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Abstract: A multicolor visual method for the detection of hydrogen peroxide (H2O2) was reported
based on the iodide-mediated surface etching of gold nanostar (AuNS). First, AuNS was prepared by
a seed-mediated method in a HEPES buffer. AuNS shows two different LSPR absorbance bands at
736 nm and 550 nm, respectively. Multicolor was generated by iodide-mediated surface etching of
AuNS in the presence of H2O2. Under the optimized conditions, the absorption peak ∆λ had a good
linear relationship with the concentration of H2O2 with a linear range from 0.67~66.67 µmol L−1, and
the detection limit is 0.44 µmol L−1. It can be used to detect residual H2O2 in tap water samples. This
method offered a promising visual method for point-of-care testing of H2O2-related biomarkers.

Keywords: iodide; gold nanostar; H2O2

1. Introduction

Hydrogen peroxide (H2O2) is widely used in fields such as the textile, chemical, envi-
ronmental protection, medical, and food industries due to its ecological friendliness, strong
oxidation ability, and ability to kill bacteria and bleach [1–4]. However, the direct addition
of H2O2 in food production is prohibited by most countries, as residual H2O2 and its
derived active substances can cause oxidative damage to human health [5,6]. Food-grade
H2O2 residue is considered a “recognized safe substance” (JECFA, 2004), and according
to the regulations of the Food and Agriculture Organization of the United States, the
maximum concentration of H2O2 in dairy products is limited to 0.05%. In the Chinese
national standard (GB53009.226-2016), the H2O2 content in food is strictly limited to less
than 3 mg kg−1. Excessive H2O2 may cause Alzheimer’s, Parkinson’s, amyotrophic lateral
sclerosis, diabetes, traumatic brain injury, ischemia/reperfusion injury, learning and mem-
ory impairment, and other diseases [7–10]. Therefore, developing a simple and effective
method to monitor H2O2 concentration is of great significance.

At present, the commonly used technologies for H2O2 detection include the colori-
metric method [11–13], electrochemical method [14,15], fluorescence method [16,17], liquid
chromatography [18,19], SERS [20,21], and others. Colorimetric detection has advantages
in terms of simplicity, cost-effectiveness, and sensitivity in visual monitoring [22,23]. Most
colorimetric methods used for H2O2 detection are based on the color reaction of substrate
3, 3, 5, 5,—tetramethylbenzidine (TMB) [22,24,25] and o-phenylenediamine (OPD) [26–28]
oxidized by H2O2 under the action of a catalyst to quantify H2O2. However, these or-
ganic compounds are toxic and are easily oxidized by O2. Therefore, developing a stable
H2O2 detection method without chromogenic substrates is meaningful. Precious metal
nanostructures have many excellent properties, such as good light scattering, absorption,
and photothermal conversion capabilities [11,29]. Au NS is an uncommon type of gold
nanostructure. In 2006, Nehl et al. [30] systematically studied gold nanostructures and
multi-branched nanoparticles with sharp tips and unique local surface plasmon resonance
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(LSPR) characteristics. Au NS is a promising choice for biosensor application due to its
sharp corners, plasma resonance, and lightning rod effect [31,32]. Research has shown that
the LSPR characteristics of Au NS are related to their size, shape, and composition. Chem-
ical etching can change the length of the sharp angle of Au NS and the surface plasmon
resonance of Au NS, which means that the chemical etching of the sharp angle of Au NS
will shift the LSPR absorption peak of Au NS and produce a blue color change [12,13,33].
The etching process can be adjusted by iodide to quickly and sensitively generate the blue
shift of the surface plasmon resonance spectrum [34].

Considering the important role of H2O2, this work intended to construct a multicolor
sensor based on the reaction between H2O2, Au NS, and I− (Scheme 1A). Firstly, H2O2
reacts with I− to generate I2 with the help of horseradish peroxidase (HRP). The remaining
I− etches the sharp corners of Au NS, which changes the absorption peak of LSPR shifts
and the color of the solution. With the increasing concentration of I−, the degree of blue
shift (∆λ) increases. The color of the mixture changes from blue to purple and finally turns
pink, and ∆λ can be used for the quantification of H2O2 (Scheme 1B).
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Scheme 1. Schematic illustration of iodide-mediated etching of Au NS for H2O2 detection (A) and
color changes with increasing H2O2 (B).

