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Abstract: Continuous monitoring of pulse waves plays a significant role in reflecting physical
conditions and disease diagnosis. However, the current collection equipment cannot simultaneously
achieve wearable and continuous monitoring under varying pressure and provide personalized pulse
wave monitoring targeted different human bodies. To solve the above problems, this paper proposed
a novel wearable and real-time pulse wave monitoring system based on a novel flexible compound
sensor. Firstly, a custom-packaged pressure sensor, a signal stabilization structure, and a micro
pressurization system make up the flexible compound sensor to complete the stable acquisition of
pulse wave signals under continuously varying pressure. Secondly, a real-time algorithm completes
the analysis of the trend of the pulse wave peak, which can quickly and accurately locate the best
pulse wave for different individuals. Finally, the experimental results show that the wearable system
can both realize continuous monitoring and reflecting trend differences and quickly locate the best
pulse wave for different individuals with the 95% accuracy. The weight of the whole system is only
52.775 g, the working current is 46 mA, and the power consumption is 160 mW. Its small size and low
power consumption meet wearable and portable scenarios, which has significant research value and
commercialization prospects.

Keywords: wearable; flexible compound sensor; wrist pulse signal; real-time monitoring; the varying
trend of pulse wave peak; best pulse wave positioning

1. Introduction

Pulse wave diagnosis has a glorious history both in China and India. Studies have
shown that pulse waves are the intuitive reflection of the state of the internal heart and
blood vessels [1–5]. It has been proven in modern medicine to be able to predict and reflect
a variety of diseases, such as cardiovascular disease [6] and diabetes [7]. The intensity of
the radial artery pulse wave is considered an indicator for the diagnosis of many diseases.
Moreover, its characteristics of non-invasiveness, non-radiation, and relatively simple
processes have been widely accepted and concerned [8].

Wearable and continuous monitoring of physiological signals such as pulse wave has
gradually become a research hotspot [9–12]. Some studies have used wearable sensors
to monitor arterial waveforms such as photoplethysmography (PPG) signals, combined
with novel machine learning algorithms, to establish new ways to advance the progress
of physiological health monitoring, and made remarkable progress [9,11]. Pulse wave
diagnosis can obtain the varying trend of pulse wave peak by applying different levels
of static pressure to the radial artery, which can reflect the current physical state of the
observer [10,12]. Since each person has different static pressure ranges, it is necessary to
measure the pressure of the radial artery to obtain an individualized varying trend of pulse

Biosensors 2022, 12, 133. https://doi.org/10.3390/bios12020133 https://www.mdpi.com/journal/biosensors

https://doi.org/10.3390/bios12020133
https://doi.org/10.3390/bios12020133
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0002-6022-7720
https://doi.org/10.3390/bios12020133
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios12020133?type=check_update&version=2


Biosensors 2022, 12, 133 2 of 18

wave peaks. Traditional pulse wave diagnosis mainly relies on the experience of Traditional
Chinese Medicine (TCM), and the diagnostic criteria vary from person to person. Objective
and quantitative diagnostic equipment has been a research hotspot for decades [13].

There are some problems with the pulse wave sensor. The main categories of pulse
wave pressure sensors include photoelectric sensors [14–17], piezoresistive sensors [18,19],
ultrasonic sensors [20], and pressure sensors [21]. Photoelectric sensors, such as PPG
sensors, which have made some notable progress [14,16,17], are susceptible to light inter-
ference from external sources, and cannot measure the trend of pulse wave pressure under
continuously varying pressure. The sensitivity of the piezoresistive sensor [18] is inversely
proportional to the pressure range, so when the applied pressure is much larger than the
pulse wave, it is difficult to detect the weak pulse wave signal and obtain high-quality
data. The pressure sensor converts the mechanical pressure into an electrical signal, which
imitates the doctor’s tactile sense of pulse in practice, which is considered to be a better
choice. The flexible pressure sensor based on Polyvinylidene fluoride (PVDF) piezoelectric
sensor can be used for wearable pulse measurement, such as [22], it is still unable to obtain
the pulse wave and applied pressure information under continuously varying pressure
during the test.

