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Abstract: The accurate analysis of human dynamic behavior is very important for overcoming the
limitations of movement diversity and behavioral adaptability. In this paper, a wearable device-based
human dynamic behavior recognition method is proposed. The method collects acceleration and
angular velocity data through a six-axis sensor to identify information containing specific behavior
characteristics in a time series. A human movement data acquisition platform, the DMP attitude
solution algorithm, and the threshold algorithm are used for processing. In this experiment, ten
volunteers wore wearable sensors on their bilateral forearms, upper arms, thighs, calves, and waist,
and movement data for standing, walking, and jumping were collected in school corridors and
laboratory environments to verify the effectiveness of this wearable human movement recognition
method. The results show that the recognition accuracy for standing, walking, and jumping reaches
98.33%, 96.67%, and 94.60%, respectively, and the average recognition rate is 96.53%. Compared
with similar methods, this method not only improves the recognition accuracy but also simplifies
the recognition algorithm and effectively saves computing resources. This research is expected to
provide a new perspective for the recognition of human dynamic behavior and promote the wider
application of wearable technology in the field of daily living assistance and health management.

Keywords: wearable devices; sensors; action recognition; threshold value

1. Introduction

With the rapid development and widespread use of the internet, intelligent hardware,
and wearable technology, wearable devices have emerged as one of the most promis-
ing fields [1]. They are extensively utilized in various sectors, including the medical
field [2–9], military applications [10–13], the sports industry [14,15], film and television
production [16,17], and virtual reality environments [18,19]. Some of these products
have seamlessly integrated into everyday life, such as smart wristbands [20,21], smart
watches [22–24], and smart glasses [25,26]. Since the inception of wearable technology by
the Massachusetts Institute of Technology in 1960, popular devices such as the Xiaomi smart
band, Huawei smart band, and Apple smart band have become prevalent in today’s market.
Wearable devices are multifunctional tools that facilitate human–computer interaction, data
exchange, and software support to enhance daily living experiences for users with greater
convenience and intuitive usability effects [27,28].

Human movement is typically characterized by a single human posture, and a series
of postures represent various attitudes and behaviors. Therefore, obtaining data on human
movements and postures is highly important [29]. When wearable devices are integrated
with human movement, they enable the recognition of human movement, providing
valuable information about the physiological and psychological state of individuals. As
such, human movement recognition plays a crucial role in daily life [30]. In recent years,
numerous researchers both domestically and internationally have focused on developing
effective systems for recognizing human movement. Currently, motion state recognition can
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be broadly categorized into two directions: computer vision-based recognition and sensor-
based recognition. For instance, Yadav et al. [31] utilized drone cameras to capture activity
videos and employed the sparse weighted temporal attention (SWTA) module along with
convolutional neural networks for activity recognition, demonstrating high performance.
Similarly, He et al. [32] designed a dual-view adaptive neural network where the view-
adaptive model can transform various views into more consistent virtual viewpoints.
The experimental results indicate that this framework achieves advanced performance.
Furthermore, Gholamiangonabadi et al. [33] utilized a convolutional neural network (CNN)
and a signal-personalized human activity recognition (HAR) model to extract features
from multimodal sensor data for activity recognition. In signal processing applications,
its performance surpasses that of the most advanced CNN method with time-domain
characteristics. Additionally, Nafea et al. [34] collected data using accelerometers and
gyroscopes to identify daily activities through a novel method employing convolutional
neural networks. They captured features at different resolutions using various kernel
dimensions as well as two-way long short-term memory (BiLSTM), efficiently selecting the
best video while extracting spatial and temporal features, resulting in high accuracy.

