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Abstract: An exoskeleton, a wearable device, was designed based on the user’s physical and cognitive
interactions. The control of the exoskeleton uses biomedical signals reflecting the user intention as
input, and its algorithm is calculated as an output to make the movement smooth. However, the
process of transforming the input of biomedical signals, such as electromyography (EMG), into the
output of adjusting the torque and angle of the exoskeleton is limited by a finite time lag and precision
of trajectory prediction, which result in a mismatch between the subject and exoskeleton. Here, we
propose an EMG-based single-joint exoskeleton system by merging a differentiable continuous
system with a dynamic musculoskeletal model. The parameters of each muscle contraction were
calculated and applied to the rigid exoskeleton system to predict the precise trajectory. The results
revealed accurate torque and angle prediction for the knee exoskeleton and good performance
of assistance during movement. Our method outperformed other models regarding the rate of
convergence and execution time. In conclusion, a differentiable continuous system merged with a
dynamic musculoskeletal model supported the effective and accurate performance of an exoskeleton
controlled by EMG signals.

Keywords: differentiable physics; electromyography (EMG); musculoskeletal model; Hill-type
muscle; exoskeleton; motor control; adjoint method; gradient; differential equation

1. Introduction

The exoskeleton, a wearable device, was designed according to the physical and
cognitive interactions of the users. Exoskeletons have been developed for diverse medical
purposes, including strength augmentation [1], rehabilitating neurological impairment [2],
and assisting daily activities caused by neuro-musculoskeletal disorders [3]. In each
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application, the design of the exoskeleton would be based on the understanding of the
users’ intention to control the device to achieve precise execution of the intended movement.

Thus, for patients with stroke or spinal cord injury, decoding motor signals from
electromyography (EMG) or neural signals from electrocorticography (ECoG) [4,5] would
be crucial for controlling exoskeletons and helpful by assisting these patients in restoring
daily functions. The effect of the muscle spindle on muscle tension can be mathematically
quantified as a neuromuscular model and combined with control theory to optimize
the system for a human limb to operate the device [6,7]. This creates the potential for
developing the exoskeleton-assisted rehabilitation approach into a personalized therapy.

For controlling an exoskeleton, several physiological signal sources, including force
sensors [8] or biomedical signals, such as EMG [9] and electroencephalography (EEG) [10],
were used with excellent performance. In the preceding study, the force sensor systems
used over hip-mounted exoskeletons for elders with walking difficulties caused by muscle
weakness. The results demonstrated that the sensor system can generate torque in the
walking-assistant actuator from the direct measurement of the hip-assistance force and that
the gait-assistance exoskeleton system can control the delivered power and torque for the
user [8].

However, in that study, the coordination and interaction between physical activity
and cognitive control was limited for the force sensor system because the predetermined
trajectory could not synchronize the user’s intension to actively coordinate the muscle
movements simultaneously. The force sensor system could only be activated by the prede-
termined trajectory of the exoskeleton when the actual output was lower than the threshold
or deviated from the predetermined trajectory. The unsynchronized interaction, as well as
a large time delay, between physical movements and the force sensors increased the risk of
tripping [11].

For EEG to be used as the input to control the exoskeleton, direct brain signal recording
has been measured on the scalp. In previous studies, the exoskeleton could be controlled
via the brain-computer interface by using EEG signals [12,13]. However, because of brain
pathology, including stroke, Parkinson’s disease, or brain injury, EEG signals varied across
subjects and their use had to be highly customized and needed a long learning period,
rendering the approach inefficient for real-time applications [14]. This necessitated the
design of a control algorithm that can detect the user’s intention fast and does not rely on a
predetermined trajectory.

To overcome the limitations posed by the time delay between the user’s intentions
and the force sensor system, it is crucial to directly decode biomedical signals recorded
from the nervous system or the musculoskeletal system. EMG signals are relatively easy
to obtain and contain the information about body movement. Other investigators have
used machine learning or neural networks to learn and predict the joint angles [15] and
torques [16–18] of the human body during movement.

In one example, the artificial neural network technique was applied to EMG signals
to predict the joint torque estimation model, and the trained model was used in the arm
rehabilitation device aiding limb-paralyzed patients. Although the methods of machine
learning or neural networks had performed well on decoding, their “black-box” transfor-
mation of the biomedical signals was lacking biomechanical explanation, which remains a
source of controversy in these applications.

The Hill-type muscle model [19], built of contractile, series elastic, and parallel elastic
components, offers a clear biomechanical explanation of the mechanical responses repre-
senting muscle behaviors [20,21]. An application of the Hill-type muscle model was shown
to be capable of accurately simulating gait in a three-dimensional (3D) model, according to
the EMG signals recorded from healthy populations [22].

For a more advanced application to not only healthy subjects but also paralyzed
patients, a Hill-type muscle model, complete with output activation and torque-angles, was
used to determine the muscle parameters for biomechanical computer simulations. This
method was able to provide adaptive control and generate muscle responses in real-time.
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Thus, the Hill-type muscle model implements a biomechanical mechanism for natural and
reliable interaction between assistance and estimation [23,24], and could also be considered
in the design of exoskeleton control [24,25].

