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Abstract: Translational science has been introduced as the nexus among the scientific and the clinical
field, which allows researchers to provide and demonstrate that the evidence-based research can
connect the gaps present between basic and clinical levels. This type of research has played a major
role in the field of cardiovascular diseases, where the main objective has been to identify and transfer
potential treatments identified at preclinical stages into clinical practice. This transfer has been
enhanced by the intromission of digital health solutions into both basic research and clinical scenarios.
This review aimed to identify and summarize the most important translational advances in the last
years in the cardiovascular field together with the potential challenges that still remain in basic
research, clinical scenarios, and regulatory agencies.
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1. Introduction

Digital Health has disrupted the actual panorama by introducing and establishing
technology as one of the most useful and rapidly developing tools in the last decade [1].
These technological advances that are based on computing platforms, connectivity, software,
and sensors for health care related uses, give a more holistic view of patient health. Through
the availability of new data access ways, patients are gaining more control over their health.

In this sense, modern medicine is constantly evolving, while incorporating more
technologies in the analysis, diagnosis, and treatment decisions. These incorporations
include the direct collaboration of clinicians, engineers, and basic computational experts to
improve data access, reduce costs, and increase overall efficacy. This synergy will ultimately
increase quality and personalization at the medical level [1].

In the last years, the outbreak of Artificial Intelligence (AI) has helped to include
prediction algorithms as assessment tools to assist clinicians in their diagnostic decisions.
On this matter, the inherent capabilities of AI allow researchers to collect and interpret
data relationships in digitalized clinical records that can reveal hidden information for the
clinician with an inestimable impact in oncology [2], neurology [3], and cardiology fields [4],
among others. These capabilities include the automation of tasks such as processing [1],
segmenting images [2], or prognosis prediction [3] and translate into a higher efficiency of
the processes by reducing time and costs.
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Moreover, cardiovascular diseases (CVDs) are the leading cause of death globally, tak-
ing an estimated 17,9 million lives each year, corresponding to 32% of all global deaths [5,6].
CVDs are a group of disorders of the heart and blood vessels and include coronary artery
disease, cerebrovascular disease, heart failure, valvular heart disease and other conditions.
More than four out of five CVD deaths are due to heart attacks and strokes, and one third
of these deaths occur prematurely in people under 70 years of age [7].

Cardiology has been one of the medical fields where digital health applications are
playing a crucial role, not only with the use of wearable technologies but also in relation
to clinical applications. Among others, this field has benefited from the use of wireless
ECG recordings, implantable loop recorders, cardiac implantable electronic devices with
Bluetooth capability, and virtual or mixed-reality tools at operating rooms [1].

In this review, we present the most important translation platforms at different levels
that have showed major discoveries in the last decade.

2. A Translational Approach in Cardiovascular Diseases: Chimera or Reality?
2.1. The Present Breach among Basic Biomedical Research and Clinical Applications

Translational research aims to transfer the scientific knowledge developed from early
research stages into clinical practice across the system. The average time to complete such
a transition is 17 years [8], suggesting that efforts need to be made in order to compensate
the expensive medical research by improving policy interventions and translation. As a
result, intermediate steps have been defined, as described in Figure 1. Based on this, three
different translational research types have been identified including (1) the development
of treatments and interventions, (2) evaluation of the efficacy and effectiveness of these
treatments and interventions and (3) the dissemination and implementation of research for
system-wide change [9].
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Figure 1. Translational approach from basic research to bedside and clinical practice, describing the
three different translational research types.

These three types of translational research have been previously described in the
literature and highly depend on the stage at which research is being developed [10]. For
example, the first one (T1) focuses on translating the basic research findings from preclinical
studies, animal research and basic health services research into bedside applications, where
controlled observational studies and phase III clinical trials occur.

The second block (T2) includes the translation from bedside to practice-based research,
that mainly focuses on phase III and IV trials, observational studies, and survey research.
This block is devoted to guideline development, meta-analysis, and systematic reviews
with the main objective of translating the information to patients, regulations and practice.

Finally, the last block (T3) includes the translation from practice-based research to
clinical practice across the system, including dissemination and implementation research.