As seen from the literature review above, although vision-based recognition algorithms
are becoming more mature, their application is limited to specific circumstances and
involves personal privacy issues. In contrast, sensor-based approaches are more cost-
effective, have easy data collection, are less affected by the environment, and better protect
personal privacy. In this field, research has generally focused on the use of a single or small
number of sensors to capture motion information. For example, Qu et al. [35] used a single
six-axis inertial measurement unit to collect data and analyzed it in combination with an
SVM and a quadratic threshold judgment algorithm. Shen et al. [36] used a single three-axis
acceleration sensor to monitor lumbar acceleration and adopted threshold classification
to identify four activity modes, which also achieved good results. However, these studies
that rely on a single sensor have limitations, such as insensitivity to subtle motion capture
and limited body part data collection, resulting in poor recognition accuracy of some
movements and easy confusion of similar movements. Moreover, recognition algorithms
using even a small number of sensors are complex. In response to the above issues, to
improve the recognition accuracy and reduce the complexity of the algorithm, this paper
designs a wearable human movement recognition method. It obtains data by wearing a
wearable transmission device at the corresponding position of the body. A human motion
monitoring data acquisition platform is built and composed of a microcontroller circuit,
sensor circuit, voltage regulator circuit, charging circuit, and communication circuit. It was
connected to the host computer in Type-C mode. Real-time data detection, data fusion
and filtering, action judgment by the threshold algorithm, and real-time display by the
host computer are completed. The experimental results show that this method has a good
recognition effect, reduces the complexity of the algorithm, and can be applied to the fields
of daily movement recognition and sports recognition.

2. Materials and Methods
2.1. Experimental Equipment

The wearable human movement recognition method designed in this paper consists
of nine wearable devices worn on the left or right upper arm, forearm, thigh, calf, or
waist center to collect movement data. When the human movement data acquisition
platform completed the data collection, the data were transmitted to a computer, as shown
in Figure 1.
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Figure 1. Overall system block diagram.

2.1.1. Design of the Human Movement Data Acquisition Platform

The human action data acquisition platform is composed of a microcontroller circuit,
sensor circuit, voltage regulator circuit, charging circuit, and communication circuit, as
shown in Figure 2.
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Figure 2. Schematic diagram of the platform hardware.

This design uses STM32F103C6T6A (selected from stmicroelectronics, Geneva,
Switzerland) as the core processor of the microcontroller circuit. The microcontroller circuit
plays a core role in the system, mainly in control, detection, data processing, communica-
tion, etc. The device connected to the I/O port of the single-chip microcomputer includes
the MPU6050 attitude sensor of the sensor circuit (selected from InvenSense, Sunnyvale,
CA, USA), the LED indicator light, and the communication module ESP8266-12 (selected
from Lexin Information Technology Co., LTD., Shanghai, China). The microcontroller
circuit is visible in the yellow box on the right in Figure 2. The charging circuit is mainly
composed of a TP4056 (selected from Topin Microelectronics Co., LTD., Nanjing, China)
module powered by 5 V. The Type-C DC input 5 V power supply is connected to the power
supply port of the circuit to realize the charging function. The charging circuit is visible in
the dark blue box on the left in Figure 2. Since the system’s microcontroller chip, MPU6050
six-axis sensor, and Wi-Fi module require 3.3 V of DC input, the 5 V DC source needs to be
stabilized at 3.3 V by a voltage regulator output. The sensor used in the sensor circuit is the
MPU6050 six-axis attitude sensor, which is a powerful six-axis inertial measurement unit
(IMU). The voltage regulator circuit is visible in the light blue box on the left in Figure 2. The
sensor adopts an InvenSense MPU6050 six-axis attitude sensor. In Figure 2, the left pink box
graphically marks the position of the MPU6050 in the sensor circuit and its functional role.
The data collected by the MPU6050 can realize real-time acquisition of human posture (such
as tilt angle and rotation speed), providing a solid data foundation for subsequent motion
recognition algorithms, sports health monitoring, and even human–computer interaction
design. Finally, the communication circuit exchanges data between the platform and PC
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software to complete the data transmission. The communication circuit is visible in the left
yellow box in Figure 2.

2.1.2. Software Host Computer Design

The host computer design language is written based on C#, and the host computer
design is completed according to the functional requirements of the system, which are
divided into five main areas: the data selection area, the data display area, the data mapping
area, the identification of the results display area, and the data storage area, as shown
in Figure 3a.
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• Data selection area: The IP address currently connected to the human motion recogni-
tion software is displayed, and the sensor device is connected to the human motion
recognition software. The function of data selection can be achieved using the lower
pull bar, which can select nine different body parts.