Although the control of neuromuscular stimulation and the exoskeleton can be done
cooperatively, it requires an accurate and robust system to identify the parameters. To
improve the accuracy of the identified parameters, an iterative method of the sequential
least-squares quadratic programming (SLSQP) [26–28] with approximate gradients and
second-order derivatives was used to optimize the parameters of the musculoskeletal
model. However, using gradient approximation in the musculoskeletal model for pa-
rameter tuning and muscle force estimation required more iterations, and therefore more
computational time.

To make it practicable, the musculoskeletal model had to be simplified [29]. Due
to the challenges of analyzing complex models, gradient-free methods such as linear
optimization, genetic algorithms [30,31], and the Nelder–Mead (NM) algorithm [11,23,25]
were often used to optimize parameters in the musculoskeletal models. However, the
adjusted parameters obtained with gradient-free methods can easily diverge, making the
initialization of parameters challenging.

To tackle the challenges described above, we introduced the method of differentiable
systems [32] applied to spring-damper models in 2D and 3D, which also was used for
adjoint optimization on 3D rigid body engines [33], and the integration of articulated
body dynamics into deep-learning frameworks and gradient-based optimization of neural
networks that operated on articulated bodies [34]. Our proposed model was tested with
healthy people for control of the knee exoskeleton in flexion–extension movements, which
merged a differentiable continuous system with a dynamic musculoskeletal model to sup-
port an effective and accurate performance for an exoskeleton controlled by EMG signals.

The main biological and engineering contributions of this study are as follows. First,
we propose a differentiable continuous system control that achieves assist-as-needed control
by integrating the dynamics of musculoskeletal models and analyzing the interaction
between the user and the exoskeleton. Second, in this continuous system, we implement
an analytical gradient and updating mechanism for the muscular excitation parameters. As
a result, and in contrast to previous gradient approximation methods and gradient-free
methods, our proposed model is capable of providing the robust and accurate gradients
needed to obtain the parameters in the musculoskeletal model.

2. Materials and Methods
2.1. Myoelectric Processor

Subjects used a wearable and wireless EMG amplifier (Artise Biomedical Co., Ltd.,
Taiwan) equipped with eight bipolar signal channels that were connected with medical
grade button snap cables, common in clinical practice, to pairs of surface electrodes (Red
Dot™, 3M, Maplewood, MN, USA) located on the targeted muscle tissues. Body ground
was applied on the leg to increase the signal-to-noise ratio.

The acquired EMG signals were amplified by a 12× programmable gain, sampled at
1000 Hz, digitized at 24-bit with delta-sigma ADC (Texas Instruments, Dallas, TX, USA),
and transmitted to a customized radio-frequency receiver dongle connected to the computer
as a COM port input. The baud rate was configured at 921,600 bits/s to enable high-speed
transmission. Sampled data was labeled by time stamp and channel counter, passed
through an error-control mechanism [35] to achieve highly synchronized and simultaneous
recording. The raw EMG signal filtered in the DC to 262 Hz frequency pass-band was
recorded and streamed to a real-time processing program for exoskeleton feedback.

2.2. Experimental Setup

In this study, the knee exoskeleton (KneeBOTM, FREE Bionics Taiwan Inc., Hsinchu,
Taiwan) was applied to a single knee joint in a human-in-the-loop environment as shown
in Figure 1. The experimental environment combined the EMG signals, the angle of
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torque from the exoskeleton, and the angle for knee movement of the subject into a single
computational platform.
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Figure 1. Illustration of the human-in-the-loop environment for the wearable knee exoskeleton. The
position, θ(t), of the observed subject was measured to adjust the subject’s lower-limb force. A control
algorithm adjusted the control input based on the EMG signals, e(t), position, θ(t), and motor torque,
τe(t). The signals generated in this environment were transmitted by using the Bluetooth protocol.

The purpose of the exoskeleton was to support flexion and extension movements
involving the knee joint. The subject was in the sitting position with the hip and knee flexed
naturally as shown in Figure 2A. There are eight anatomically separate muscle–tendon units
supporting the knee joint, including the rectus femoris (RF); the vastus muscle (VM) group,
including the vastus lateralis, vastus medialis, and vastus intermedius; the semitendinosus;
the semimembranosus; and the biceps femoris (BF), including both short and long heads.

Biosensors 2022, 12, x FOR PEER REVIEW 5 of 19 
 

 
Figure 2. The knee exoskeleton and the electrode positions targeting specific muscles. (A) The par-
ticipant performs the rotatory movement at the knee with a flexion–extension angle of 45 degrees 
while wearing the knee exoskeleton. (B) Positions of the surface electrodes for RF and VM (left thigh, 
anterior view). (C) Positions of the surface electrodes for BF and ST (left thigh, posterior view). 

During data acquisition, signals from the exoskeleton and the EMG electrodes were 
recorded simultaneously. First, the subject was asked to release the force. The knee in full 
extension (0 degrees) and flexion (100 degrees) was completely supported by the exoskel-
eton. Furthermore, the subject could move the knee freely without support from the exo-
skeleton.  

