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Abstract: Heart failure resulting from acute myocardial infarction (AMI) is an important global health
problem. Treatments of heart failure and AMI have improved significantly over the past two decades;
however, the available diagnostic tests only give limited insights into these heterogeneous conditions
at a reversible stage and are not precise enough to evaluate the status of the tissue at high risk.
Innovative diagnostic tools for more accurate, more reliable, and early diagnosis of AMI are urgently
needed. A promising solution is the timely identification of prognostic biomarkers, which is crucial
for patients with AMI, as myocardial dysfunction and infarction lead to more severe and irreversible
changes in the cardiovascular system over time. The currently available biomarkers for AMI detec-
tion include cardiac troponin I (cTnI), cardiac troponin T (cTnT), myoglobin, lactate dehydrogenase,
C-reactive protein, and creatine kinase and myoglobin. Most recently, electrochemical biosensing
technologies coupled with graphene quantum dots (GQDs) have emerged as a promising platform
for the identification of troponin and myoglobin. The results suggest that GQDs-integrated electro-
chemical biosensors can provide useful prognostic information about AMI at an early, reversible,
and potentially curable stage. GQDs offer several advantages over other nanomaterials that are used
for the electrochemical detection of AMI such as strong interactions between cTnI and GQDs, low
biomarker consumption, and reusability of the electrode; graphene-modified electrodes demonstrate
excellent electrochemical responses due to the conductive nature of graphene and other features
of GQDs (e.g., high specific surface area, π–π interactions with the analyte, facile electron-transfer
mechanisms, size-dependent optical features, interplay between bandgap and photoluminescence,
electrochemical luminescence emission capability, biocompatibility, and ease of functionalization).
Other advantages include the presence of functional groups such as hydroxyl, carboxyl, carbonyl, and
epoxide groups, which enhance the solubility and dispersibility of GQDs in a wide variety of solvents
and biological media. In this perspective article, we consider the emerging knowledge regarding the
early detection of AMI using GQDs-based electrochemical sensors and address the potential role of
this sensing technology which might lead to more efficient care of patients with AMI.

Keywords: myocardial infarction; graphene quantum dots; electrochemical; biosensing

1. Introduction

Cardiovascular disease remains a leading cause of mortality and hospitalization world-
wide. Despite significant advances in surgical interventions and pharmaceutical regimens,
there are still inevitable risks associated with poor outcomes of many cardiovascular dis-
eases such as acute myocardial infarction (AMI), thrombosis, angina, heart failure, resteno-
sis, and myocardial reperfusion injury. AMI represents a leading cause of death among
patients with cardiovascular diseases [1]. AMI occurs when one or more arteries that are
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responsible for the supply of blood to the heart muscle known as the myocardium become
obstructed or blocked [2]. The narrowed or blocked arteries in the heart reduce or stop the
blood supply to the myocardium, which in turn causes heart dysfunction. The persistent
low blood supply results in low blood pressure and cardiac output, which leads to the
occurrence of multiple organ dysfunction syndrome. AMI, as a complex and heterogeneous
disease, is characterized by progressively debilitating and inevitability lethal biochemical
and pathological processes [3]. This process is often diagnosed at a late irreversible stage;
therefore, early stage detection of AMI is highly important. The early detection of AMI
could facilitate rapid-response prevention and therapeutic interventions before the onset of
heart dysfunction. An early therapeutic approach undoubtedly forestalls several enduring
social and financial burdens. The identification of biomarkers is one way by which AMI
can be diagnosed to both (a) detect disease onset and delay heart failure and in parallel
(b) evaluate and track the therapeutic efficacy of drugs [4]. The global cardiac biomarker
testing market is anticipated to exceed USD 13 billion by 2024 [5]. This market growth is
primarily driven by high demand for biomarker tests for timely diagnosis as well as for
drug development.