2. Experimental Section
2.1. Reagents and Materials

Tetrachloroauric acid (HAuCl4) and trisodium citrate dihydrate (Na3C6H5O7·2H2O)
were purchased from Xilong Chemical Co., Ltd., Shantou, China; potassium iodide (KI) was
purchased from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China; H2O2, potassium
chloride (KCl), potassium sulfate (K2SO4), and sodium nitrate (KNO3) were purchased from
Xilong Science Co., Ltd., Shantou, China; 4-(2-Hydroxyethyl)Piperazine-1-ethanesulfonic
acid sodium salt (HEPES-Na), horseradish peroxidase (HRP), tris(hydroxymethyl) aminome
thane (Tris), and sodium carbonate (Na2CO3) were purchased from Aladdin Co., Ltd.,
Fukuoka, Japan. All chemicals are analytical grade, and the solution is prepared using
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deionized water obtained from the Milli-Q water purification system (≥18.2 M Ω cm−1,
Milli-Q, Millipore, Burlington, MA, USA).

2.2. Apparatus

The transmission electron microscope (FE-TEM) images of Au NS were collected by
JEOL200 kV field emission transmission electron microscope (JEM-2100 F, JEOL, Tokyo,
Japan). We used KQ5200DE ultrasonic cleaner (Kunshan Ultrasonic Instrument Co., Ltd.,
Kunshan, China) to perform ultrasonic treatment on the sample and the UV–Vis spectrum
was recorded by using a Tecan Spark microplate reader (Tecan, Switzerland).

2.3. Synthesis of Au NS [34]

Golden Seed: Add a trisodium citrate solution (4 mL, 1%) to a rapidly stirred boiling
HAuCl4 aqueous solution (50 mL, 0.5 mmol L−1) and boil for 30 min. The solution color
changes from purple-red to wine-red. Then, cool the wine-red solution to room temperature
to obtain the gold seed solution, and store it at 4 °C for later use.

Au NS: Take 750 µL seeds solution, vigorously stir and add 38.5 mL of water, 18.75 mL
of HEPES-Na (100 mmol L−1, pH = 8.5), and 750 µL hydroxylamine hydrochloride
(HONH2HCl, 40 mmol L−1), then 22.5 mL of HAuCl4 (1 mmol L−1) was added to the
above solution, and stir for 15 min to obtain a blue solution.

2.4. Detection of H2O2

After incubation at 37 °C for 40 min, 50 µL HRP (40 ng mL−1), 100 µL KI and
100 µL H2O2 of different concentrations were added into 250 µL Tris-HCl (10 mmol L−1,
pH = 3.0) buffer solution. Take 50 µL and add it to 250 µL Au NS. After the reaction at
37 °C for 25 min, the ultraviolet absorption spectra of each pore were recorded by a Tecan
microplate reader. The calibration curve of ∆λ and H2O2 concentration was constructed
by drawing the wavelength shift change values (∆λ) of different concentrations of H2O2,
where wavelength change value ∆λ = λ0 − λ (λ0 is the peak value of Au NS, λ is the peak
value measured after the etching of Au NS).

2.5. Detection of H2O2 in Tap Water

A standard addition method was used to evaluate the feasibility of iodide-mediated
Au NS etching for detecting H2O2 in tap water. Follow the above steps (drawing a standard
curve) to determine the concentration of H2O2 in tap water by recording the change in
wavelength offset (∆λ).

3. Results and Discussion
3.1. Characterization of AuNS

AuNS are synthesized by a seed-mediated method. First, small gold nanoparticles are
synthesized, and then gold seeds are added to the growth solution containing HAuCl4,
a reducing agent, and surfactant. The newly reduced Au◦ grows on the surface of the
seeds to form Au NS [18,35,36]. The UV–Vis spectrum measured using a Tecan microplate
reader is shown in Figure 1A. The absorbance intensities of the Au NS solution at different
wavelengths were recorded as the optical density (OD). It can be seen that the Au NS has
two SRP bands located at 736 nm and 550 nm, respectively. λ0 represents the maximum
absorption peak of Au NS at 736 nm. Figure 1B shows that Au NS has multiple sharp edges.
Compared to smooth surfaces, the multiple sharp edges of Au NS have special sensitivity
to the etching of I−, and iodide binds to the surface during the etching process [36]. After
I− etched Au NS, the sharp corners become shorter, and Au NS are etched into spherical
nanostructures (Figure 1C). Due to the fact that gold atoms are “soft” Lewis acids, and I− is
a classic “soft” Lewis donor [34], iodide has a high affinity for gold. Oxidized Au ions and
iodide can chelate at the interface of Au NS [37], resulting in uneven or even larger Au NS
sizes after etching.
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3.2. Feasibility of Iodide-Mediated Etching of AuNS for Detecting H2O2

