms with multivariate generative distribution to
their weights. Here, we discuss the various ANNs in detail.

2.3. ANN Classification Approaches

Given the holistic nature of the decision-making process of an ANN that is based on
the predictability of input features, a multilayer feed forward perceptron can be trained
as a non-linear classifier using the generalized backpropagation (BP) algorithm, in which
momentum is chosen as a standard training principle to speed up convergence while
maintaining generalization [36,37]. Bipolar sigmoid functions are used as decision functions
for hidden layers, whereas unipolar sigmoid functions are used for output layers. These
processes help achieve the most optimal NN classifier that, in turn, is trained and tested
using the feature sets under selection.

A series of discrimination algorithms may be utilized to aid in computing and translat-
ing the data [5]. Some of these include linear discriminant analysis (LDA), support vector
machine (SVM), artificial neural network (ANN), and hidden Markov model (HMM) [38].
LDA is an algorithm that, due to its simplicity and low computational requirements, is
utilized most often. LDA works by separating two classes into separate categories and
identifying them as different outputs. It is a form of supervised learning where the results
are known, and the algorithm learns from the data. Support vector machine (SVM) is also
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a form of supervised learning, but it tries to maximize the differences between training
material. Thus, it enhances generalization by reducing errors on training materials.

2.3.1. Probabilistic Neural Networks

This approach has been in use within the framework for pattern recognitions in
various waveforms. It has been derived from the radial basis function (RBF) network,
which, in turn, is a bell-shaped function following the parameter in a non-linear manner.
The most important advantage of PNNs is their speed, which happens to be many times
faster than BP networks and is able to match Bayes optimal results fairly easily with much
better performance. The relative speed is achieved on account of the core framework of
matrix multiplications that makes the process inherently fast [39]. In this approach, weights
are never “trained” but are instead assigned directly and are not altered afterwards. This
enables the performance of analytics in real time.

2.3.2. Support Vector Machines

Support Vector Machine (SVM) is a classification algorithm that utilizes the principle of
structural risk minimization that utilizes a high-dimensional feature space wherein waves
are charted using non-linear mapping fundamentals and subsequent linear regressions
are conducted on each planar space. To obtain a sense of linearity, a hyperplane is traced
using maximizing projection between the means and classes that bisects the latter and
optimizes the margin of separation. This provides generalization ability to the learning
algorithm [40].

Both LDA and SVM are linear classifiers. Artificial neural networks (ANNs) are
systems that mimic human and animal brains in discriminating points of data by taking
environmental factors into account. They work via many artificial neuron pathways and
look for groupings to classify the data. The Hidden Markov Model utilizes the probability
of seeing distinctions to classify the data. Both ANN and HMM are non-linear classifiers.
Such discrimination systems are employed in data extraction for convenient utilization.

The most important goal that SVM regression chases is to minimize the error param-
eterized by the hyperplane that maximizes the margin. However, the idea is to make
sure that the error is always kept within tolerance levels. This means that SVM excels in
both Gaussian and radial datasets and performs quite well for non-linear data without
requirement of any form of guesswork about their functional form. Since data segregation
is performed with the maximum possible margin, the resulting model has better stability
and can deal with inconsistencies such as noise or training bias [41].

3. Challenges in fNIRS-BCI

There are many advantages in the use of BCI based on fNIRS. One of the major
advantages is that it is portable, while imaging techniques such as MRI and MEG require
a large room with protective shields to minimize external interference. In comparison
to EEG-BCI, fNIRS does not require any application of gel on the subject’s scalp [42].
An fNIRS-based BCI is sizeable and can easily be implemented in experiments simulating
real-life scenarios [43]. Since fNIRS measures the changes in the endogenous Hb, no
external agent is required for signal acquisition. Finally, fNIRS machines are non-invasive
and avoid the need for surgery or the implantation of devices for their implementation
(Figure 13).

Apart from these general technical challenges, researchers have to also deal with
session and subject-wise differences in classifying the working memory-based varying
workloads. These problems are classified as domain adaptation in the machine learning
step where data from separate subjects as well as sessions are classified as belonging to
different domains [30,32–35]. The subsequent changes in the distribution of wavelets across
separate domains, notwithstanding whether emanating from the subject or captured in
different sessions, are classified as domain shift [36]. This debilitation limits the knowledge
learned that can be shared across domains as well as sessions. This issue is partially
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addressed by the latest developments in optimal transport methods and metric measure
space alignment [37,38]. Figure 14 shows a schematic diagram showing the non-uniform
nature of the brain–skull spacing.