• Data exhibition area: The acceleration data and angular velocity data of the current
human movement are displayed in the form of two rows and three columns to update
the data movement information of the current user in real time.

• Data display area: The acceleration data of the data display area are displayed in the
form of data lines.

• Recognition result display area: When the human body performs different actions, the
action recognition result will be displayed in this area.

• Data storage area: The movement data under different movements of the human body
can be stored. Different movement data of different body parts can be selected accord-
ing to the data selection area. After freely setting the storage path, the acceleration and
angular velocity data under the current motion state are stored as a table, as shown
in Figure 3b.

2.2. Human Motion Recognition Algorithm
2.2.1. DMP Attitude Solution Algorithm

In this paper, the DMP attitude solution algorithm is used to determine the attitude of
the MPU6050 six-axis sensor, which is mainly divided into the data acquisition stage, the
quaternion integration stage, the accelerometer calibration stage, and the filtering stage.

1. Data Acquisition phase
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In the data acquisition phase of the DMP algorithm, the angular velocity and linear
acceleration of the six-axis sensor become the basis of the attitude calculation. The course
angle yaw(y) is assumed to rotate around the Z-axis; the pitch angle (p) rotates around the
Y-axis. Rotation around the X-axis is called the roll angle (r), and the three-axis gyroscope
provides information about the device’s rotation speed by measuring the device’s angular
speed. Its output vector is

[
ωx ωy ωz

]
.

Moreover, the three-axis accelerometer provides information related to the device’s
orientation and direction of motion by measuring the device’s linear acceleration in space.
The output vector of the accelerometer is

[
ax ay az

]
, representing the linear acceleration

of the device on the three coordinate axes. This dataset is a critical input in attitude
calculations, especially in situations involving changes in device acceleration.

2. Quaternion integration stage

One of the cores of the DMP algorithm is quaternion integration, which updates the
rotation state of the device by using the angular velocity information provided by the
gyroscope. A quaternion is a mathematical tool used to represent rotation, which can
effectively avoid the singularity problem in the attitude solution and improve the stability
of the solution. The differential equation for the quaternion integral is as follows:

dq
dt

=
1
2

Ω(q)ω (1)

Here, q =
[
q0 q1 q2 q3

]
represents the quaternion, Ω(q) is the rotation matrix

of the quaternion, and ω is the angular velocity. Through the numerical integration
method, it is possible to calculate the change in quaternion under a discrete time step to
obtain the device’s rotation state in space. In this stage, the algorithm constantly updates
the quaternion, simulates the device’s rotation, and ensures the accuracy and real-time
performance of the solution. This step is the basis of the attitude calculation and provides
accurate initial data for subsequent calibration and filtering.

3. Accelerometer calibration phase

Accelerometer calibration is performed to eliminate errors due to gravity and nonideal
motion of the equipment. Through the linear acceleration data provided by the accelerome-
ter, the DMP algorithm calibrates the quaternion, corrects the influence of the accelerometer,
and ensures the accuracy of the attitude solution. The output vector of an accelerometer[
ax ay az

]
should be affected only by gravity at rest, while it may be subject to additional

acceleration in a dynamic environment.
First, the value collected by the three-axis accelerometer is converted into a unit vector.

ax =
ax√

(a x)
2+(a y )

2 +(a z)
2

(2)

ay =
ay√

(a x)
2+(a y )

2 +(a z)
2

(3)

az =
az√

(a x)
2+(a y )

2 +(a z)
2

(4)

The gravity vector derived from the integrated attitude of the gyroscope is

Vx = 2(q1q3 − q0q2) (5)

Vy = 2(q0q1 + q2q3) (6)