There are also some defects in the existing pulse wave acquisition equipment. In our
previous work [1,2], we proposed a new type of pulse wave acquisition device that can
automatically pressurize the radial artery in sections, but the device is large in size, poor in
portability, and high in power consumption, which cannot meet the needs of continuous
pulse wave collection and real-time monitoring. This problem also exists in other jobs [22].
There are also some wearable pulse wave acquisition devices that have been verified in
principle, but there are still problems such as the inability to perform real-time calculations
or to apply continuously changing pressure [23–25]. Building a wearable pulse wave
monitoring system to obtain simultaneously pulse wave and pressure information under
continuously varying pressure is one of the urgent problems to be solved.

To solve the above problems, this paper proposed a wearable and real-time monitoring
system based on a flexible compound sensor, which can simultaneously obtain pulse
wave and pressure information under continuously varying pressure. Firstly, the flexible
compound sensor includes a custom-packaged pulse pressure sensor, a signal stabilization
structure, and a micro pressurization system. While applying continuously changing static
pressure to the radial artery, it achieves stable acquisition of pulse wave signals. Then,
a conditioning circuit was designed for pulse signal processing and an algorithm was
developed to obtain the varying trend of the pulse wave peak under varying pressure
in real-time, so as to calculate the characteristic parameters of the pulse wave. Finally,
experiments are carried out to verify the accuracy, repeatability, and effectiveness of the
flexible compound sensor. The results show that the compound sensor has good accuracy
and repeatability, and the system can not only obtain the pulse wave under continuously
varying pressure, but also analyze the varying trend of the pulse wave peak with pressure
in real-time, which can be used by different people and quickly locate the strongest point
of pulse wave.

2. Materials and Methods
2.1. System Overview

The wearable and real-time pulse wave monitoring system proposed in this paper
includes a flexible compound sensor that is worn on the human wrist to complete the
pulse wave signal acquisition, a circuit structure to accomplish the signal processing and
transmission, and a real-time algorithm to realize the calculation of the pulse wave under
different static pressures. Specifically, the flexible compound sensor consists of three parts:
a pulse wave pressure sensor to collect pulse wave signals, a signal stabilization structure
customized to ensure signal quality, and a micro pressurization system to apply continuous
varying pressure to the radial artery. The schematic diagram of the monitoring system is
shown in Figure 1a and the photograph of the monitoring system is shown in Figure 1b.
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Figure 1. The proposed pulse wave monitoring system. (a) Schematic diagram of the monitoring
system, based on a flexible compound sensor; (b) Photograph of the monitoring system.

Firstly, the pulse wave signal is collected by the flexible compound sensor under
the continuously varying pressure, and then transmitted to the circuit, conveyed to the
microprocessor for real-time algorithm processing to obtain information such as the varying
trend of pulse wave peak. Simultaneously, it was formed feedback based on the calculation
results to control the micro pressurization system. The original data and algorithm results
can be displayed on the low-power ink screen that comes with the system. Furthermore,
they can be transmitted to a PC or smartphone via wireless communication for real-time
monitoring. The weight of the whole system is only 52.775 g, the maximum working
current is approximately 46 mA, and the power consumption of the whole machine is
approximately 160 mW, which meets the requirements of wearable and portable scenarios.

2.2. Flexible Compound Sensor

The flexible compound sensor is the key to the design of the entire wearable system that
is designed to support the stable and effective collection of pulse waves under continuously
varying pressure. In order to closely fit the human wrist to collect pulse waves, the flexible
compound sensor consists of a pulse pressure sensor, a signal stabilization structure, and a
customized micro pressurization system. A schematic diagram of the flexible compound
sensor is shown in the Figure 2a. The solid line shows the specific component, and the
broken line indicates the name of the specific component.