Many types of biomarkers have been identified for the detection of AMI, including
but not limited to cardiac troponin [6], lactate dehydrogenase [7], myoglobin [8], creatine
kinase and myoglobin [9], and C-reactive protein [10]. There has been significant research
interest in discovering innovative biomarkers for the early detection of AMI. Troponin
is a complex that contains three distinct proteins, including troponin T (30 kD molecular
weight), troponin I (18 kD molecular weight), and troponin C (23 kD molecular weight), that
control muscle contraction [11]. Troponin T and I are present in the heart. Cardiac troponin
I (cTnI) has been demonstrated to be more specific and sensitive for the early detection of
AMI even when it is present in ultralow concentrations [12]. The half-life of cTnI in the
blood remains high for 4–7 days and comes down to normal within 7–10 days after the
onset of myocardial damage. The concentration of cTnI in the patient’s blood increases
to 0.3 ng/mL within 3–4 h of AMI [13]. In addition to cTnI, myoglobin is an important
biomarker for the early identification of AMI. Myoglobin (17.8 kDa molecular weight) is a
cytoplasmic oxygen-binding heme protein found in cardiac and skeletal muscles. Its typical
concentration in the blood (30–90 ng/mL) rapidly rises within 1–3 h, peaks (∼200 ng/mL)
within 6–12 h and comes down to normal within 24–36 h after the onset of AMI [14].
Although it is not as specific as cTnI, it has been demonstrated as an early biomarker over a
short period (within 24 h) primarily due to its rapid release following AMI. Therefore, the
precise, cost-effective, and convenient identification of predictive biomarkers is urgently
needed to improve patient stratification.

Biosensing methods used for the detection of cTnI and myoglobin include surface
plasmon resonance [15], chemiluminescence [16], mass spectrometry [17], liquid chromatog-
raphy [18], and fluorescence energy transfer [19]. Most of these methods are relatively
specific and sensitive but costly and time consuming; furthermore, these methods require
high-level complex instrumentation, which is not available in most healthcare settings.
Biosensors are analytic tools that contain two components such as a biorecognition element
(e.g., biomolecules such as enzymes, DNA, RNA, antibodies, and nucleic acids) and a trans-
ducer (e.g., an electrochemical, optical, acoustic, or thermal transducer) [20]. A transducer
converts a particular biological event into a quantifiable and easily processible signal, which
is proportional to the amount of target analyte under specific reaction conditions. Biosens-
ing mechanisms involve a wide variety of approaches, including optical, electrical, and
electrochemical mechanisms. The first form of electrochemical biosensor for the detection
of blood glucose was reported by Clark et al. in 1962 [21]. Since then, several electro-
chemical biosensors have been developed and commercialized. An electrochemical sensor
contains three electrodes: working, counter, and reference. The chemical reaction between
the immobilized biomolecule and the analyte of interest takes place on the surface of the
working electrode and produces or consumes ions/electrons. These ions/electrons create a
potential from the reference electrode and generate a quantifiable signal. The integration
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of nanoparticles with electrochemical biosensing has remarkably upgraded the real-time,
rapid, sensitive, specific, and reliable identification and quantification of cardiac biomarkers
at very low cut-off concentrations for the early detection of cardiovascular diseases. The
incorporation of nanomaterials alters the electrode surface and enhances the electrochemi-
cal activity of target analytes (even when they are present in very low concentrations) in
comparison to the bare electrode [22]. A simple design of an electrochemical biosensor
based on nanomaterials is shown schematically in Figure 1. Nanomaterials exhibit high
adsorption of target analytes due to their high specific surface area and surface-to-volume
ratio. Electrochemical biosensors integrated with nanomaterials offer several advantages
over conventional biosensing platforms such as rapid and robust readout; selective, sensi-
tive, label-free, and non-invasive detection; cost efficient; ease of fabrication; small amount
of sample; and low background-to-noise ratio as well as user-friendly simple protocols
and equipment. The key advantages of electrochemical biosensing systems in comparison
to other methods such as chemiluminescence and fluorescence energy transfer are their
robustness, flexibility of coating of electrodes, label-free detection of cardiac biomarkers
based on electrochemical impedance spectroscopy (EIS), ease of miniaturization for point-
of-care testing, real-time detection, multiplexed sensing, and exceptional detection limits
at ultralow concentrations of biomolecules upon electrode/instrument optimization [23].
Furthermore, the screen and three-dimensional printing of electrodes is progressing rapidly.
This printing strategy approach offers several benefits such as simple and cost-effective
design, development, and high-scale production. Other techniques such as fluorescence
energy transfer have some crucial limitations such as the complex treatment of fluores-
cent probes with surfactants, low sensitivity, and photobleaching and quenching, which
restrict the sensitive and selective quantification of biomolecules in biological samples.
Moreover, it is challenging to stock fluorescent samples for a long time [24]. In the case of
chemiluminescence, the integration of chemiluminescence and electrochemical methods
in the form of electrochemiluminescence is a promising approach for the ultrasensitive
detection of biomolecules, such as DNA and micro RNA, that combines the advantages of
both electrochemical and optical mechanisms [23].
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Figure 1. Schematic diagram of an electrochemical biosensor. Reprinted with permission from
reference [22], copyright 2009 MDPI.