After analyzing the parameters of the exoskeleton and EMG signals, we evaluated 
the performance (validation phase) while the subject was moving the knee with simulta-
neous exoskeleton support. The schematics of the experiment is shown in Figure 3, and 
the details of the methods are described in the sections below. A summary table to identify 
the corresponding physiological interpretations of the inertial parameters for the differ-
entiable musculoskeletal model is presented in Table 1. 

 
Figure 3. Schematics of differentiable musculoskeletal parameter estimation and control in the 
closed-loop system. Above the gray dashed line indicates the stage of the parameter estimation, 
which was performed offline by using the recorded EMG signals and trajectory positions. The 
muscle parameters were updated by using the gradient derived from the analysis, depicted by the 
black solid line and the red dashed line. Below the gray dashed line indicate the control stage, 
represented by a solid black line, use the identified musculoskeletal parameters to predict the 
trajectory positions and adjust the assisted torques. 

  

Figure 2. The knee exoskeleton and the electrode positions targeting specific muscles. (A) The
participant performs the rotatory movement at the knee with a flexion–extension angle of 45 degrees
while wearing the knee exoskeleton. (B) Positions of the surface electrodes for RF and VM (left thigh,
anterior view). (C) Positions of the surface electrodes for BF and ST (left thigh, posterior view).

While the semitendinosus was assumed to have the same activation as the semimem-
branosus [36], the semitendinosus muscle group (ST) included the semitendinosus and the
semimembranosus. In this study, four pairs of surface EMG electrodes were positioned at
skin locations above the muscles of RF, VM, BF, and ST as shown in Figure 2B,C, which
were used to measure the EMG activity during flexion–extension movements of knee. The
study was reviewed and approved by the Taipei Veterans General Hospital Institutional
Review Board (IRB2020-10-001). All recoded EMG data are made available at the repository
(https://doi.org/10.5281/zenodo.6516777), assessed on 29 April 2022.

https://doi.org/10.5281/zenodo.6516777
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During data acquisition, signals from the exoskeleton and the EMG electrodes were
recorded simultaneously. First, the subject was asked to release the force. The knee in
full extension (0 degrees) and flexion (100 degrees) was completely supported by the
exoskeleton. Furthermore, the subject could move the knee freely without support from
the exoskeleton.

After analyzing the parameters of the exoskeleton and EMG signals, we evaluated the
performance (validation phase) while the subject was moving the knee with simultaneous
exoskeleton support. The schematics of the experiment is shown in Figure 3, and the
details of the methods are described in the sections below. A summary table to identify the
corresponding physiological interpretations of the inertial parameters for the differentiable
musculoskeletal model is presented in Table 1.
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Figure 3. Schematics of differentiable musculoskeletal parameter estimation and control in the closed-
loop system. Above the gray dashed line indicates the stage of the parameter estimation, which was
performed offline by using the recorded EMG signals and trajectory positions. The muscle parameters
were updated by using the gradient derived from the analysis, depicted by the black solid line and
the red dashed line. Below the gray dashed line indicate the control stage, represented by a solid
black line, use the identified musculoskeletal parameters to predict the trajectory positions and adjust
the assisted torques.

Table 1. List of the time-dependent parameters of the adopted muscle contraction and rigid-
body dynamics.

Symbol Description Equation Number

e(t− d) Filtered EMG signal d time steps earlier (1)

u(t − 1) Neural activation one time step earlier (1)

a(j)(t) Muscle activation of j-th muscle at time t (6)

l(j)(t) Muscle length of j-th muscle at time t (6)

F(j)mt

(
a(j)(t), l(j)(t)

)
Muscle–tendon force of j-th muscle at time t (6)

τg(ti) Gravitational torque at the i-th sample of time t (3), (4)

τe(ti) Exoskeleton torque at the i-th sample of time t (3), (4)

τh(ti) Human (or muscle) torque at the i-th sample of time t (3), (4), (20)

θ(ti),
.
θ(ti),

..
θ(ti)

Angular position, velocity, and acceleration, respectively,
at the i-th sample of time t (3), (4), (20)

h(τh(ti)) Predicted angular acceleration at the i-th sample of time t (20)
.
z(ti, τh) Predicted angular velocity at the i-th sample of time t (20)
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2.3. Preprocessing

To eliminate movement artifacts, the EMG data acquired from the four muscles were
processed in the following three steps. First, the raw EMG data were filtered by a fourth-
order Butterworth band-pass (20–450 Hz) filter. Second, full-wave rectification and an 8-Hz
low-pass second-order Butterworth filter were applied to obtain the EMG signal envelope.
Third, the filtered EMG signal was normalized with respect to the muscle’s maximum
voluntary contraction level.