To investigate the feasibility of using iodide-mediated surface etching of AuNS for
detecting H2O2, we first validated the UV–Vis spectra of different mixtures. As shown
in Figure 2A,B, when only Au NS exists, the absorption peak was measured at 736 nm
(Figure 2B, curve e). After adding a final concentration of I− as 80 µmol L−1, the peak of
the UV visible absorption peak changed from 736 nm to 588 nm, resulting in a significant
blue shift of the UV peak absorption peak (Figure 2B, curve d). The addition of H2O2 and
HRP separately does not affect the etching of AuNS by I− (curves b and c in Figure 2B).
Only when both exist simultaneously does the absorption peak of the mixture shift to
red (curve as in Figure 2B). This is because the addition of H2O2 or HRP alone into the
reaction system does not affect the concentration of I−, and all I− is used for etching AuNS.
After the addition of both, HRP can catalyze the oxidation of iodide to elemental iodine
in the presence of H2O2 [34]. It led to a decrease in the remaining concentration of iodide.
A decrease etching degree of Au NS was also observed which resulted in a red shift of
the absorption peak of Au NS. In addition, we validated the relationship between the
concentration of I− and the degree of etching. When the concentration of I− increases
from 0 mmol L−1 to 1.2 mmol L−1, the etching degree gradually increases and reaches the
plateau (Figure 2D), and the corresponding absorption peak shifts from 736 nm to 556 nm.
At the same time, the color of the solution changes from dark blue to purple to pink (Inset
of Figure 2D). In Figure 2C, it can be seen that as the concentration of I− increases from
0 mmol L−1 to 0.08 mmol L−1, the etching degree gradually increases. When the concen-
tration of I− increases from 0.05 mmol L−1 to 0.06 mmol L−1, the maximum absorption
peak of the Au NS solution shows a large blue shift (∆λ). However, the increase in ∆λ
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becomes little from 0.06 mmol L−1 to 0.08 mmol L−1. Therefore, an I− concentration of 0.06
mmol L−1 was selected for the sensitive detection of H2O2. The above experimental results
indicate that this method based on the iodide-mediated etching of AuNS for detecting
H2O2 has good feasibility.
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3.3. Optimization of Experimental Conditions

To obtain a more sensitive response, several parameters in the experimental system
were optimized, such as the time for I− etching AuNS, the incubation time for the re-
action between HRP and H2O2, and the reaction temperature (Figure 3). As shown in
Figure 3A, the reaction time for I−-induced etching of AuNS was optimized. After adding
a concentration of 0.06 mmol L−1, the plateau was reached with a reaction time of 25 min,
indicating that the etching of AuNS by I− can reach stability after 25 min. Figure 3B shows
the optimization of incubation time for HRP and H2O2. At this point, the concentration of
H2O2 is 33.3 µmol L−1. As the time of HRP catalyzing H2O2 prolongs, the etching degree
gradually decreases and reaches stability. This is because the amount of I− consumed by
H2O2 under HRP catalysis increases, resulting in a decrease in the remaining I−, leading to
a decrease in the degree of Au NS etching and a shift in the UV absorption peak. Finally,
we optimized the reaction temperature. The experimental results indicate that an increase
in temperature contributes to the etching of the reaction system (Figure 3C), but a higher
temperature will reduce the catalytic efficiency of HRP. Therefore, we chose a reaction time
of 25 min for I−-induced etching of AuNS, an incubation time of 40 min for the reaction
between HRP and H2O2, and a reaction temperature of 37 °C.
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Figure 3. Optimization of (A) time for I− etching of AuNS at 37 ◦C; (B) response time for the reaction
between HRP and H2O2; (C) reaction temperature.