A wide variety of nanomaterials have been considered for use in electrochemical
biosensing such as nanoparticles [25], carbon nanotubes [26], graphene [27], polymeric
nanostructures [28], and quantum dots (QDs) [29]. Graphene quantum dots (GQDs) are a
promising new immobilizing agent for electrochemical biosensing of cardiac biomarkers
owing to their unique features such as size-dependent optical, electrochemical, and elec-
trochemiluminescent characteristics; quantum confinement; high surface area; chemical
inertness; the existence of carboxyl and hydroxyl functional groups on their edges; ease
of functionalization; variable bandgap energy; water solubility; and high biocompatibil-
ity [30]. The above-mentioned extraordinary optical and physiochemical features of GQDs
make them an attractive candidate for electrochemical biosensing as compared to their
counterparts such as pristine graphene, reduced graphene oxide, graphene oxide, and
porous graphene nanosheets, as well as three-dimensional graphene foam and aerogels.
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GQDs are zero-dimensional nanocrystals of sp2-bonded carbon atoms that are arranged in
a honeycomb structure; since the lateral dimensions of these materials are less than 100 nm,
they exhibit an extremely high surface-to-volume ratio [30]. Graphene is considered to be a
zero-bandgap material; zero-dimensional graphene in the form of GQDs exhibits excellent
optical, catalytic, and electrochemical properties. GQDs have extensively been used in
bioimaging [31], diagnostics [32], optoelectronics [33], photovoltaics [34], light-emitting
diodes [35], drug delivery [36], and therapeutic applications (such as photodynamic therapy
and a combination of photodynamic, photothermal, and chemical therapies) [37]. GQDs
offer several advantages over conventional metallic or organic QDs such as photostability,
water-solubility, and biocompatibility. The detailed synthesis of GQDs is beyond the scope
of this minireview paper and has been discussed elsewhere [38,39].

The design and development of GQDs-integrated electrochemical biosensing for the
early detection of AMI have emerged very recently and are currently on the research
horizon. Although the use of GQDs-integrated electrochemical biosensing of cardiac
biomarkers is at an early stage, some challenges currently remain unsolved. This minire-
view considers recent advances in electrochemical biosensing using GQDs for the early
detection of AMI. Furthermore, the construction principles, antibody-free cost-efficient
approaches for signal amplification, current challenges, and potentials of this technology
are also discussed in this article.

2. GQDs-Based Electrochemical Biosensing for Early Diagnosis of Acute
Myocardial Infarction

The output of an electrochemical sensor is quantified by amperometry voltammetry,
electrochemical impedance spectroscopy, and impedimetry [40]. The incorporation of
GQDs in electrochemical biosensing enhances the kinetics of electron transfer and redox
reactions, which in turn significantly improves the sensitivity and specificity of target
analyte detection. GQDs use redox-active biomolecules and facilitate direct electron transfer
for the electrochemical detection of the target analyte. The exceptional electronic features
of GQDs minimize the likelihood of passivation when they are used as an electrode or on
the surface of an electrode in the form of a coating. In 2011, Zho et al. [41] reported the
fabrication of electrochemical biosensors using GQDs-altered pyrolytic graphite electrodes;
the attached ssDNA served as probes. Owing to the high conductivity of GQDs, the
amended electrode exhibited an appropriate electrochemical response. Since then, GQDs
have been used for the identification of a wide variety of biomarkers, but studies focusing
on cardiac biomarkers are limited in number. Electrochemical biosensing coupled with
GQDs for the detection of AMI is rapidly evolving.