2.2.1. Pulse Pressure Sensor

To obtain an effective pulse wave signal, we designed the pulse pressure sensor based
on the PVDF piezoelectric sensor, which has high sensitivity and meets the frequency
characteristics of the pulse signal. Its dynamic range completely covers the pulse beating
range and can effectively cover the pulse wave collection site on the wrist. The characteristic
table of the sensor is shown in Table 1.

To collect the pulse wave stably and effectively, considering the sensing, protection,
and external connection, we customized the pulse pressure sensor into a five-layer structure.
The schematic diagram of the package structure is shown in Figure 2b. From top to bottom,
they are the top protective layer, the positive conductive layer, and the PVDF piezoelectric
thin film sensor (28 µm), the negative conductive layer, and the bottom protective layer. The
top and bottom protective layers are made of polyester film. On the one hand, it protects the
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PVDF film material and conductive layer inside the sensor from being damaged by moisture
and mechanical friction. On the other hand, it can also provide mechanical strength for
the pins. The positive and negative conductive layers are printed with silver ink on both
sides of the film as electrodes on both sides of the film. When the PVDF piezoelectric
sensor is deformed by force, polarized charges are generated on both sides of the film, and
the positive charge side passes through the positive conductive layer. It is transferred to
the positive pin, and the negative charge side is transferred to the negative pin through
the negative conductive layer. The photograph of the pulse pressure sensor is shown in
Figure 2c. The sensitive area of the sensor is determined by the PVDF piezoelectric sensor,
which is 40 × 10 mm and can effectively cover the pulse wave collection site on the wrist.
The distance between the boundary of the shape and the boundary of the sensitive surface
is 0.5 mm. The connector uses a pin with a length of 10 mm to conduct the charge out.
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Figure 2. Flexible compound sensor: (a) Schematic diagram of the flexible compound sensor;
(b) Schematic diagram of the package structure of the pulse pressure sensor; (c) Photograph of
the pulse pressure sensor.

Table 1. Parameters of PVDF piezoelectric sensor.

Variables Parameters

Density 1.78 × 103 kg/m3

Active area 40 mm × 10 mm
Thickness 28 µm

Capacitance 1.6 nF
Young’s Modulus 2 × 109 N/m2

Mylar 5 mil
Sensitivity 14.4 V/N

Considering the design of the package, we try to fix the shape of the film itself and
consider trying our best to reduce the interference caused by the space electromagnetic and
the stability of the connector. Firstly, to prevent the fluctuation of the shape of the film itself
from generating noise, we use packaging and pulse signal stabilization structure to limit
the freedom of the film shape in the application. Secondly, the sensor lead is connected
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with a twisted pair when it is connected to the pin, which can not only transmit the signal
of the PVDF piezoelectric sensor but also shield the external electromagnetic interference.
Finally, to ensure the stability of the connector, in our research, the sensor is connected by a
pin and the lead is connected by solder.

2.2.2. Pulse Signal Stabilization Structure

To enhance the sensor sensitivity and effectively collect pulse waves, based on the
above package structure, we have customized a signal stabilization structure using soft
rubber (length: 50 mm, width: 10 mm, thickness: 3 mm, Shore hardness: A30, 3D printing),
which is applied between the skin and the sensor. The schematic diagram of the signal
stabilization structure is shown in Figure 3a. Soft rubber has good toughness and elasticity,
high heat resistance, tear resistance, and soft texture, which can fit the wrist closely and
increase the friction between the skin and the sensor so that the stability of the pulse signal
is at the sensor position. The photograph of the signal stabilization structure is shown in
Figure 3b. The zigzag shape design of the module can effectively transmit the deformation
of the PVDF film. The schematic diagram of stress analysis of the signal stabilization
structure is shown in 3c. The stress analysis of the signal stabilization structure shows that
when the pulse wave pressure acts on the lower surface, it can be regarded as a rigid body
in a steady state. After being transmitted to the upper surface, the pressure at the contact
points on the upper surface can be increased to make the signal more stable and sensitive
to capture by the PVDF sensor structure.
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2.2.3. Micro Pressurization System