After the above three steps the smoothed normalized EMG signal e(t), with an ampli-
tude range in [0, 1], was used to determine the neural activation u(t) and muscle activation
a(t). Since muscle activation takes time to generate force, there is a time lag between
the two. The delayed transformation of EMG signals e(t) to neural activation u(t) was
formalized by a damped linear second-order differential equation expressed in discrete
form as a recursive filter (Equation (1)) [36,37],

u(t) = αe(t− d)− β1u(t− 1)− β2u(t− 2), (1)

where α represents the muscle gain coefficient; β1 and β1 are the muscle recurrence coeffi-
cients; and d is the electromechanical delay. At the motor unit level, the increase in muscle
force was associated with an exponential increase in the firing rate. Equation (2) formalizes
this nonlinear relationship between neural activation u(t) and muscle activation a(t), where
A represents the nonlinear shape factor with the −3 < A < 0 constraint.

a(t) =
expAu(t) − 1

expA − 1
(2)

Since muscle torque cannot be measured invasively, the torque obtained from the
motion equation was used as the substitute when adjusting the muscular parameters. This
required the three inertia parameters of the motion equation (the rotation inertia, J; the
damping, B; and the stiffness, K, of the knee joint at full extension of the lower-limb)
to be identified in advance. The motion equation, illustrated in Figure 2A, is defined
in Equation (5) below. The identification process was conducted without human-exerted
muscle torque, i.e., τh(ti) = 0, while the subject’s lower-limb was moved by the exoskeleton.

First, K was determined in static conditions as the exoskeleton moved from angular
position θ = 120◦ to 0◦ in 15◦ steps. In static conditions, the velocity

.
θ and acceleration

..
θ of

the exoskeleton equals 0 by definition:
.
θ(ti) =

..
θ(ti) = 0. With these values substituted into

the motion equation (Equation (5)), the identification of K can be expressed as Equation (3):

argmin
K

1
2

N
∑

i=1
‖ y(ti)− K(θ(ti)− θr) ‖2 , (3)

where y(ti) = τe(ti)− τg(ti) sin(θ(ti)− θr) is the conversion of the gravitational torque,
τg(ti) = m · g · rcm, and the exoskeletal torque, τe(ti), from the electrical current sensor
representation on the exoskeleton. Here, m, g, rcm, and θr are the mass, gravity, moment
arm, and rest position, respectively, while N is the number of acquired samples, and ti is
the time of the i-th acquired sample.

Next, J and B were determined in dynamic conditions, while the exoskeleton was mov-
ing from θ = 90◦ to 0◦ at a variable frequency between 0.01 and 0.5 Hz. The identification
of these two parameters, similarly to that of K, is formalized in Equation (4),

argmin
J,B

1
2

N
∑

i=1
‖ y(ti)−

(
J

..
θ(ti) + B

.
θ(ti)

)
‖2 , (4)

where y(ti) = τe(ti)− τg(ti) sin(θ(ti)− θr)− K(θ(ti)− θr). The optimization problems in
Equations (3) and (4) were solved by the Levenberg–Marquardt algorithm. Since the motor
encoder on the exoskeleton can only measure the angular position and velocity with noise,
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we used the parameterized Fourier series to calculate the smooth (“noise-free”) angular
velocity and acceleration [38].

2.4. Wearable Exoskeleton Modeling

Since the motion of the knee exoskeleton is similar to the pendulum, the model
dynamics can be derived using the same principles of mechanics. Using Lagrangian
mechanics [39,40], the motion equation of the knee exoskeleton is derived as Equation (5),

τ(t) = J
..
θ(t) + B

.
θ(t) +

∂Ep

∂θ
= τe(t) + τh(t), (5)

where the potential energy, Ep = 1
2 K(θ(t)− θr)

2 − τg cos(θ(t)− θr), corresponds to the
resting position θr = π

2 , and the inertial parameters J, B and K were as described in the
preprocessing. The exoskeleton torque, τe(t), was converted from the motor current.

The total muscle torque τh(t) is estimated by Equation (6), where the superscript j
denotes the j-th muscle.

τh(t) =
8

∑
j=1

F(j)
mt

(
a(j)(t), l(j)(t)

)
, (6)

In the Hill-type muscle model, the Fmt force generated by the muscle–tendon contrac-
tion was mainly determined by the circuit composed of a contractile element (CE) and
two non-linear spring elements, one in parallel element (PE) and another in series element
(SE) [19,41] as formalized in Equation (7):

Fmt(a(t), l(t)) = Fse(t)
= Fm(t) cos(α)
=
[
Fce(t) + Fpe(t)

]
cos(α)

=
[

fl(l(t)) fv(v(t))a(t) + fpe(l(t))
]
Fmax cos(α)

(7)

For simplicity, we only present the equation derived for one muscle that lets us omit the
superscript j. In this model, α represents the pennation angle; l(t) represents the normalized
muscle length, calculated as the current muscle length divided by the length while the
muscle contraction is the maximum (l(t) = L(t)

L? ); and v(t) represent the normalized velocity

of muscle contraction (v(t) =
.
L(t)
L? ), i.e., the change of the muscle length.