Vz= q2
0 − q2

1 − q2
2 + q2

3 (7)
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ax, ay, and az are gravity vectors measured by the accelerometer on the coordinate reference
frame, which is the actual measured gravity vector. Vx, Vy, and Vz are gravity vectors
derived from the integrated attitude of the gyroscope, and they are all gravity vectors on
the frame of reference of the body coordinates. Then, an error vector can be defined

ex =
(
ayvz − azvy

)
(8)

ey = (azvx − axvz) (9)

ez =
(
axvy − ayvx

)
(10)

ex, ey, and ez represent the cross-products of two gravitational vectors. This cross-product
vector is still located in the body coordinate system, the gyro integration error is also in the
coordinate system, and the size of the cross-product is proportional to the gyro integration
error, which can be used to correct the gyroscope.

The integral error proportional integral gain is defined as follows:

exInt = exInt + ex∗Ki (11)

eyInt = eyInt + ey∗Ki (12)

ezInt = ezInt + ez∗Ki (13)

where Ki is the convergence of the gyroscope bias of the integral gain domination rate.
Then, for the modified gyroscope:

gx = gx + Kp∗ex + exInt (14)

gy = gy + Kp∗ey + eyInt (15)

gz = gz + Kp∗ez + ezInt (16)

where Kp is the proportional gain domination rate converging to the accelerometer and gx,
gy, and gz are the adjusted gyroscope measurements.

The quaternion differential equations are solved using the first-order Rungokuta method:

q0 = q0 +
(
−q1 ∗ gx − q2 ∗ gy − q3 ∗ gz

)
∗ halfT (17)

q1 = q1 +
(

q0 ∗ gx + q2 ∗ gz − q3 ∗ gy

)
∗ halfT (18)

q2 = q2 +
(

q0 ∗ gy − q1 ∗ gz + q3 ∗ gx

)
∗ halfT (19)

q3 = q3 +
(

q0 ∗ gz + q1 ∗ gy − q2 ∗ gx

)
∗ halfT (20)

where halfT is half of the sampling period.
Then, it is converted to the Euler angle by the rotation matrix

y = arctan
2
(
q0q3 + q1q2

)
q2

0 + q2
1 − q2

2 − q2
3

(21)

p = arcsin2(q0q2 − q1q3) (22)

r = arctan
2(q 0q1 + q2q3

)
q2

0 − q2
1 − q2

2 + q2
3

(23)

The calibration process mainly identifies and eliminates the gravity component by
analyzing the output of the accelerometer in the static state to obtain the actual linear
acceleration. Adjusting the quaternions to be consistent with the calibrated accelerometer
data achieves a more accurate estimation of the device’s attitude.
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4. Filtering phase

In the filtering stage, the goal is to smooth the fused data by using a filtering algorithm
to reduce noise and error and improve the accuracy and stability of the attitude estimation.

In the filtering process, the DMP algorithm, called the internal Kalman filtering algo-
rithm, comprehensively considers sensor noise, the system model, and prior information
and effectively filters out unnecessary interference through state estimation updates. At
the same time, their parameters are adjusted according to the actual situation for flexible
optimization. This enables the algorithm to adapt to various environments and application
scenarios, ensuring accurate and stable attitude information in dynamic environments.

In the Kalman filtering algorithm, the main filtering process is as follows:
First, its equation of state is:

Xk = Ak∗Xk−1 + Bk∗Uk−1 + Wk−1 (24)

Xk is the state vector of the system, representing the state of the system at time step k. Ak
is a state transition matrix that describes the state transition of the system from time step
K − 1 to k. Bk is the control input matrix, representing the influence of external inputs
on the system’s state. Uk−1 is the control input vector. Wk−1 is the system process noise,
representing the uncertainty of the system state.

Its prediction equation is:
Zk = Hk∗Xk + Vk (25)

Zk is the observed value measured at time step k (sensor measurement). Hk is an ob-
servation matrix that describes the relationship between the state of the system and the
observations. Vk is the observation noise, representing the observed value’s uncertainty.