In parallel with this novel classification of the intermediate steps, current legislations
have tried to adapt to each of the requirements for protecting patients’ well-being and, at
the same time, agility has been introduced into the process [11].
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2.2. Translational Research as a Highly Complex Structured Matrix

Current trends in preclinical trials include enormous efforts to redesign and evaluate
new early phase clinical trial designs [12]. This effort is focused on the identification of
biomarkers or endpoints that enable one to identify the full potential and the possible
secondary effects of these novel approaches [12,13].

Translational research presents a key vision in the development of new drugs and
medical devices, although its inclusion in traditional workflows can be both challenging
and complex as it involves patients, research, and medical staff in various ways [14].

These approaches are also demanding at the infrastructural level and usually in-
clude cutting-edge research, sophisticated machines, complex imaging techniques, and
biochemistry laboratories near hospitals and clinics, which are not always available nor
possible.

Additionally, even if the infrastructural level is ensured, the quality of the data and
the availability to perform and characterize tests is challenging and can affect the transfer
process from the laboratory to the clinic.

Finally, a clear organized structure where communication is ensured in a multidisci-
plinary research team is essential for the correct translation of the information. This will
ensure good communication among basic scientists and clinicians, will avoid duplication
of efforts, and facilitate sharing of key information to identify innovative biomarkers that
can be translated into clinical practice.

In this regard, consensus from experts agree that some efforts need to be made including [14]:

• To establish better preclinical models that allow researchers to rationally select target
compounds and to better understand their mechanism of action.

• To evaluate and incorporate clear endpoints at preclinical stages that allow for anopti-
mal evaluation of target-based new drugs.

• To define current monitoring techniques that help to develop the tools, probes, and
biological and imaging assays suitable for in vitro assessment, in preclinical models.

• To conduct, in a rapid, coordinated manner, highly specialized, complex, early clinical
trials with rigorous standards to deliver complex, detailed data for licensing purposes.

• To ensure a high-quality laboratory infrastructure and expertise with the capacity to
provide biological readouts on clinical material in a timely manner.

2.3. Current Accomplishments in Cardiovascular Health

As previously described, CVDs have highly benefited from translational approaches
that have already been discussed by several organizations and groups such as the Transna-
tional Alliances for Regenerative Therapies in Cardiovascular Syndromes (TACTICS) [15]
or the European Society of Cardiology (ESC) groups, including Digital Health applications
for data acquisition and analysis [16]. Some of the most important applications have been
summarized in this section.

2.3.1. Translational Bioinformatics

Translational bioinformatics (TBI) is a well-established field in the study of health
informatics that has developed multiple branches of applications such as molecular bioinfor-
matics, biostatistics, statistical genetics, and clinical informatics [17]. The main objective of
this approach is to apply informatics to increase the acquisition and analysis of biomedical
data, with an emphasis on omics (genomics, metagenomics, epigenomics, transcriptomics,
proteomics, metabolomics, phenomics, exposomics, and microbiomics), therefore gen-
erating knowledge and medical tools that can be used by both scientists and clinicians
with several purposes. Its endpoint explores the improvement of human health by using
computer-based information systems, including data mining techniques, to identify pat-
terns or biomarkers that can be used for prediction purposes, as the use of bioinformatics
allows us to better understand the molecular basis of cardiovascular diseases and to identify
the genes, molecules, and molecular pathways involved. This is not only useful in the
identification of potential targets and testing new therapies, but also to predict patient
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risk, outcome, and the most suitable treatments. All this clinical knowledge is later trans-
lated into new application workflows that identify patient clusters, interpreting biological
information for treatment selection and health outcome prediction [4].

This revolution, specially at the genomic level, has been possible by the development
of next-generation sequencing (NGS) methods that apply different approaches to achieve
high-throughput sequencing. These techniques include DNA-seq techniques, such as long-
read and short-read sequencing methods, Chromatin Interaction Analysis by Paired-end
Tag Sequencing (ChIA-PET), Chromatin Conformation Capture with Sequencing (Hi-C),
Assay for Transposase-Accessible Chromatin with High-throughput Sequencing (ATAC-
Seq) [5], Chromatin Immunoprecipitation Sequencing (ChIP-seq), gene arrays, and RNA-
seq techniques [6]. At the proteomic level, the use of two-dimensional polyacrylamide
gel electrophoresis (2DGE), mass spectrometry, and protein arrays allows the massive
exploration of protein differences associated with pathological situations.