In this study, a Hill-type muscle model can be simulated by the active (contractile) and
passive (noncontractile) muscle components [42,43]. The relationship between contraction
force and muscle length (l(t)) is formalized by the Gaussian function (Equation (8)) for
active muscle contraction [44] and an exponential function (Equation (9)) for passive muscle
contraction [45], where γ, k, and ε were shape parameters of the functions.

fl(l(t)) = exp

(
− (l(t)− 1)2

γ

)
(8)

fpe(l(t)) =
exp

k(l(t)−1)
ε − 1

expk − 1
, (9)

The force–strain relationship of a tendon is determined by an exponential function
within an initial nonlinear toe region followed by a linear function outside (Equation (10)),

fse(lt(t)) =

 ftoe
expk−1

(
exp

ktoeε
εtoe − 1

)
, ε ≤ εtoe

klin(ε− εtoe) + ftoe, ε > εtoe

(10)
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where lt(t) represents tendon strain; εtoe is the threshold tendon strain above which the
tendon exhibits linear behavior; ktoe is the exponential shape factor; klin is the linear shape
factor, and ε is the strain normalized by lslack, the slack length, and calculated as ε=lt(t)

lslack
.

The formal relationship between the v(t) muscle contraction velocity and the Ft(t)
force arising from muscle–tendon contraction can be derived from by Equations (7)–(10) as
stated in Equation (11):

fv(v(t)) =
Fse(t)− fpe(l(t))

a(t) · fl(l(t))
(11)

The v(t) muscle contraction velocity is determined from the inverse transform of
Equation (11) and formalized, after some modification [41], in Equation (12):

v(l(t), fce(t), a(t)) = (0.25 + 0.75a)Vmax
fce(t)−a(t) fl(l(t))

b
(12)

where a and b are shape parameters.
The force of active muscle contraction is derived, in turn, from the inverse transform

of from Equation (12), i.e., by Equation (13):

fce(t) = v−1( fl(l(t)), a(t)) (13)

To this end, the force of muscle–tendon contraction required by Equation (7) is demon-
strated as Fmt(a(t), l(t)) =

[
fce(t) + fpe(l(t))

]
Fmax cos(α) and is adopted for each muscle

in Equation (6).
However, each user had different muscle properties; therefore, each muscle in the

model needs to be calibrated for the parameters. The Hill’s muscle model requires three
parameters to scale generic curves for active and passive force generation: the optimal fiber
length L?, maximum isometric force Fmax, and tendon slack length lslack [46]. The adjoint
method [47], which we describe next, is used to determine these parameters.

2.5. Differentiable Musculoskeletal Parameters Estimation

Muscle torque cannot be measured directly in an invasive manner. To estimate muscle
torque, it was necessary to use statistical inference consistent with physiological and
physical explanations. Under the condition that the knee joint of the subject is in the same
position as the exoskeleton joint, rearranging Equation (5) yields the functional relationship
between muscle torque and the angular acceleration of the joint generated by muscle torque
as stated in Equation (14):

h(τh(t)) = J−1
(

τh(t)− B
.
θ(t)−

∂Ep

∂θ

)
(14)

The angular position of the trajectory can be computed using this equation from
the inputs of muscle torque τh(t)00 as part of the forward dynamics model. The muscle
skeleton model is formalized as a system of differential equations (Equation (15)):

dl(t)
dt = v(l(t), fce(t), a(t))

d
.
θ(t)
dt = h(τh(t))

dθ(t)
dt =

.
θ(t)

(15)

In this system of differential equations, the first component, the velocity of muscle
contraction, is calculated from Equation (12). The second component, angular acceleration,
requires the muscle length, integrated from first component, to compute the muscle torque
τh(t) from Equation (6). The third component, angular velocity, is integrated from the
second component. This set of differential equations can be solved using the Runge–
Kutta–Fehlberg method for predicting the system state. During motion, the assistive
torque, τe(t), is regulated by the motor’s proportional–integral–derivative (PID) controller
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(Equation (16)). In control theory, the PID controller is the mature method, and its formal
analysis, such as via the Laplace transformation, can refer to Equation (16) [48].

τe(t) = Kp ê(t) + Ki

∫ t

0
ê(µ)dµ + Kd

dê(t)
dt

(16)

In the PID controller, Kp represents the proportional gain; Ki is the integral gain; and
Kd is the derivative gain; these three are tuning parameters. The tracking error, ê(t), also
known as the control feedback, is the difference between the target position and the position
predicted by integrating Equation (15), where the target position θ∗(t) is manually specified
in advance.

To estimate the unmeasurable muscle torque, τh(t), from the measurable angular ve-
locity of trajectory,

.
θ(t), the model was set up by maximum-a-posteriori (MAP) estimation,

and maximized posterior probability (Equation (17)):

τ̂h = argmax
τh

p(τh |
.
θ)

= argmin
τh

− log p(
.
θ | τh)− log p(τh),

(17)

where τh and
.
θ represent the τh(t) and

.
θ(t) time series, respectively.