The main steps of Kalman filtering can be divided into prediction and update steps.
In the prediction step

Xk = Ak ∗ Xk−1 + Bk ∗ Uk−1 (26)

Pk = Ak ∗ Pk−1 ∗ AT
k + Qk (27)

Xk is the prior estimate (predicted value) of the state of time step k. Pk is a prior estimated
covariance matrix for the state of time step k. Qk is the covariance matrix of the system
process noise.

In the update step

Kk = Pk ∗ HT
k ∗

(
Hk ∗ Pk ∗ HT

k + Rk

)−1
(28)

Xk = Xk + Kk ∗
(
Zk − Hk ∗ Xk

)
(29)

Pk = (I − Kk ∗ Hk) ∗ Pk (30)

Kk is the Kalman gain of time and step k. Rk is the covariance matrix of the observed noise.
Xk is a posterior estimate (update value) of the state of time step k. I is the identity matrix.
Pk is the posterior estimation covariance matrix of the state of time step k.

2.2.2. Determination of the Motion State of the Threshold Algorithm

The system collects data from the sensors in each part of the human body and deter-
mines the acceleration and angle information according to the feedback from each sensor.
The upper computer collects and processes this part for each data part. First, the data are
usually received when the upper computer is connected to the nine parts of the human
body. The determination of human posture mainly relies on the acceleration data of nine
sensors to determine the standing, walking, and jumping states. In the standing state,
the body sensor data are relatively stable; when the human body is walking, the left and
right thighs, calves, and lower arms are almost in motion, and the acceleration data will
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show a certain amplitude of change. When the human body jumps, the number of sensor
movements increases. In summary, the current motion state of the human body can be
determined according to the number of sensors in motion. The threshold algorithm is
combined with the sensor motion data with the following algorithms:

1. Input data

The x-, y-, and z-axis accelerations a1, a2, and a3 of a specific body part at a specific time
are obtained by taking the acceleration data of different body parts in human movement at
a specific time after the above data fusion and filtering processing. The absolute values of
a1, a2, and a3 are calculated and processed to obtain V1, V2, and V3.

2. Threshold setting

In setting a threshold, the recognition effect is tested by setting different threshold
values. Assume that the threshold is A.

• When the value set by the threshold is greater than A, due to the high threshold value,
only the jumping action can exceed the threshold to carry out the internal cycle of the
algorithm. In contrast, the number of walking and standing actions is mostly less than
the set threshold, resulting in poor recognition of walking and standing actions.

• When the threshold is less than A, because the threshold is too low, large numbers
of walking and jumping actions can exceed the set threshold during the algorithm,
resulting in confusion between walking and jumping actions and a poor recognition
effect, and only standing actions have a good recognition effect.

• When the threshold value is set to A, this method has an ideal recognition effect on
standing, walking, and jumping actions. In summary, when the test threshold is A,
the recognition effect of this method is relatively ideal.

3. Output identification results

V1, V2, and V3 are compared with threshold A to obtain the human movement at a
certain time. When any value of a1, a2, and a3 is greater than A, the number of A wearable
devices i is recorded, and the number of i is accumulated in a cycle until any value of a1, a2,
or a3 is less than a, and the cycle ends.

• When I1 ≤ i ≤ I2, the output body is currently walking.
• When i ≥ I3 is used, the current output of the human body is the jumping action;

otherwise, the current output of the human body is the standing action. The algorithm
flow chart is shown in Figure 4 (I1, I2, and I3 are the set numbers of sensors).
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3. Results
3.1. Experimental Design

This experiment collected exercise data from 10 volunteers (5 males and 5 females,
aged 23~30 years, with heights of 160~183 cm, and in good physical condition) in the
corridors and laboratories of the school. The volunteers wore the wearable device on
the corresponding fixed parts of the body and collected data on standing, walking, and
jumping movements. Each volunteer repeated the above three movements 20 times each.
A total of 600 motion classification data points were collected.