The impact of this approach in the CVD field is extensive, as most heart diseases are
related to a certain genetic component that has highly benefited from the democratization
of data and the rise of knowledge of public databases [18]. In this field, both academic,
governmental, and industrial initiatives have developed ways to share information at
both national and international levels. One of the most important initiatives that has been
recently developed is the partnership between the American Heart Association (AHA)
Institute for Precision Cardiovascular Medicine and Amazon Web Services by providing a
variety of grant funding opportunities for testing and refining AI and machine learning
algorithms using healthcare system data, with an aim of promoting precision medicine [19].

From the academic perspective, several institutions, including the National Center of
Biotechnolgy Information (NCBI), have contributed to the development of portals, analytics
platforms, databases, and centralized repositories [7] focusing on cardiovascular diseases.
This includes the Knowledge Portal Framework focused on cardiovascular disease, in
which HeartBioPortal [8] and the Cerebrovascular Disease Knowledge Portal [9] contain
useful gene expression data. Regarding analytic platforms for the development of precision
medicine, one could highlight the one from the American Heart Association [10] and
from DataSTAGE [7]. Examples of developed databases and central repositories at the
genetic level include the Heart Gene Database (HGDB) [11] and the Gene Expression
Omnibus (GEO) [12], the COPaKB [13], HeartBD2K [14] and ProteomeXchange [15], among
others [16], at the proteomic level, and MetabolomeXchange [17] at the metabolomic
level. Others such as the CardioGenBase [20], In-Cardiome [21], Cardio/Vascular Disease
Database [18], and dbGap [19] combine gene, functional, drug, and multi-omic studies. In
this trend, initiatives such as the IMPaCT platform driven by the Instituto de Salud Carlos III
aims to combine predictive medicine, data science, and genomic medicine as a transversal
approach to develop precision medicine in the Spanish National Healthcare System.

In addition to academic efforts, government initiatives have also made available
nation’s data through large genomic sequencing programs. Among the most relevant ones,
we found the NIH’s All of Us Research Program, which includes many cardiovascular
disease phenotypes, demographic information, and physical measurements, as well as
whole genome sequencing data [22], the 100K Genomes Project in UK [11], and the 100K
Wellness Pioneer Project in China.

Several companies have also contributed to scaling the use of bioinformating tools by
implementing different tests or products that are commercialized in a standardized format.
One example of these companies is Illumina, a biotechnology company that offers NGS and
later tools for analysis. Many other biotech startup companies and non-profit initiatives
have also shared that goal and many have finally effectively integrated the workflow of
Illumina and Qiagen [7].

Other projects have also contributed to this field by developing and nourishing
population-wide multi-omics initiatives such as the NHLBI Trans-Omics for Precision
Medicine (TOPMed) program, including the integration of whole-genome sequencing
(WGS), metabolic profiles, proteomics, and RNA expression patterns, among others, with
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molecular, imaging, and clinical data for the study of atherosclerosis [18]. Simpler ap-
proaches have explored the use of bioinformatics analysis for coronary heart disease,
identifying different genes associated with atherosclerosis [20] and coronary heart disease
prediction [23–25], as well as for myocardial infarction [26,27], for dilated cardiomyopa-
thy [28], for high blood pressure [29–31], and for cardiovascular risk [32,33] and cardiomy-
opathy in general [34]. Important efforts have also been mounted, revealing the role of the
transcriptome [35–37], the epigenome [38,39], and the metabolome [40] in these cardiovas-
cular diseases. Recent breakthroughs in sequencing combined with better bioinformatics
tools have enabled researchers to analyze the composition of the microbiome and how
these microbes are involved in CVD disease. In this context, recent initiatives are evaluating
the changes on the metagenome conditioned by diet and its impact on atherosclerosis [22].

In summary, there is a clear potential of transforming risk prediction, CVD diagnosis,
treatment personalization potentials, and the selection of integration and dose. However,
the integration of technology into the clinical care workflow is uneven among institu-
tions [11]. Other limitations in this field include the ethical and legal issues that arise due to
the massive production and use of personal data from patients and the rapid evolution of
the field, which usually leaves behind its adaptation to clinical practice and bioinformatics.