To obtain the varying trend of the pulse wave peak of the pulse wave under continu-
ously varying pressure, we designed a micro pressurization system to apply continuously
varying pressure on the radial artery. The pressure range is from 0 mmHg to 180 mmHg,
which is in line with the small size and low power consumption design to meet wearable
and portable scenarios. The micro pressurization system mainly includes an integrated
pump, air pressure sensor (MPS20N0040D-S), and inflatable wrist strap. To meet the needs
of wearable and portable design, we customized an integrated air pump (thickness is only
6 mm and weight is only 2.48 g) that combines an air pump and a solenoid valve. The
integrated pump is controlled by the microcontroller unit (MCU) to inflate the customized
micro wristband, maintain the pressure, and deflate the pressure. The air pressure sensor
has good repeatability and long-term stability, which is used to measure the air pressure in
the micro pressurization system and feedback the current air pressure value to the MCU
for further control.

To keep the air pressure stable, we propose an integrated air pump control method
based on the Proportion Integration Differentiation (PID) algorithm. Flow chart of air
pressure stabilization control is shown in Figure 4. The difference between the expected air
pressure value and the actual air pressure value is used as the algorithm input. Through
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proportional and differential adjustment, the output feedback error drive voltage is super-
imposed on the original drive voltage. The MCU controls the driving voltage by changing
the duty cycle of the Pulse Width Modulation (PWM) wave to change the pressing speed.
To stabilize the air pressure, adjust the air pressure so that it stabilizes at the optimal air
pressure value and fluctuates no more than 3%. According to the personalized inflation
speed, the integrated air pump can be controlled by MCU to perform stable inflation
and deflation; also, the air pump achieved to inflate to any pressure value and maintain
it continually.
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When the pulse wave is collected, the flexible compound sensor is pressed above
the radial artery of the wrist, and the micro pressurization system applies a continuously
changing static pressure to the radial artery. The force generated by the pulse is transmitted
through the skin and the pulse signal stable structure. The sensitive area of the sensor
captures the deformation, the sensor generates a polarized charge based on the piezoelectric
effect, and then the charge is transferred to the pin, through the pre-amplifier circuit, to
complete the collection of the pulse wave electrical signal.

2.3. Signal Processing
2.3.1. Circuit Architecture

To meet the needs of a wearable and mobile monitoring system, the circuit architecture
adopts low power consumption and miniaturization design, which mainly includes signal
processing circuit, analog-digital converter (ADC) circuit, control circuit, and power supply
module. Schematic diagram of circuit architecture is shown in Figure 5. The voltage supply
is powered by a 4.2 V rechargeable lithium battery with a rated capacity of 270 mAh. The
wrist skin is connected to the system ground through a wire, and the reference ground
electrode is introduced on the skin to reduce the interference of space charge on the PVDF
signal acquisition, which can effectively eliminate the 50 Hz power frequency signal and
greatly simplifies the circuit.

In the signal acquisition process, firstly, the pulse pressure sensor transfers the po-
larized charge to the pre-charge amplifier circuit through the pins and leads. The high-
impedance input can well capture the weak charge generated by the PVDF film. Then a
preamplification circuit is a voltage amplifier with a voltage gain of 11 times. After that
the signal is conveyed to the MCU to calculate the varying trend of the pulse wave peak in
real-time and transmitted to the smartphone or PC via wireless communication. The signal
sampling frequency is 250 Hz.