Figure 13. An example of the equipment needed for a fNIRS-BCI system. The hardware can be
modular and non-invasive, important for the daily use of the user. (Reprinted from [44]).

Figure 14. Schematic diagram showing the non-uniform spacing between skull and brain owing to
different composition of tissues.

While there are many advantages, there are also disadvantages to fNIRS-BCI. fNIRS
is based on a relatively slow hemodynamic response, and due to the limited number of
sensors used, the spatial resolution is low. The non-uniform nature of the skull remains a
challenge in positioning the sensors, which introduces some error in the measurement [39].
Multiple force transducers are used to amplify the signal and multichannel filters and
multiplexers are set up in parallel to maximize output (Figure 15).
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Figure 15. Schematic of fNIRS experimentation under different levels of gravity for the accuracy of
signal generation. (Reprinted from [45]).

These challenges can be overcome with a combined imaging system. An EEG-BCI
uses the post-synaptic potential that occurs in the brain to monitor and detect areas in
the activated region [42]. In terms of hardware, EEG utilizes a cap of electrodes as well
as a gel, which is applied for optimal contact between the electrode and scalp. While
EEG data are of low spatial resolution, it is a non-invasive technique, which makes it
feasible in BCI applications. An MEG-BCI relies on the tiny magnetic field, in the order
of femto Tesla, generated in the brain as a result of the post-synaptic potential due to the
given stimuli [39]. However, MEG systems are placed in a magnetically shielded room
to reduce the environmental noise, thereby making it difficult in BCI-based applications.
On the other hand, MEG offers a higher spatial resolution and a non-invasive mode
of data acquisition. Finally, the fMRI-BCI uses changes associated with blood flow to
detect brain activity for signal acquisition. MRI uses a large magnet placed in a shielded
room. Similar to MEG, it delivers high spatial resolution data and is non-invasive, but
not portable. These are some imaging systems that can be used in conjunction with
fNIRS-BCI. However, it must be noted that most of these techniques are dependent on the
employment of auxiliary reference signals such as accelerometery or extra-optical channels.
This leads to the insertion of implicit assumptions in the characteristics of motion artifacts
and subsequently filtered fNIRS signals. Multiple approaches guided by statistical signal
processing methods including adaptive filtering, independent component analysis (ICA),
and time–frequency analysis have been employed to formulate algorithms that can help fix
for motion artifacts in fNIRS signals [12,41,46–54].

4. Machine Learning in fNIRS

Machine learning is a set of computation algorithms that allows for better classifying
and sorting the data. With machine learning, it is possible to streamline and refine the
feature extraction process as well as combine different modalities together to obtain better
precision. A machine learning algorithm learns from prior data and then the experimental
data are fed in for the analysis and classification. There are two types of classifiers: linear
and non-linear. Linear classifiers mark the data in pre-set categories, while non-linear
classifiers work better when there is not a clear indication of separate categories or features
to extract.

During the feature estimation step, a wavelet-based pre-processing technique is em-
ployed, where there are different parameters of signal quality for the estimation of task-
relevant signals and the elimination of artifact interference that causes undue noise. Hence,
for the detection of useful signals, the input is passed through filters for noise reduction,



Biosensors 2021, 11, 389 14 of 20

decomposed using candidate wavelet functions, and then soft thresholding is performed
using MiniMax, hybrid, or SURE methods [5,54]. Wavelet functions are classified as non-
orthogonal, orthogonal, and biorthogonal families of wavelets. The first one of these is also
known as continuous wavelets since they form the continuous counterpart of orthogonal
wavelets, with notable examples being Morlet and Mexican hat wavelets where is latter is
a normalized second derivative of a Gaussian smooth function. The latter class of wavelets
enable the non-redundant part of the input waveforms and are defined by the scaling and
wavelet functions. Prominent examples composing this class of waveforms are Meyer
and Shannon wavelets. These waveforms are symmetric in nature and lack any form of
compact support. The last class of wavelets are in fact an interpretation of the orthogonal
waveform acting as a generalization of the approximation signals. These waveforms are
asymmetric in nature and never induce phase shifts in coefficients. Important examples of
this waveform are B-spline wavelets, which are semi-orthogonal with support for compact
wavelets [5].