2.3.2. Computational Models for Personalized Medicine

In silico trials are based on computer simulations that contain specific information
from the patient, enabling the personalization of the models. The term in silico indicates any
use of computers in clinical trials, even if limited to the management of clinical information
in a database.

This type of computation is currently being tested in the development or regulatory
evaluation of medicinal products [23–26], devices, interventions, or in the characterization
and modeling of different diseases [27–30]. Although this approach presents major limita-
tions that will be later commented on [31], the combination of the information extracted
from the simulations with clinical information can increase the understanding of biological
mechanisms [32,33] (Figure 2). Nowadays, these types of trials are currently being vali-
dated at in vitro and in vivo levels, as they are expected to have major benefits over current
animal trials.
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In silico trials soften these biases by using accurate computer models for a specific
treatment and its development, including patient characteristics to broaden the testing
scenario to different patient groups and more information. In this sense, the idea of in silico
trials is to create a virtual twin in the computer that can test all possible treatments, enabling
observation through a computer simulation of how well the candidate biomedical product
performs and whether it produces the intended effect without inducing adverse effects.
Regarding CVDs, the methodology to obtain the data can vary, from macro anatomical
3D models of a patient obtained from computed tomography or magnetic resonance [41],
where electro-mechanical [42] and hemodynamics models can be implemented to mimic
the movement and the conduction systems of the heart, to cell-based differential equations
emulating every known ionic channel that may affect or modify cardiac cells’ function-
ing [43,44]. In this line, artificial intelligence brings new tools based on neural networks to
predict clinical and anatomical features, e.g., the heart shape based on the MRI and clinical
data of the patients (height, weight, sex, heart rate, among others) or the implementation
of variational autoencoders on the low ejection fraction data of patients to generate an
understandable representation [45] of how the AI performs in its core. This is one known
drawback of AI: how it operates or the decisions it makes most of the time are hidden
or lack direct interpretation due to its high complexity and huge dimensionality of the
transformations performed with real and synthetic data.

Therefore, in silico clinical trials could help to apply the 3Rs of fundamentals (i.e.,
reduce, refine, and partially replace real clinical trials) by:

(1) Reducing the size or studying specific groups at the clinical level that are identified as
risk groups at in silico level.

(2) Adding more detailed information obtained from this type of trials to better un-
derstand interactions with different groups and long-term effects that clinical trials
cannot provide.

(3) Replacing the preclinical phase and preserving the clinical trial for legal requirements.
(4) Improving unsuccessful treatments or products by providing extra information, as

this increases innovation, decreases economical costs, and exponentially increases the
understanding of biological processes.

(5) Avoiding the use of animal models by directly including clinical data and personalized
information from the patients. This significantly decreases the overall costs associated
with the development of treatments and has proven to be more effective at predicting
the behavior of the drug or treatment in large-scale trials and identifying secondary
effects, therefore better screening the treatments that progress to phase III clinical trials.

As previously mentioned, the validation of these types of experiments highly depends
on experimental data from both in vitro and in vivo protocols. This information is devoted
to nourishing and calibrating the experimental equations that shape in silico models.

At the CVD level, these studies are present at different levels including cellular studies
for the pharmacological testing of new compounds [46], evaluation of drug effects at the
tissue level in combination with AI [47], and whole-organ simulation for the evaluation of
different treatment strategies [3,48].

2.3.3. In Vitro Research and Translational In Vitro Diagnostics

In vitro research has always represented the first step for the development of drug
discovery in preclinical models. Although these assays are essential for the development
of molecules, 95% of early-phase studies are eliminated in further stages [34]. The main
causes of elimination include deficient properties of the product (45%), lack of efficacy
(28%), in vivo toxicity (11%), adverse effects (10%), or commercial purposes (6%).