2.3.2. Real-Time Calculation Algorithm

To ensure the real-time performance of the calculation, we calculate the varying trend
of pulse wave peak on the MCU. The calculation result can be output and displayed on
the screen of the system in real-time, or transmitted to the PC or smartphone via wireless
communication. Before this, the collected signal will be filtered to remove noise. We use a
median filter to remove abnormal points in the sampling process, and an average filter and
a low-pass filter with a cutoff frequency of 15 Hz to filter out the interference of baseline
drift. The filtered pulse wave signal and air pressure signal is shown in Figure 6b.
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To calculate the pulse wave parameters and the varying trend of pulse wave peaks in
real-time, we proposed a calculation method based on a sliding window. The schematic
diagram of the real-time algorithm is shown in Figure 6a. The schematic diagram of sliding
window is shown in Figure 6c. The size of sliding window is 1024 sampling points, and the
sliding step size is set to 250 sampling points. For the pulse wave signal in the window,
shown in Figure 6d, firstly, locate the pulse wave starting point for real-time period division,
shown in Figure 6e. Secondly, according to the position of the characteristic point, calculate
the pulse wave peak, pulse rate, and other parameters. The pulse wave in the signal
sequence is monitored to obtain the static pressure corresponding to the pulse wave with
the strongest amplitude, to realize the accurate positioning and continuous monitoring of
the best pulse wave of different individuals.

The dynamic pulse pressure curve generated by a sensor takes the peak value under
static pressure as the horizontal axis, and the air pressure value of the pulse wave peak
value as the vertical axis of the varying trend of pulse wave peak. It depicts the varying
trend of the wrist pulse wave peak under continuously varying pressure, hereinafter
referred to as the pressure-height (P-H) curve, shown in Figure 6f, which fully describes
the depth information of the radial artery.
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3. Experimental Results and Discussion
3.1. Test Device for Performance Test of the Flexible Compound Sensor

To verify the reliability, consistency, and effectiveness of the flexible compound sensor,
we employed a standard pulsation signal source, the MM-4 pulse simulator, shown in
Figure 7a. The equipment based on bionic simulation and waveform synthesis methods,
develops bionic hands and radial artery blood vessels with polymer material formulas,
and uses stepping speed-regulating motors and special oil pumps to simulate the dilation
and contraction of the human heart. It can output a variety of standard finger-sensing real
pulse wave signals at the radial artery of the bionic hand. We can set the shape of the pulse
wave independently. Figure 7 shows the pulse shapes called Ping, Xian, Hua, Ji, and Chi
generated by the pulse simulator, which are considered as the five common pulse sharps
in TCM.
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To verify the consistency of different positionings of the sensor, we choose three po-

sitions A, B, and C on the sensor, whose positions are shown in Figure 9. Among them 
point B is the center position of the sensitive area of the sensor. After the assembly is com-
pleted, press the three points A, B, and C of the sensor on the test device, respectively, to 
collect pulse wave information at the three positions. The above experiment was repeated 
three times, and the average amplitudes of the pulse wave at the three positions were 
shown in the Figure 9. 
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pulse generated by the test device called, respectively, Ping, Xian, Hua, Ji, and Chi.

3.2. Verification of Airtightness

The micro pressurization system provides a continuously changing static pressure for
the flexible compound sensor, which is an important part of the entire system. Initially,
the airtightness test of the micro pressurization system in the flexible compound sensor is
carried out. Firstly, wear the sensor on the simulated wrist of the simulator, then control the
micro pressurization system to inflate to 150 mmHg, turn off the integrated air pump, and
keep it for a while. Finally, record the air pressure value in the micro pressurization system
measured by the air pressure sensor to verify the micro pressurization system airtightness.
Repeat the above experiment five times. As shown in Figure 8, within the 40 s after the
integrated air pump is turned off, the air pressure can remain above 96.5% of the closed air
pressure, which means that the airtightness of the system is excellent.
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Figure 8. Air tightness of the flexible compound sensor under 150 mmHg airbag pressure for 40 s.