5. fNIRS-BCI Applications

fNIRS-BCI systems have a multitude of applications, especially in the clinical domain.
BCI finds its application in areas such as communication, motor function, neuroergonomics,
neurorehabilitation, environmental control, and entertainment [55]. In the purposes of
communication, BCI can aid those who suffer from Amyotrophic Lateral Sclerosis (ALS),
spinal cord injury, or locked-in syndrome (LIS). An example of BCIs being used in the aid of
communication is in binary communication. Naito et al. (2007) and Naseer et al. (2014) cre-
ated a system of having subjects answer yes or no by performing mental arithmetic [10,56].
A relaxed mind would result in a “no,” and a mind performing mental arithmetic would
result in a “yes.” Another idea for aid in more complex communication is to move a cursor
left and right to select a letter, as proposed by Sitaram et al. (2007) [57]. Other than enabling
a subject to communicate with the outside world, the creation of BCI setups to enable a
subject to restore mobility is another interesting area where current research is undertaken.
The time-resolved fNIRS-BCI has been demonstrated in the application of mental com-
munication in healthy volunteers, with the possibility of potential clinical applications
in patients with brain injury. fNIRS-BCI has also been employed in the effect of yoga
meditation practice on young adults’ inhibitory control studies. Another application lies in
increasing motor cortex activation during grasping via novel robotic mirror hand therapy.

In the application related to motor functions, disabled patients can benefit from BCI by
having prosthetics controlled by the brain. Currently, there is development on enhancing
the accuracy and speed of these BCI-controlled prosthetics and wheelchairs by improving
the speed of data acquisition, processing, and transporting to execute the function. There
have been many improvements in the area of wearables as well.

Further, the application of fNIRS-BCI in neuroergonomics promises that mental work-
load and conditions can be performed in real time. Three different levels of workload
have been identified in air traffic control tasks [58], attention deficit tasks [59], and the
detection of drowsiness in drivers [60] has been demonstrated using fNIRS-BCI. For the
restoration of cognitive and motor functions in stroke patients by regulating brain activity,
a neurofeedback process has been shown in [61], in which the hemodynamic response is
controlled by the subjects. Further fNIRS-BCI systems may assist motor-disabled patients
in controlling electrical appliances. BCIs can help those who suffered through a loss of
motor or cognitive function due to a stroke or spinal cord injury through feedback to help
regain the self-regulation of brain activity.

6. Software for fNIRS-BCI

In this section, we will discuss some of the software that supports fNIRS-BCI applications.
Homer2 is the most popular software and the first to be developed for the visualization

of measurements and image construction of fNIRS data, and it currently supports the
calculation of the optical forward model (sensitivity matrix) from a homogeneous, semi-
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infinite slab geometry [22]. The functional responses can be obtained by block averaging on
a deconvolution model based on the estimation of an FIR impulse response. This process
makes use of an ordinary least squares fit of the data.

OpenVibe is an open-source software that allows for connections to virtual reality
(VR) [33]. It is modular and reusable, allowing a wide range of people to utilize it and
reduce how long something takes to be developed. It is portable as it can be installed in any
Windows or Linux machine and is independent of any hardware. Another accomplishment
this software boasts is its connection to VR. This software can be integrated with many VR
systems to allow for neurofeedback.

Another software is BCILAB. BCILAB is more focused on experimental BCIs and
neuroscience [15]. It utilizes MATLAB as its base platform. It has a large toolbox for
methods of BCI approaches with emphasis on evaluation tools and flexibility. There is
extensive documentation allowing for an easier learning curve. It is one of the most popular
BCI software programs currently in use for fNIRS.

NICA is a novel toolbox for fNIRS calculations and analyses based on MATLAB that
enables the processing and visualization of fNIRS data, including different signal processing
methods for physiological artifact correction coming from noise generated by systemic
influences and physiological artifacts [62]. This toolbox has been developed for reading
fNIRS data and currently supports NIRScout 1624 measurements and its complementary
recording software NIRStar.

7. Future Directions

The current modalities are not completely portable and functional for purposes of BCI
technology such as neuro-prosthetics [63]. In contrast, fNIRS has been proven to be easily
adaptable into portable systems given its simple circuit design (Figure 16). Future devel-
opments of BCI are currently being focused on the development of three main domains,
viz., signal acquisition, hardware, and reliability. Improvements in these three areas could
improve the quality of data for a better reading and improving the prediction rates for BCI
technology. With improvements to the ability to gain data, we may see more functional
uses in everyday life. Additionally, the hardware must be durable to ensure usability in a
multitude of environments as well as be able to last for decades. In order to ensure that
the hardware is long-lasting, one must also look at the power system. Finally, it must be
ensured that these devices are safe for human use. There has already been a good head
start in this direction where portable setups have been created (Figure 17).