3.2. Experimental Results and Analysis

In this experiment, after volunteers wore wearable devices on the corresponding parts
of the body, the data on volunteers’ standing, walking, and jumping movements were
collected at different times and places. The threshold algorithm was run on the computer
terminal of the Microsoft Windows 10 operating system, and the three kinds of motor action
classifications of volunteers were tested through the fusion of the threshold algorithm and
data filtering. This experiment takes 0.2 s as the time interval for data collection. The
collected motion data are as follows. In the standing state, the acceleration data of each part
change gradually, and the values after absolute value processing are concentrated in the
range of 20 m/s2 to 200 m/s2. Most sensor data also reflect this trend, as shown in Figure 5.
During walking, the acceleration of specific body parts fluctuates, and after absolute value
processing, the value range expands from 2000 m/s2 to 10,000 m/s2. The data of different
sensors at the same time point were distributed in two ranges, from 2000 m/s2 to 5000 m/s2

and from 5000 m/s2 to 10,000 m/s2, as shown in Figure 6. For jumping movements, the
acceleration data of almost all body parts showed significant fluctuations, the absolute
value increased significantly to between 9000 m/s2 and 25,000 m/s2, and most sensors
recorded values exceeding 10,000 m/s2, as shown in Figure 7.
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Six hundred recognition experiments were conducted for each of the standing move-
ments, walking movements, and jumping movements, and 1800 recognition experiments
were conducted for the three movements. When the recognition results are consistent
with the performance of the action currently in progress, we consider the recognition to be
correct. The percentage of the number of experiments with correct identification to the total
number of experiments for each action is calculated, that is, the recognition accuracy rate.
The statistical data of the test classification results are shown in the table. It can be seen
from the table that the recognition accuracies of standing movements, walking movements,
and jumping movements are 98.33%, 96.67%, and 94.60%, respectively, with an average
recognition rate of 96.53%.

In addition, Table 1 reveals the pattern of misrecognition: standing is often mistaken
for walking or jumping, walking may be mistaken for standing or jumping, and jumping
can be confused with standing or walking. The misunderstanding between walking and
jumping is particularly prominent; that is, walking is misjudged as standing or jumping,
and jumping is mistakenly classified as walking frequently. Some of these identification
errors are rooted in differences in individual movement habits, speed, and frequency;
for example, a small number of people may swing their arms wildly while walking,
hold their arms stationary close to their bodies, or even jump forward, which causes
diversity in sensor data, occasionally causing misjudgments and confusing the boundaries
of various movements. Although misclassification is a small probability event, it will
have a ripple effect on practical application: if the athlete’s movement is not standard, the
training plan designed by the coach may deviate from the correct direction. In the health
management scenario, atypical movements may be misidentified, resulting in inaccurate
health assessments after exercise.

Table 1. Classification results of human motion state recognition.

Test Motor Action
(Unit: Unit)

Identification Result Recognition Rate
(%)Stand (Unit: Unit) Walk (Unit: Unit) Jump (Unit: Unit)

Stand 600 590 8 2 98.33%
Walk 600 17 580 3 96.67%
Jump 600 6 26 568 94.60%

This paper compares and analyzes relevant literature in the field of human motion
recognition. Zhuang et al. [37] used a single six-axis sensor to collect data, combined time
domain and frequency domain analysis, and used the multiclass classification technology of
a support vector machine for motion pattern recognition. Prasad et al. [38] used smartphone
accelerometers to collect data and applied convolutional neural networks for recognition.
Khalifa et al. [39] also used mobile phone accelerometers to distinguish different behaviors
by setting different thresholds. In this study, studies using different sensor technologies
and recognition algorithms were selected to compare the recognition accuracy of standing,
walking, and jumping (or approximately jumping) movements, as well as the average
recognition accuracy of two or three types of movements. The specific results are shown in
Table 2 and Figure 8. The recognition accuracy of [37] is relatively low, and the accuracy
of [38] is relatively high, but the algorithm has a certain complexity, and the accuracy of [39]
is low during the recognition walk. The results of the data analysis show that the recognition
method proposed in this paper is superior to other schemes in terms of recognition efficiency
because it not only improves the recognition accuracy but also successfully simplifies the
algorithm structure and reduces the need for computing resources.
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Table 2. Comparison of literature recognition accuracy.