In Equation (17), the prior probability − log p(τh) was set to 0, signifying that we did
not make any assumptions about muscle torque. The conditional probability− log p

( .
θ | τh

)
requires computing the forward dynamics model, which implies calculating the optimally
angular velocity

.
θ(t) from the unmeasurable muscle torque τh(t). To overcome this obstacle,

the conditional probability was recast as the integrals `(·) (Equation (18)):

`(
.
z,

.
θ) =

∫ t

0
‖ .

z(µ, τh)−
.
θ(µ) ‖2 dµ, (18)

and
.
z(·) (Equation (19)), which was used to explain the angular velocity of the muscle

skeleton by integrating Equation (15):

.
z(t, τh) = h(τh(t0)) +

∫ t

0
h(τh(µ))dµ (19)

Here, τh was modeled by Hill’s muscle (Equation (6)), and was adjusted based on
each subject’s muscle parameters [46]. The muscle parameters for adjusting the muscle
torque included optimal fiber length, maximum isometric force, and tendon slack length,
respectively (ω = { L?, Fmax, lslack }). With Equations (18) and (19), the MAP estimation
of Equation (17) becomes equivalent to solving the constrained optimization problem,
formalized by Equation (20) below:

argmin
ω

1
N

N
∑

i=1
`
( .

zi,
.
θi

)
s, t. d

.
z(ti)
dt = h(τh(ti, ω)), h(τh(t0)) =

..
θ(t0).

zi =
.
z(ti, τh), i = 1, 2, .N,

(20)

where, assuming that N samples were acquired,
.
zi represents the angular velocity of the

i-th acquired sample, and ti, the time of the i-th acquired sample.
In order to solve Equation (20) using an iterative algorithm, such as a stochastic

gradient descent or adaptive moment estimation (Adam) [49], it was necessary to derive
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the gradient of the muscle parameters ω. We used the Lagrangian Multiplier method to
obtain the Lagrangian L (Equation (21)) from Equation (20),

L = `(
.
z,

.
θ) +

∫ t

0
λ(µ)>

[
d

.
z(µ)
dt
− h(τh(µ, ω))

]
dµ (21)

and then used the Karush–Kuhn–Tucker conditions to derive the gradient. The detailed
derivation can be found in the adjoint method [47]. In brief, the analytical gradient can
be calculated by the algorithm consisting of these four steps: (1) Solve

.
z(t, τh) from time

0 to t (Equation (19)). (2) Determine λ(t) (Equation (22)). (3) Solve λ(t) from time
t to 0 (Equation (23)). (4) Calculate the Lagrangian gradient in the muscle parameters
(Equation (24)). For simplicity, only the equations resulting for N = 1 are presented, and
the subscript i is omitted:

∂`

∂
.
z(t)

+ λ(t) = 0 (22)

dλ(t)
dt

+

(
∂h(τh(t, ω))

∂
.
z(t)

)>
λ(t) = 0 (23)

∂L
∂ω

=
∫ 0

t
λ(µ)>

∂h(τh(µ, ω))

∂ω
dµ (24)

The performance of our proposed model was evaluated in two different sets of tests. In
the first set of tests, conducted under muscle contraction, the torques and angles predicted
in each muscle were compared with real data. In the second set of tests, the efficiency of
our proposed method was evaluated by the rate of convergence and execution time and
compared with those of other models on an equal basis.

3. Results
3.1. Parameters Estimated in the Motion Equation

In exoskeleton control, the joint torque generated by the muscle force was estimated to
predict the movement trajectory. To obtain an estimate of the muscle-generated torque in a
non-invasive manner, we identified the parameters of the motion equation (Equation (5))
in advance from the recorded angular position and velocity of the trajectory. The five
identified parameters in the motion equation are summarized in Table 2. Three of the
parameters (the inertia J, damping B, and stiffness K) were calculated as described in the
preprocessing. The remaining two, the mass m and the center of mass rcm of the exoskeleton,
were measured manually.

Table 2. The five identified parameters of the wearable exoskeleton in the motion equation.

J (kg.m2) B ( Nm·s
rad ) K ( Nm

rad ) m (kg) rcm (m)

0.07 1.5 1.27 5.5 0.16

Table 3 summarized the estimates for the three muscle parameters used in the Hill’s
model (Equation (7)), including optimal fiber length L?, tendon slack length lslack, and
maximum isometric force Fmax. The first column lists the anatomical grouping of the eight
muscles from which the EMG signals were obtained via four electrodes. The values of
the muscle parameters that we identified were similar to those obtained by physiological
measurements in previous studies [46].
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Table 3. The identified muscle parameters in Hill’s model.

Groups Muscles Comparison L? (cm) lslack (cm) Fmax (N)

RF Rectous femoris
_ 9.8 32.8 850

Prev 7.6 34.6 848

VM

Vastus lateralis
_ 9.6 12.9 2260

Prev 9.9 13.0 2255

Vastus medialis
_ 10.6 12.4 1445

Prev 9.7 11.2 1443

Vastus intermedius
_ 11.5 11.3 1025

Prev 9.9 10.6 1024

ST
Semimembranosus

_ 13.4 42.3 1092
Prev 8.0 34.8 1162

Semitendinosus
_ 22.3 22.7 315

Prev 20.1 24.5 301

BF
Biceps long head _ 8.4 31.9 701

Prev 9.8 32.2 705

Biceps short head _ 9.5 9.1 327
Prev 11.0 10.4 315

In the Comparison column, a dash (_) indicates the row of parameters identified in our study and the abbreviation
Prev indicates the parameters measured in a previous study [46].