In the CVD field, the major advance registered in the last decade has been the devel-
opment and use of in vitro models using induced Pluripotent Stem Cells (iPSC) that can
be later differentiated into multiple cardiac cellular types such as cardiomyocytes, cardiac
fibroblasts, smooth muscle cells, and endothelial cells [35].
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Due to the immature profile of these cells, and in the scope of a translational scenario,
multiple strategies have been developed to mimic the properties of native tissue including
extracellular matrix hydrogels [36,37], differentiation in 3D structures [38], prolonged cul-
ture times [39], hormone addition [40], substrate stiffness [41], biophysical stimulation [42],
and in vivo maturation [43].

In vitro diagnostic tests are medical devices that consist of a reagent, calibrator, control
material, kit of instruments and materials, apparatus, and equipment or system, used
alone or in association with others [34]. They are intended by the manufacturer to be used
in vitro for the study of samples from the human body, including blood and tissues. These
models have been already explored at the cardiovascular level, usually in combination with
digital health tools that enable electronic analysis or data acquisition and further analysis
using machine learning [44]. These approaches are usually intended to characterize a
physiological or pathological condition [45], to identify a possible congenital anomaly [46],
to determine safety and compatibility with potential medical device recipients [47,48], and
to monitor therapeutic measurements [49].

Although multiple applications have been described in this field, there are several
present drawbacks that limit their generalized use and that are highly conditioned by both
the type of samples and the development of the protocols, including:

(1) Inappropriate patient sample or signal acquisition that leads to an inability to analyze
the data.

(2) Difficulties or deterioration of the sample during its collection, management, treat-
ment, storage, or transport, especially for biological samples.

(3) Inability to afford in vitro testing at large scales or highly efficient computational
systems that can analyze large amounts of data.

In addition, in vitro diagnostic companies are key in this scenario, by taking an active
role in collaborating with laboratory professionals, adapting and disseminating evidence-
based recommendations about bio-specimen collection into the research settings from
preclinical to phase III studies.

2.3.4. Animal Models as a Translational Model for Research

Animal models represent the intermediate transfer point among in vitro cultures
and clinical trials. These models are essential for the translation of drug findings from
bench to bedside and their critical evaluation regarding their predictive validity is of
major importance [50]. For this reason, current trends encourage researchers not only
to analyze the results from the lab to the clinic, but also to evaluate the efficacy and
efficiency in both directions, identifying clinical bedside findings that were not predicted
by animal testing [51].

Furthermore, a proper design, execution, and reporting of animal models is essential to
evaluate preclinical data and ensure both reproducibility and translation to the clinic [52,53].

Finally, regulatory agencies play a key role in preclinical testing in animal models as
they appear to be an unquestionable data source on the performance of the drug or product.

At the CVD level, animal models can be categorized in two groups: small mammalian
animal models of heart disease and large animal models. The most common small animal
models include mouse, rat and rabbit animal models with various applications such as
myocardial infarction [54–56], cryoinjury models [57], hypertensive animals [58], and
cardiac electrophysiology models [59]. Large animal models include dogs [60], pigs [61]
and goats [62] for a number of different applications in preclinical stages such as drug-
induced arrhythmia studies, heart failure, or myocardial ischemia [62].

These models present some disadvantages such as the limited translation of biological
products into the clinical scenario and differences between the preclinical models and the
target population of patients [63,64]. First, there are significant differences in the cardiac
regenerative capacities of rodents and humans, so results obtained in preclinical models
may not necessarily translate to humans, especially if the products used as therapeutic
products are of murine origin [15,65]. Secondly, animals included in preclinical studies are
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usually young, and in some cases of only one gender. Preclinical studies should resemble
as much as possible the target population of patients, where patients are usually aged, have
other comorbidities, and have concomitant routine medications [15,65–67].