3.3. Consistency of Different Positioning of the Sensor

To verify the consistency of different positionings of the sensor, we choose three
positions A, B, and C on the sensor, whose positions are shown in Figure 9. Among
them point B is the center position of the sensitive area of the sensor. After the assembly is
completed, press the three points A, B, and C of the sensor on the test device, respectively, to
collect pulse wave information at the three positions. The above experiment was repeated
three times, and the average amplitudes of the pulse wave at the three positions were
shown in the Figure 9.
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Figure 9. Consistency test of different positioning of the sensor: (a) The positions of the three points
A, B, and C; (b) Pulse wave measured at three points A, B, C.

The experimental results show that the pulse wave amplitude collected at point B is
the largest, the pulse wave amplitude collected at point A is 4.76% smaller than that of
point B, and the amplitude of pulse wave collected at point C is 4.19% smaller than that of
point B, which are all less than 5%. Therefore, different positioning of the sensor has little
influence on measuring results. In the following experiments, unless otherwise specified,
we collect pulse waves at the position point B of the sensor, which can not only obtain the
maximum signal amplitude, but also help to cover a sufficient range to ensure that the
pulse wave can be monitored.
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3.4. Repeatability of Flexible Compound Sensor

To verify the repeatability of the applied variable pressure of the micro pressurization
system, we performed a pressure test on the flexible compound sensor. The sensor is worn
on the simulated wrist of the simulator. Control the micro pressurization system to inflate
to 150 mmHg and record the change in the value of the air pressure sensor during the entire
pressurization process. Repeat the above experiment five times.

To evaluate the repeatability of the flexible compound sensor, which also reveals the
reliability and stability of the sensor, the equation for calculating the repeatability of the
sensor is shown as follows:

si
2 =

1
m − 1

m

∑
j=1

(
yij − yi

)2 (1)

s =

√
1

2n

n

∑
i=1

si
2 (2)

where y is the measured value, si is the variance of the measurement point i, m represents
the number of repetitions of test experiment, in this experiment, the value is five, n is the
number of measurement points.

When the micro pressurization system applies continuous pressure to the sensor,
the pulse pressure signal and the applied static pressure signal are recorded and used to
evaluate the repeatability of the composite pressure sensor. The curve drawn by repeating
the above process is shown in Figure 10. The standard deviation of each measurement point
is calculated according to Equations (1) and (2). It can be seen from the Figure 10 that the
air pressure value and the pulse pressure value under continuously varying pressure show
a great linear correlation and stable standard deviation. To check the standard deviation
more specifically, we sample the standard deviation every 1 s, and the relative standard
deviation values of approximately 18 s are shown in Table 2.
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(s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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As shown in Table 2, the relative standard deviation of pulse pressure and the relative
standard deviation of air pressure in the low-pressure stage (1 s to 4 s) is greater than
in the medium pressure and high-pressure stages, and the relative standard deviation
values are also unstable. This phenomenon is caused by the fact that the wristband is less
inflated in the initial stage and the sensor is not completely in close contact with the test
equipment. With the gradual increase of airbag pressure, the relative standard deviations of
static pressure and dynamic pressure in the middle-pressure section and the high-pressure
section gradually decrease and become stable. The relative standard deviation of static
pressure is reduced from 5.6% to 1.5% in high-pressure sections, showing good stability. The
relative standard deviation of pulse pressure produced large fluctuations during the entire
compression process and the value was much larger than the relative standard deviation of
static pressure. However, the relative standard deviation of the pulse pressure was always
kept in a low range (from 16.7% Reduced to 3.4%), which will not have a major impact on
data analysis. Therefore, during the entire pressurization process, the relative standard
deviation of the pulse pressure and the air pressure is kept at a low value, which proves
that the pulse pressure sensor and the barometric pressure sensor work stably during the
entire process.