In 2017, Bhatnagar et al. [42] reported the fabrication of cTnI antibody conjugated
with GQDs and polyamidoamine (PAMAM) nanohybrid for the rapid electrochemical
detection of cTnI in humans. This approach was associated with a sensitivity up to
109.23 µA cm−2/µg; a detection limit up to 20 fg/mL within 10 min was reported. In
2021, Mansuriya et al. [43] reported an electrochemical sensor containing a screen-printed
gold electrode altered with GQDs and gold nanoparticles to identify cTnI for the early
detection of AMI with a sensor sensitivity up to 6.81 µA cm−2 pg/mL. The sensor was pre-
pared by applying GQDs and gold nanoparticles onto the gold electrode via drop coating,
followed by the immobilization of the cTnI antibody onto the GQDs–gold nanoparticles
nanocomposite. Detection of the analyte in human serum samples was demonstrated with
detection limits of 0.1 and 0.5 pg/mL for buffer and serum, respectively. This sensing
system was not evaluated for multianalyte analysis. However, such functionalized sensing
systems utilize both antigens and antibodies and have several limitations, including low
recovery, low efficiency, reagent use, multistep handling, long period for investigation,
loading of antibodies, antibody fabrication costs, and poor stability and performance under
extreme temperatures. The specificity of GQDs-functionalized electrodes without using
antibodies has also emerged as a challenge for the real-time detection of biomolecules.
Therefore, functionalized electrodes using doping agents without the use of antibodies
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could be exploited to increase the sensitivity, cost efficiency, and stability of the sensor. In
response to this, several research groups have used nitrogen and sulfur as doping agents to
control the photoelectric features of GQDs and further enhance their specificity towards
the target analytes. The doping of nitrogen and sulfur has the ability to efficiently modify
the electronic configuration of GQDs, which in turn can increase the kinetics of electron
transport. For instance, Fan et al. [44] reported a label-free photoelectrochemical sensor
containing nitrogen- and sulfur-doped GQDs, which were attached to a Zn2SnO4 cube
ITO electrode both to accelerate electronic transfer and to enhance the photo-to-current
conversion efficiency. This sensing platform was used to detect cTnI with a concentration
range from 0.001 ng/mL to 50 ng/mL and with a detection limit of 0.3 pg/mL. Figure 2
illustrates the electrochemical response of nitrogen- and sulfur-doped GQDs conjugated
with cubic Zn2SnO4. Figure 2A presents the photocurrent curves with increasing concen-
trations of cTnI which indicates the sensitivity of the as-prepared sensor for the detection
of cTnI. Figure 2B shows the reduced linearity of the photocurrent with cTnI concentration
(0.001 ng/mL to 50 ng/mL). Figure 2C confirms the photocurrent reaction of the sensor
that was modified with 10 ng/mL cTnI under 15 cycles of illumination. Figure 2D shows
the selectivity of the sensor for cTnI detection (at 1 ng/mL) in the presence of 100 ng/mL
of carcinoembryonic, squamous cell carcinoma, and prostate-specific antigens. The results
show that the GQDs-based sensor allows excellent specificity and sensitivity towards cTnI.
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Figure 2. (A) Photocurrent response and (B) the logarithmic calibration curve for the sensor to detect
cTnI in a concentration-dependent manner. (C) Photocurrent response of the sensor under 15 on/off
illumination cycles for 320 s, concentration of cTnI = 10 ng/mL. (D) Selectivity of the sensor to
detect cTnI: (a) Blank, (b) Blank + 100 ng/mL carcinoembryonic antigen, (c) Blank + 100 ng/mL
squamous cell carcinoma antigen, (d) Blank + 100 ng/mL prostate-specific antigen, (e) 1 ng/mL cTnI,
(f) 1 ng/mL cTnI + 100 ng/mL carcinoembryonic antigen, (g) 1 ng/mL cTnI + 100 ng/mL squamous
cell carcinoma antigen, and (h) 1 ng/mL cTnI + 100 ng/mL prostate-specific antigen. Reprinted with
permission from reference [44], copyright 2018 Elsevier.
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Antibody-free approaches based on biofunctionalized-GQDs-modified electrodes for elec-
trochemical biosensors have recently gained attention. Antibody-free approaches could be cost
efficient, stable, and involve straightforward protocols. In 2019, Lakshmanakumar et al. [45]
used acetic acid-functionalized GQDs for the modification of a Au electrode for the elec-
trochemical quantification of cTnI for the early detection of AMI with a sensitivity up to
3 ng/mL and a detection limit of 0.02 ng/mL. The coupling between the N-H group of cTnI
and the COOH groups on the surface of the GQDs facilitated the sensitive detection of cTnI.
Figure 3a shows the CV of the GQDs-modified Au electrode at different concentrations
of cTnI. The oxidation peak currents were observed to rise with increased concentrations
of cTnI (0.17 to 3.0 ng/mL). The detection limit of 0.02 ng/mL was associated with the
conjugation of the functional groups of cTnI with the functional groups of the GQDs.
Figure 3b displays a response time of 10 s. Figure 3c shows the anti-interfering capability
of the sensor, where the CV reaction was documented in the presence of trypsin. Figure 3d
validated the reproducibility of the sensor with a standard deviation of 3.1%. This study
demonstrated an antibody-free approach for electrochemical biosensing of cTnI; additional
validation of this approach is needed to facilitate use with human samples.
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Figure 3. (a) Cyclic voltammogram of gold/functionalized-GQDs electrode for different concen-
trations of cTnI, (b) amperometric current response for different concentrations of cTnI at 460 mV,
(c) cyclic voltammogram of gold/functionalized-GQDs electrode using trypsin, and (d) reproducibil-
ity (n = 3) study. Reprinted with permission from reference [45], copyright 2019 Nature Springer.