The process used for the optimization of the muscle parameters is illustrated for pre-
dicted position in Figure 4A. Initially, the predicted position obtained using the unadjusted
muscle parameters (solid blue line) was a poor approximation of the reference trajectory
generated by the subject (dashed line). As the number of iterations increased, the estimated
muscle parameters were better adapted to the subject’s generated trajectory. A similar
iterative improvement was observed in the predicted torque as shown in Figure 4B).
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Figure 4. The process of optimizing muscle parameters by the iterative improvement of the predicted
trajectory and torque. (A) Predicted position plotted against the iteration number. (B) Predicted
torque plotted against the iteration number.

3.2. Prediction Results

In the model simulation, the time interval of the prediction ranged from 2 to 25 s,
the EMG signals were served as inputs to the model, and the model outputs were the
predicted trajectory and joint torque. The solid line in Figure 5A represents the predicted
trajectory obtained by numerical integration of the third term of Equation (15). The dashed
line represents the trajectory measured from the subject used as the reference trajectory.
The goal of our optimization was to adjust the muscle parameters so that the predicted
trajectory was an increasingly good approximation to the reference trajectory.
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Figure 5. (A) The predicted trajectory (solid line) and measured trajectory (dashed line). (B) Total
torque of RF, VM, ST, and BF. The predicted torque (solid line) and the reference torque (dashed
line) were calculated from (A) using the Equation (6). (C) Predicted muscle length of RF (blue) and
VM (orange). (D) Muscle activation of RF (blue) and VM (orange) converted from EMG signals.
(E) Predicted muscle length of ST (blue) and BF (orange). (F) Muscle activation of ST (blue) and BF
(orange) computed from EMG signals (Equation (2)).

The predicated joint torque (Figure 5B) was calculated from Equation (6) by using
the muscle activation and predicted muscle length. The predicted torque was becoming
increasingly similar to the reference torque, mirroring what was seen for the predicted
trajectory. Figure 5C,E show, for the four muscle groups defined in Table 3, the average
muscle length predicted by numerical integration (first term in Equation (15)). Similarly,
Figure 5D,F shows the muscle activation, a(t), calculated from the EMG signals using
Equation (2).
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3.3. Performance Analysis: Convergence and Execution Time

We compared the performance of the analytical gradient method and three other gra-
dient update methods. Two gradient-free methods, Nelder–Mead (NM) [50] and Adaptive
Nelder–Mead (ANM) [51], were also included in the comparison because in earlier studies
they were used to adjust the parameters of Hill’s muscle model [11,23,25]. To measure
performance, 10 sets of perturbed muscle parameters were generated as the initial model
parameters using uniformly distributed additive noise with a lower bound of −5 [cm] and
an upper bound of 5 [cm].

These noise terms were added to the value of the identified parameters listed in Table 3.
In the experiment, each method shared the same 10 sets of the perturbed muscle parameters
(24 muscle parameters in a set, thus, 240 in total), and the parameters were optimized for
the same subject’s measured trajectory. Figure 6 shows the predicted trajectory and torque
identified from the 10 sets of the perturbed muscle parameters.
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Figure 6. Convergence analysis of predicted trajectory and torque. (A) Predicted position.
(B) Predicted joint torque.

The solid lines represent the average position and torque determined from the 10 sets
of the identified muscle parameters, and the shadow area maps the maximum and mini-
mum values for the angle and torque. The dotted lines represent the subject’s measured
position and torque, used as the convergence target for optimizing the muscle parameters.
As seen in Figure 6A, each method’s predicted trajectory (solid lines) was close to the
reference position (dashed line).

The same is seen for the torque (Figure 6B). Thus, each method could optimize muscle
parameters that fit the subject’s movement trajectory comparably. Furthermore, the shaded
areas of each method were small, meaning that the 10 sets of the muscle parameters
identified by each method generated trajectories and torques that converged to the reference
trajectory and torque.

Although the movement trajectories and torques predicted by each method were
convergent, the identified muscle parameters may be divergent. Since the movement
trajectory was from the same subject, even different initial muscle parameters should con-
verge to similar muscle parameters. We compare the convergence results of the analytical
gradient method (Equation (23)) and the gradient-free methods for the optimal muscle
length in VM (Figure 7A) and ST (Figure 7B). During the iterative process, the shaded area
was gradually reduced by the analytical gradient. In contrast, the shaded area was only
slightly reduced and could even be diverged by the two gradient-free method. A similar
observation was made for the calculated tendon slack lengths for VM and ST as shown in
Figure 7C,D, respectively.
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of ST.

Predicting the trajectory and torque using Hill’s muscle model was complex because
it involved numerical integration. Prior studies usually adopted gradient-free methods
to update muscle parameters, thereby, avoiding the complexity of the analysis and the
computational effort associated with numerical integration [23,25,31]. To compare the
execution time of the analytical gradient method with alternative methods, we selected
two gradient-free methods, NM and ANM, and three gradient approximation methods,
CG [52], Truncated Newton (TNC) [52,53], and Sequential Least-Squares Programming
(SLSQP) [54].