3.5. Verification of Pulse Pressure and Air Pressure Collection

To evaluate the effectiveness of the flexible compound sensor, we compared the sensor
we proposed with the sensor on the ZM-300 [1], which meets TCM’s technical standards for
pulse wave detection, and is generally considered to be a standard pulse wave detection
system. A verification experiment is designed, as shown in Figure 11. The pulse simulator
is used to generate the five most common specific waveforms in TCM to simulate the pulse
wave of the human body, and then let our proposed sensor and the ZM-300 sensor measure.
The default unit of the output value of the ZM-300 sensor is g/cm2, which is converted
to kPa to keep the unit consistent with the output value of our sensor. Then, the ratio
of the amplitude of the waveform captured by the two sensors is calculated. We have
measured five kinds of pulse, namely Ping, Xian, Hua, Ji, and Chi. For each group of pulse
waveforms, and we tested them ten times.

The amplitude of the pulse simulator is much larger than the usual pulse wave
amplitude, ensuring that the pulse wave can always be recorded without loss. The test
results of these five pulse waveforms are shown in Figure 11. From the perspective of
waveform similarity, five kind of pulse waveforms were collected with high similarity
by our system and ZM-300, respectively. As shown in Table 3, The Pearson correlations
between the five kind of pulse waves are 0.99, 0.97, 0.97, 0.98 and 0.99 separately, which
means that the pulse wave waveform acquired by our system is very similar to the ZM-300.
From the perspective of amplitude, the amplitude ratios of these five kinds of pulse are
1.06, 1.04, 0.97, 1.08 and 0.98 separately, and the average amplitude ratio is 1.03, which
shows that the linearity of our flexible compound sensor is only slightly different from that
of the ZM-300. The standard deviation of the amplitude ratio of these five types of pulse
is 4.00%, which proved that the consistency of the sensor is outstanding. However, our
system can automatically collect. Compared with the ZM-300 manual collection, the time
required for collection from 5 min is greatly shortened to 30 s.

Table 3. Pearson correlation between the five kind of pulse waves collected by our system and
ZM-300.

Pulse Type Ping Xian Hua Chi Ji

Pearson
correlation 0.99 0.97 0.97 0.98 0.99
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Ping, Xian, Hua, Chi, and Ji; (g) Result of amplitude comparison of five kinds of pulse, Ping, Xian,
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3.6. Verification of Best Pulse Wave Positioning

To test the performance of best pulse wave positioning of the pulse wave monitoring
system we proposed, firstly, the system is worn on the simulated wrist of the simulator.
Control the micro pressurization system to inflate, and record the variation in the value of
the pulse wave and air pressure during the entire pressurization process. After real-time
processing by the algorithm, the experimental result is shown in Figure 12. The system can
locate the best pulse wave and corresponding air pressure.
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Figure 12. Experimental result of best pulse wave positioning.

To verify that the system has the same performance for different individuals, 20 volunteers
in our institute are recruited for measurement. Each volunteer was asked to sit still for
five minutes before the test. Table 4 shows the basic information of the volunteers and
the experimental result of best pulse wave positioning. There were 19 of 20 people who
could correctly locate the best pulse wave, while one person failed to locate it because the
volunteer had vigorous movement during the collection process, which is also our next
step: to develop algorithms to eliminate interference from motion artifacts. In summary, the
accuracy was 95% in 20 people whose differences are obvious, meaning that the proposed
system shows good performance for best pulse wave positioning.

Table 4. Basic information of 20 volunteers and the experimental result of best pulse wave positioning.

Variables Parameters
Experimental Result

YES NO Accuracy

Gender

19 1 95%

Male 10
Female 10

Age (year) 29 ± 5.0 (22–46)
Height (cm) 174.6 ± 7.4 (153–190)
Weight (Kg) 72.5 ± 18.3 (41–115)

BMI 22.04 ± 3.4 (16.1–38.9)

3.7. Pulse Wave Continuous Monitoring

To verify the features for continuous pulse wave monitoring, the pulse wave moni-
toring system we proposed was worn on a volunteer’s wrist and automatically measured
every hour. The main peak of best pulse of the measurement and the corresponding air
pressure were calculated in real-time. The experimental result of continuous monitoring
from 8 a.m. to 12 p.m. is shown in Figure 13.
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According to the experimental results, we can see the varying trend of the main peak
of this volunteer’s best pulse wave during the day, which is consistent with the description
in TCM. It means that the proposed pulse wave monitoring system based on the flexible
compound sensor could indicate the capability of continuous monitoring and reflecting
trend differences.