Tuteja et al. [46] described a label-free electrochemical sensor approach for the recog-
nition of myoglobin by using GQDs on screen-printed electrode. The GQDs-modified
electrode was further functionalized with anti-myoglobin antibodies in order to achieve the
specificity of myoglobin. The charge-transfer resistance exhibited an increase from 0.20 to
0.31 kΩ in a linear manner over a concentration of 0.01–100 ng/mL myoglobin; a detection
limit of 0.01 ng/mL was noted. The sensor showed specificity towards myoglobin when
used with other proteins (e.g., CK-MB, hemoglobin, troponin I, avidin, and bovine serum
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albumin). The marked sensitivity of the sensor was attained by the immobilization of
antibodies on the GQDs-modified electrode, which in turn accelerated the electron transfer
of the sensor. Figure 4a shows the results of differential pulse voltammetry (DPV) analysis
of the sensor in the presence of myoglobin. The peak at ~−0.62 V was reduced because
of the decrease of the iron moiety existing in myoglobin. Figure 4b shows the decrease in
current intensity with an increase in the concentration of myoglobin.
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GQDs offer a wide range of advantages over other materials for the sensing of AMI,
including the formation of strong interactions between cTnI and GQDs. In addition,
graphene-modified electrodes exhibit excellent electrochemical responses due to the conduc-
tive nature of graphene and low levels of biomarker consumption; moreover, the reusability
of the electrodes allows for several readings even after introducing new solutions [47]. In
addition to these sensing-related characteristics, the attractive material properties of GQDs
include a high specific surface area, the possibility of π–π interaction with the analyte, facile
electron-transfer mechanisms, a tunable bandgap, biocompatibility, minimal toxicity, photo-
luminescence, electrochemical luminescence emission capability, effective redox properties,
and ease of functionalization due to quantum-confinement effects. Another advantage of
GQDs compared to other derivatives of graphene is the presence of functional groups such
as hydroxyl, carboxyl, carbonyl, and epoxide groups; these functional groups improve the
solubility and dispersibility of GQDs in a wide range of solvents and biological media [48].
The functional groups also enable the functionalization of GQDs with antibodies or other
biomolecules for the selective detection of biomarkers at ultralow concentrations. When
comparing the results of GQDs with those of other electrochemical biosensors for the
detection of AMI (e.g., via cTnI) in the scientific literature, it can be observed that GQDs
have shown better results than other nanoparticles in terms of signal amplification, electro-
chemical response, and storage of antibodies. For example, Ahammad et al. [49] described
the electrodeposition of gold nanoparticles on indium tin oxide (ITO) electrodes and used
these electrodes to detect cTnI by measuring open-circuit potential (OCP) values; they
observed a linear dependence between OCP changes and cTnI levels over a range of concen-
trations from 1 to 100 ng/mL. In another study, Sandil et al. [50] studied the deposition of
3-aminopropyltriethoxysilane (APTES)-functionalized tungsten trioxide nanosheets on ITO
electrodes via an electrophoretic deposition approach; they immobilized cardiac troponin
I antibodies (anti-cTnI) on these structures. The structures enabled the detection of cTnI
with a linear detection range of 0.1 to 100 ng mL−1; stability up to 6 weeks was observed.
Moreover, the electrode was able to detect cTnI in spiked human serum.

The performance of other nanoparticles for the electrochemical detection of cardiac
biomarkers has also been discussed elsewhere [51,52]. Table 1 summarizes the comparison
of various classes of nanoparticles with GQDs-based electrochemical sensors for the detec-
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tion of cTnI and myobglobin; this comparison indicates that GQDs-based electrochemical
sensors have lower limits of detection compared to other types of nanoparticles.

Table 1. Comparison of GQDs and other nanomaterials for the electrochemical detection of cTnI and
myoglobin in terms of the detection method, detection range and detection limit.

Class of Nanomaterials Biomarker Sample Source Electrochemical Method Limit of Detection Refs.