3.4. Performance Analysis of Iodide-Mediated AuNS Etching for Detecting H2O2

Under optimal experimental conditions, the linear response range and detection limit
of H2O2 detected by the constructed sensor platform were investigated by monitoring the
offset value of the absorption peak (∆λ). As shown in Figure 4A,B, with the increase in
H2O2 concentration in the range of 0.67–66.67 µmol L−1, ∆λ gradually increases and reaches
a plateau. In the range of 0.67–33.33 µmol L−1, ∆λ has a strong linear relationship with
the concentration of H2O2 (Figure 4C). The linear equation is ∆λ = −2.84CH2O2 + 123.69
(R2 = 0.9908, n = 3) and the LOD value is 0.44 µmol L−1 (n = 20, 3σ0/K). Compared with
other reported H2O2 sensors (Table S1), this method is rapid and sensitive, and shows a
multicolor change which has great potential application in the field of point-of-care testing.
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3.5. The Selectivity and Interference Study of Iodide-Mediated Etching of AuNS for Detecting H2O2

Tap water often contains a variety of salts, so it is necessary to explore the interference
of different ions in the detection of hydrogen peroxide in tap water. To evaluate the
selectivity and interference study of this method for H2O2 detection in tap water, six
different interfering substances (K+, Na+, Cl−, NO3

−, SO4
2−, CO3

2−,) were selected for
the study. Figure 5A shows that under the same experimental conditions, except for
H2O2, even if the concentration of other interfering substances is 50 times higher than the
concentration of H2O2, the ∆λ shows no significant decrease. The above results indicate that
this method has high selectivity for the detection of H2O2. Subsequently, we selected the
above-mentioned interfering substances for the interference study. As shown in Figure 5B,
the ∆λ value of H2O2 detection with the addition of interfering substances did not change.
The results indicate that this method has good stability for detecting H2O2.
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3.6. Detection of H2O2 in Real Samples

To evaluate the potential applicability of this method for detecting H2O2 in real sam-
ples, tap water was selected as the actual sample, and the accuracy of the method was
verified by the spiked recovery method. The specific experimental steps are as follows:
Take 30% H2O2 and dilute it with tap water to different concentrations. Add 50 µL HRP
(40 ng mL−1) and 100 µL NaI to Tris-HCl (10 mmol L−1, pH = 3.0) buffer solution. After
incubating with 100 µL different concentrations of H2O2 at 37 ◦C for 40 min, 50 µL of the
above solution was added to 250 µL Au NS, and the reaction was carried out at 37 ◦C for
25 min. UV measurement was performed after the reaction was completed. Unless oth-
erwise specified, all detection experiments were independently repeated three times. Sta-
tistical analysis was conducted on the data obtained from at least three independent
experiments. The data of all detection methods are represented as mean ± standard de-
viation (SD). The recovery rate of this method is between 92.8–101.6%, and the relative
standard deviation (RSD) is between 3.4–4.4% (Table 1). These results indicated the superior
accuracy and potential application of this method based on the iodide-mediated etching of
AuNS for detecting H2O2.

Table 1. Detection of H2O2 in tap water samples.

Sample
Number Added (µmol L−1) Found (µmol L−1) Recovery (%) RSD

(n = 3, %)

1 10.0 9.28 ± 0.41 92.8 4.4
2 20.0 20.31 ± 0.70 101.6 3.5
3 30.0 28.18 ± 0.96 93.9 3.4

4. Conclusions

In this work, AuNS was utilized to construct a multicolor sensor for detecting H2O2
based on a rapid and sensitive surface etching of Au NS. AuNS are etched into spherical
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nanostructures in the presence of HRP, I−, and H2O2. The etching process also produces
color changes with different concentrations of H2O2 which can be used for visual detection.
This method exhibits satisfactory sensitivity and selectivity. Under the conditions of an
incubation time of 40 min, a reaction time of 25 min, a temperature of 37 ◦C, and I− concen-
tration of 0.06 mmol L−1, the blue shift value of the absorption peak ∆λ shows a good linear
relationship with the concentration of H2O2, with a linear range of 0.667~66.67 µmol L−1,
and a detection limit of 0.44 µmol L−1. Because of the usage of the biological enzyme of
HRP in this work, it is important to control the temperature during the analysis. This short-
coming might be solved by using a nanozyme to replace HRP. Considering the significant
role of H2O2 in food chemistry and biochemistry, this work offered a new multicolor visual
method for point-of-care testing and on-site analysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios13060585/s1, Table S1: comparative analysis of this method
with other colorimetric methods for detecting H2O2. References [38–44] are cited in the Supplemen-
tary Materials.
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