4. Conclusions

This study proposed a novel wearable and real-time pulse wave monitoring system
based on a flexible compound sensor, which achieved stable acquisition of pulse wave
signals under continuously varying pressure. The weight of the whole system is only
52.775 g, the maximum working current is less than 46 mA, and the power consumption
of the whole system is less than 160 mW, which meets the requirements of wearable and
portable scenarios. Simultaneously, the real-time algorithm we proposed can complete the
analysis of the pulse wave and the trend of the best pulse wave peak under continuously
varying pressure, which can quickly locate the strongest pulse wave for different individu-
als. Within 40 s the air tightness can remain above 96.5%. The experiments to verify the
reliability, consistency, and effectiveness show that the wearable pulse wave monitoring
system can not only realize best pulse wave positioning and pulse wave monitoring under
continuously varying pressure, but also indicate the capability of continuous monitoring
and reflecting trend differences.

The proposed system and other pulse measurement devices presented in recent studies
are summarized in Table 5. Chen [1] and Liu [2] are the previous works used to develop
effective pulse wave acquisition devices. Jessica [25] proposed a wearable pulse-taking
device. J.C. [24] proposed a wearable pulse acquiring system using airbags. Hsieh [26]
proposed a portable pulse tactile recorder system to collect pulse palpation forces and
vibrations. Chen J. [27] proposed flexible piezoresistive sensors for pulse monitoring and
Li [28] used flexible pressure-sensors to realize the acquisition of arterial pulse signals in
the time domain.
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Table 5. Comparisons with other pulse measurement systems.

System Jessica et al.
[25] Liu et al. [2] J.C. et al.

[24]
Chen C.
et al. [1]

Hsieh et al.
[26]

Chen J. et al.
[27] Li et al. [28] Proposed

Wearable YES NO YES NO YES YES YES YES

Real-time NO NO NO NO NO NO NO YES

Weight Not
mentioned 1164.4 g ~800 g Not

mentioned 10 g Not
mentioned

Not
mentioned 52.8 g

Portable NO NO NO NO YES YES NO YES

Flexible NO YES NO YES NO YES YES YES

Pulse-taking
pressure
acquiring

NO YES YES YES NO NO YES YES

Measure
under

continuously
changing
pressure

NO NO YES NO NO NO NO YES

Pressurization
method Manually Pump and

air bag
Pump and

air bag
Pump and

air bag Manually Manually Manually

Integrated
air pump
(weight:

2.48 g) and
air bag

Year of
publication 2017 2018 2019 2020 2021 2021 2021 2022

In conclusion, the system is feasible for stable acquisition of pulse wave signals
under continuously varying pressure, and the analysis of the varying trend of the best
pulse wave peak, which is beneficial to pulse diagnosis. Moreover, its small size and
low power consumption meet the needs of wearable and portable scenarios, which will
play an important role in health monitoring and disease warning. Combining the above
advantages, the system has significant research value and commercialization prospects.

In the future, we will improve the function of the system and develop algorithms to
eliminate interference from motion artifacts to meet the requirements of exercise monitoring.
In addition, we will study the subject in long-term use for users. Furthermore, we will
carry out more experiments to make the system more accurate and standardized. This is of
important significance to pulse diagnosis and health monitoring.

5. Patents

The works presented in this paper are subject to pending China and international
patents filed by Institute of Microelectronics of Chinese Academy of Sciences (IMECAS) in
China (202110808586.4, 202111553703.3).
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