Figure 16. Current regulator circuit. (Reprinted from [64]).
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Figure 17. A small scalable example of fNIRS sensor pad. The size shows the convenience of fNIRS
to not interfere with everyday life. This model contains two optodes. (Reprinted from [64]).

However, the technology must also be improved in the means of reliability. Currently,
the machines are not reliable enough to be used for real applications. Current research
is looking at dual fNIRS and EEG in data acquisition for BCI [65]. It has been reported
that these hybrid systems are more accurate than EEG alone or fNIRS alone. With a rise in
reliability, the use of these machines can be improved to help a variety of causes.

This strategy is not just limited to imaging Hb; it can also be extended for imaging
other targets of the brain by designing fluorescent probes that are pre-delivered before
adopting NIR imaging, which can be combined with the existing functional imaging as a
multiplex approach to collect more information regarding the health status of the brain,
especially in the case of Alzheimer’s, Parkinson’s, and other brain diseases.

8. Other Neuroimaging Modalities

There are many neuroimaging tools such as EEG, MEG, ECoG (Electrocorticogra-
phy), and fMRI. While EEG and MEG offer higher temporal resolution, ECoG is invasive.
A multimodal approach in which combinations of these techniques with fNIRS may allow
for a higher accuracy in data acquisition thereby permits a higher rate of success in feature
extraction while keeping them portable. However, one of the advantages of fNIRS is
that it can be complementarily combined with other modalities where its instruments do
not create any fresh artifact noise in the readings relevant to other modalities in question
and vice versa [66]. The most common combination pursued is fMRI–fNIRS, which takes
benefit of the fact that the fMRI setup is not able to conduct experiments with the subject
in a sitting or standing position [67]. Moreover, it does not allow access to the working
body parts for the researcher to take control readings in real time. Nevertheless, fMRI is
able to provide extremely accurate readings. To compensate for these problems while still
not forgoing the benefits, an fNIRS setup can be coupled together [68] with the existing
setup that can conduct real-time brain training in a functional position with an acceptable
spatial resolution of about 1 cm and a penetration depth of 1.5–2.5 cm, as stated earlier [69].
fNIRS has also been combined with the EEG modality, which is able to provide a distinct
neuromonitoring platform to explore neurovascular coupling mechanisms [70]. A modified
form of fNIRS called broadband-NIRS has been specifically used for this purpose with the
use of Finite Impulse Responses functions within the General Linear model. It has been
demonstrated that such an implementation is able to measure hemodynamic and metabolic
activity in the occipital cortex [70].

9. Conclusions

In this paper, we have reviewed the use of functional near-infrared spectroscopy
in brain–computer interfaces. We discussed that fNIRS is the process of observing the
hemodynamic response via near-infrared light-based imaging. We discussed how BCIs
work; in summary, after receiving data from the fNIRS, BCIs are programmed to filter
out extraneous noise before the data can be extracted for useful features via filtering,
feature selection, and post-processing. Through such feature extraction methodologies, an
appropriate response is executed. Additionally, we discussed the development of hardware
over time, chronologically from the discovery of NIRS, to observe hemoglobin levels up
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to the development of small, wireless fNIRS devices. The application of BCI was briefly
discussed, and we learned about the various uses for such devices. We learned that the
devices can be used for communication by having the patient answer binary questions
with the thought of mental arithmetic. They can also be used to help amputees regain
motor functions through prosthetics that are controlled by BCI systems. Finally, fNIRS-
BCI can be used in neurorehabilitation by giving the patient feedback. We also looked
at the advantages and disadvantages of fNIRS-BCI systems. The system was found to
be useful in that it is extremely portable. The system was also relatively cheaper than
most other imaging systems. fNIRS is also non-invasive and thus can be used easily.
The disadvantages we found were speed limitation due to delay in the hemodynamic
response and the fact that the system is not completely accurate and not ready yet for real
applications. Finally, we looked at future developments that are being worked on. Future
developments include making the system more user-friendly. For non-scientific or medical
use of this system, there needs to be an improvement in making it easier to set up and
use. There is also research looking to make the system more reliable. Currently, there are
developments on making a hybrid fNIRS–EEG system for BCI.
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