Reference [37] Reference [38] Reference [39] Textual Method

Stand 95.00% 100.00% 93.70% 98.33%
Walk 94.00% 94.00% 90.60% 96.67%

jumping (or approximately jumping) 92.25% 94.00% 96.90% 94.60%
Average recognition accuracy of two types 94.50% 97.00% 92.15% 97.50%
Average recognition accuracy of three types 93.75% 96.00% 93.73% 96.53%

Biosensors 2024, 14, x FOR PEER REVIEW 13 of 15 
 

of the following parts: left forearm, left upper arm, right forearm, right upper arm, middle waist, 
left calf, left thigh, right calf, and right thigh. 

Table 2. Comparison of literature recognition accuracy. 

 Reference [37] Reference [38] Reference [39] Textual Method 
Stand 95.00% 100.00% 93.70% 98.33% 
Walk 94.00% 94.00% 90.60% 96.67% 

jumping (or approximately jumping)  92.25% 94.00% 96.90% 94.60% 
Average recognition accuracy of two 

types 94.50% 97.00% 92.15% 97.50% 

Average recognition accuracy of three 
types 

93.75% 96.00% 93.73% 96.53% 

 
Figure 8. The proposed scheme is compared with other schemes for human motion recognition, 
[37–39]. 

4. Discussion 
To improve the recognition accuracy and simplify the algorithm complexity, this pa-

per developed a set of human action recognition systems based on wearable devices, 
which achieved remarkable results and effectively reduced the computational burden. It 
is worth noting that the current research is limited to motion recognition in the laboratory 
environment; although the sensor shows strong environmental adaptability, its universal-
ity needs to be validated in outdoor or variable scenarios. Future research is expected to 
expand to experiments in a variety of environments, including more types of motion for 
identification testing, to explore and optimize the overall performance of the system. 

5. Conclusions 
In summary, this paper proposes an innovative wearable human movement recogni-

tion strategy that focuses on the accurate recognition of three basic movements: standing, 
walking, and jumping. With the help of a human movement data acquisition system to 
complete the data collection, the DMP platform was used for data purification and inte-
gration, and the threshold algorithm was adopted to implement the action classification. 
The experimental results show that the recognition accuracy of the strategy for three kinds 
of actions reaches 98.33%, 96.67%, and 94.60%, and the comprehensive recognition accu-
racy reaches 96.53%. The comparison with other existing recognition schemes further con-
firms the superiority of this method, especially in distinguishing the three motion states. 
This wearable motion recognition technology has a wide range of practical applications 
and can not only meet the needs of personalized customization but also achieve universal 

Figure 8. The proposed scheme is compared with other schemes for human motion recognition, [37–39].

4. Discussion

To improve the recognition accuracy and simplify the algorithm complexity, this
paper developed a set of human action recognition systems based on wearable devices,
which achieved remarkable results and effectively reduced the computational burden. It is
worth noting that the current research is limited to motion recognition in the laboratory
environment; although the sensor shows strong environmental adaptability, its universality
needs to be validated in outdoor or variable scenarios. Future research is expected to
expand to experiments in a variety of environments, including more types of motion for
identification testing, to explore and optimize the overall performance of the system.

5. Conclusions

In summary, this paper proposes an innovative wearable human movement recogni-
tion strategy that focuses on the accurate recognition of three basic movements: standing,
walking, and jumping. With the help of a human movement data acquisition system to
complete the data collection, the DMP platform was used for data purification and integra-
tion, and the threshold algorithm was adopted to implement the action classification. The
experimental results show that the recognition accuracy of the strategy for three kinds of
actions reaches 98.33%, 96.67%, and 94.60%, and the comprehensive recognition accuracy
reaches 96.53%. The comparison with other existing recognition schemes further confirms
the superiority of this method, especially in distinguishing the three motion states. This
wearable motion recognition technology has a wide range of practical applications and can
not only meet the needs of personalized customization but also achieve universal deploy-
ment, providing more personalized and efficient daily assistance and health management
solutions for users.
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