In the CG, TNC, and SLSQP, the two-point finite-difference method (FDM) was used to
approximate the gradient [55], the popular method for the numerical approximation of the
gradient. The results of this comparison are summarized in Table 4. Not surprisingly, the
two gradient-free methods (NM and ANM) took the shortest average execution time and
lowest number of evaluations. While the three gradient approximation methods (SLSQP,
TNC, and CG) performed much worse, our analytical gradient method was competitive
with the gradient-free methods. Interestingly, although the CG evaluated the loss most
frequently on average, its execution time was sublinear in iterations because the just-in-time
(JIT) compilation’s cache function compressed it.
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Table 4. Comparison of the computational efficiency and speed of gradient-free, gradient approxima-
tion, and gradient analytic methods.

NM ANM SLSQP TNC CG (Ours)

Gradient free free approx. approx. approx. analytic
#Eval/iter 1.3 1.4 29.4 125 533 2

Sec/iter 0.08 0.09 0.56 2.51 4.72 0.15
The number of evaluations (#Eval/iter) and execution time in seconds (Sec/iter) of the loss function in each
iteration. Each value in the table was calculated by averaging 100 iterations.

4. Discussion

In this study, we proposed a differentiable continuous system control that integrates
the dynamics of musculoskeletal models and analyzed the interaction mechanisms between
the subject and the exoskeleton to achieve assist-as-needed control. This approach has
several advantages, including faster convergence, increased accuracy and stability of
predicted outcomes. For convergence, both muscle contraction and rigid body dynamic
equations were applied in our model to improve calculating gradients. Updating the
direction based on the loss value around the parameter made convergence faster in our
model than in gradient-free methods, such as the NM method [50].

We considered both the muscle contraction and the rigid body dynamic equation
to calculate analytical gradients in our model, and the calculated values of the muscle
parameters (Table 3) were close to those reported by others [22,46,56]. The optimization
results (Figure 4) showed that the trajectory and torque obtained from the adjusted mus-
cle parameters were close predictions of the measured positions and torques. In earlier
models [11,36,37], the torque was calculated from the motion equation through inverse
dynamics transformation, which takes longer to compute.

In comparison, the step of inverse dynamics transformation is eliminated in our model,
and calculating the torque only requires the measured angle for parameter estimation.
According to the results in Figure 6, the torque derived from the predicted trajectory
through the inverse equation of motion afterwards was similar to the torque expected
from the reference trajectory. This means that our training framework can implicitly and
automatically estimate the torque during motion.

The iterative update of the muscle parameters was performed using the analytic
gradient based on the muscle contraction and rigid body dynamic equations. Unlike the
gradient-free methods, the analytical gradients method makes use of the dynamic equation
and can generate the specified torque and angle leading to stable convergence of the muscle
parameters as shown in Figure 7.

The analytical gradient obtained the convergent results by calculating the gradients
from the muscle contraction and motion equation with the two dynamic equations putting
constrains on the results. In contrast, NM and ANM were gradient-free methods, relying
only on the magnitude of the changes in the loss value to determine the direction of
parameter update. The benefit of using the muscle contraction and motion equation is that
the outputs satisfy the laws of physics. Thus, the use of analytical gradients to estimate
muscle parameters could provide a more fault-tolerant and robust initial parameter setting
process in practice.

We compared the execution time for different parameter-updating methods (Table 4).
The gradient approximation methods required multiple evaluations per iteration. This
suggests that the simple two-point finite-difference-method (FDM), which was used to com-
pute each parameter separately, becomes impractically time-consuming when applied to
calculating loss functions in a high-dimensional parameter space. In contrast, the analytical
gradient has an analytic solution, and for each iteration, it requires only two evaluations of
the loss function: forward inference and backward propagation. The bottleneck in the com-
putation time was in the evaluation of the loss function (Equation (17) in the Section 2.5),
which involved time-consuming numerical integrals.
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Therefore, to compare the speed of the different update methods, we selected to
evaluate only the loss function (the same for all methods) on the same hardware platform
(an Apple Macbook pro M1 CPU; eight cores). The programs were implemented with the
JAX package [56] and accelerated with JIT compilation. The results of this experiment
(Table 4) showed that the analytical gradients method was competitive with the gradient-
free methods in execution time.

Our proposed model merged a differentiable continuous system with a dynamic
musculoskeletal model to support an effective and accurate performance for an exoskeleton
controlled by EMG signals. This approach could be used to shorten the training time for
controlling exoskeleton across different subjects. However, there are limitations to our
study. First, this was a pilot study that included a small number of subjects. Second, the
EMG signals used to control the model were recorded from only five healthy subjects. More
subjects, including healthy and unhealthy ones, will have to be included in a follow-up to
our study.

5. Conclusions

To overcome the time lag between the user intention and exoskeleton motion, we
applied a differentiable continuous systems approach to a dynamic musculoskeletal model
using EMG signals. The trajectories, including the torque and angles during muscle contrac-
tion, predicted by the proposed model were similar to the real movement. Moreover, our
model outperformed others regarding the convergence rate and execution time. Our study
demonstrates an effective and accurate method to decode EMG signals that serves the
exoskeleton application. Future extensions of our proposed framework can be for deep neu-
ral networks with backpropagation and providing forward inference with biomechanical
explanations.
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