Gold nanoparticles cTnI Serum Electrical impedance spectroscopy 1 pg mL−1 [53]

ZnO nanoparticles cTnI Serum Electrical impedance spectroscopy 1 pg mL−1 [54]

Pt nanoparticles/G-carbon nanotubes cTnI Serum Electrical impedance spectroscopy 1.0 pg mL−1 [55]

Gold nanodumbbells cTnI Serum Differential pulse voltammetry 8.0 pg mL−1 [6]

Acetic acid functionalized GQDs cTnI Serum Cyclic voltammetry and
amperometry 0.02 ng mL−1 [45]

GQDs/polyamidoamine nanohybrid cTnI Serum Cyclic voltammetry and Differential
pulse voltammetry 20 fg mL−1 [42]

Gold nanoparticles Myoglobin Serum Electrical impedance spectroscopy 2.7 ng mL−1 [56]

Multiwalled carbon nanotubes Myoglobin Serum Cyclic voltammetry 0.171 pg mL−1 [57]

Gold nanoparticles @reduced
graphene oxide Myoglobin Serum Differential pulse voltammetry 0.67 ng mL−1 [58]

GQDs Myoglobin Serum Electrical impedance spectroscopy 0.01 ng mL−1 [46]

3. Conclusions and Future Outlook

Accurate and early detection of AMI is challenging in clinical settings. Benchmark
biomarkers such as cTnI and myoglobin represent the identification of early deterioration
in myocardial function and hold promise to forecast the early make-up of AMI. These
predictive biomarkers have been demonstrated to be useful in differentiating between
diseased and non-diseased lesions. In the rapidly growing field of electrochemical biosens-
ing, rapid and real-time monitoring of AMI is emerging as a possibility. A wide range of
nanomaterials have been used for the detection of AMI biomarkers with promising results.
Cost-efficient and ultrasensitive electrochemical biosensors made using nanomaterials such
as gold, iron oxide, zinc oxide, manganese oxide, copper oxide, titanium oxide, and plat-
inum nanoparticles as well as molybdenum disulfide nanosheets have shown promising
results but limited applications for the detection of AMI. These nanoparticles show some
limitations such as cost-inefficient synthesis routes, time-consuming synthesis routes, and
low sensitivity in complex samples. More recently, combining GQDs with electrochemical
biosensors has shown improved sensitivity, specificity, and selectivity for the detection of
biomarkers associated with AMI. By virtue of the properties of GQDs such as their large
specific surface area, surface-to-volume ratio, π–π stacking, biocompatibility, and minimal
toxicity, the use of GQDs for electrochemical biosensing has the potential to advance the
field of cardiac diagnostics. The key advantages offered by GQDs include a strong electro-
chemical response due to the conductive nature of graphene, the size-dependent optical
features of GQDs, the capability for π–π bonding of GQDs with analytes, the availability
of fast electron-transfer mechanisms due to the high electron mobility of graphene, and
biocompatibility. This brief review considers the recent developments of different types of
electrochemical biosensors along with their benefits and shortcomings. Several challenges
need to be addressed to facilitate the clinical translation of GQDs-based electrochemical
biosensors. In order to achieve high reliability and sensitivity of electrochemical biosensors,
bioconjugation and biofunctionalization strategies, and the interplay between the size
and shape of the biorecognition element and the choice of synthesis routes of GQDs and
functionalization as well as multimarker identification, need to be optimized precisely. The
concentrations of biomarkers could vary based on several factors, including sex, weight,
and age. In addition, with globalization and a growing population, the application of
biosensors must be cost efficient and straightforward to use in healthcare settings. There-
fore, electrochemical biosensors should satisfy the standards of validation with statistical
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testing among different populations and high-risk groups at multiple locations. Previous
studies reported on this topic have not specified the age, sex, or racial and ethnic back-
grounds of the human samples used in the studies. Furthermore, high levels of troponin
are also linked to other cardiac injuries; hence, capabilities such as speed, precision, and
accuracy of detection of troponin associated with AMI need to be validated using human
samples for clinical translation of the technology. A pronounced prospect exists for re-
searchers to address these key technological gaps by carefully designing future studies in
order to achieve high-quality diagnostic tools. These challenges enable us to design and
develop wide-ranging and efficient biosensing platforms aimed at diagnosis as well as
monitoring the response to a specific therapy. In conclusion, real-time and rapid monitoring
and sensing regimes, if appropriately validated and used, offer the promise of mitigating
the adverse outcomes associated with AMI.
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