2.3.5. Signal Acquisition and Processing Automation Using Artificial Intelligence

Recently, AI has presented a major impact in the medical sciences [68] by automatizing
tasks and predicting outcomes with unprecedented performance in real-time applica-
tions [69–71]. These advances are occurring at a fast pace in research laboratories that
implement algorithms that need to learn or to be trained to achieve high accuracy per-
formance. The process of training these algorithms implies the use of high-quality data
with enough number of samples for the algorithm to learn how to predict. Usually, the
more complex the task is, the more data the algorithm will need for high accuracy perfor-
mance. This trend has already been previously described [49], for example, by comparing
biomarker prediction and automatic segmentation. Biomarker prediction, usually im-
plemented by regression analysis, will require a significantly lower number of samples
when compared with more complex tasks such as automatic segmentation, implemented
by neural networks. As the amount of data needed for this training process presents an
exponential tendency, current approaches consider the use of synthetic data from in silico
simulations or data produced in the lab to increase the number of samples used for training.
Another approach to train these algorithms relies on transfer learning, a process by which a
pretrained algorithm from previous experiments is used to calibrate a new one, significantly
reducing the number of samples needed for the final process [50]. This approach has been
already implemented in the cardiovascular field, showing great performance including
complex algorithms such as neural networks [51,52].

Similarly, for other new technologies that have been translated from initial research to
widespread clinical practice, it is important to recognize that there will be novel challenges
for the clinical deployment of AI tools. Understanding the nature of these new challenges,
potential mitigation strategies, and a well-conceived research road map that ensures that
advances in AI algorithm development are efficiently translated to clinical practice are of
paramount importance [72]. Much of the work in AI is being done at single institutions
with single center data for training, testing, and validation of the AI algorithms, lacking the
heterogeneity of global data and the effect of population-based factors such as ethnicity,
sex, or diet differences among others. A recent review of studies that evaluated the
performance of AI algorithms for the diagnostic analysis of medical images found only
6% of the 516 reviewed studies performed external validation [73], and so far, there is
limited research demonstrating the generalizability of these algorithms to widespread
clinical practice.

In the CVD field, AI has played a major role in the last years [74] by enabling remote
data collection [75], the analysis of large populations to identify profiles or groups that better
respond to a given treatment [76,77], arrhythmia classification [78,79], and the identification
of potential biomarkers for prognostication [80].

2.4. Economical Issues and Legal Regulations

Among the most important advantages of combining CVD translational approaches
and digital health is the decrease in the average Research and Development (R&D) costs
for new medicines, where clinical trials account for nearly 50% of the investment [68].

Regarding legal regulations, data privacy, quality of data and the interpretability of IT
systems, as well as intellectual property (IP) rights, they are in the eye of the storm.

At the European level, several regulations are applicable including the European Reg-
ulation 2017/745 on medical devices and Regulation (EU) 2017/746 on in vitro diagnostic
medical devices (applicable as of 26 May 2022). These are in consonance with the General
Data Protection Regulation (EU) 2016/679 (GDPR).

In addition, software that qualifies as a medical device must follow the provisions
relating to medical devices, which vary depending on the type and application of a certain
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medical device. EU Regulation 2017/45 is fully applicable whereas Regulation 2017/746
will remain in a translational situation until 26 May 2022. The European Commission has
issued guidelines on the classification of medical devices (MEDDEV Guidelines) and, in
particular, on the Qualification and Classification of standalone software used in healthcare.
Digital solutions to be adopted by the National Health service are examined to ensure that
the required security standards for the public administration are met.

AI in healthcare is mainly regulated by the EU Medical Devices Regulation 2017/745
(MDR) and in vitro Diagnostic Medical Devices Regulation 2017/746 (IVDR) in combination
with the GDRP. Medical devices are often either developed using AI or they have an AI
component. The GDPR applies since the application of AI implies the collection or treatment
of data, and, specifically health data, which is considered as special category data that is
subject to strict privacy and data protection obligations.

Moreover, the Ethics Guidelines for Trustworthy AI, published by the European
Commission (2019) [81], highlighted that AI applications should not only be consistent with
the law, but they must also adhere to ethical principles and ensure their implementations
to avoid unintended harm.

Despite all the efforts that have been made to rapidly adapt to a constantly changing
scenario, there are some key areas of enforcement for digital health that still need to
be addressed:

(1) Regulatory authorities’ actions against digital health and healthcare IT that meet the
definition of medical devices but have not obtained the CE mark.

(2) The European Data Protection Agency’s actions in the event of breaches of data
protection legislation and data security.

3. Current Trends and Future Perspectives

Although translational research has experienced massive advances in combination
with digital health tools, there are some improvements that should be addressed in the
upcoming years, summarized in Figure 3.
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In particular, standards should be developed for data curation, distribution, sharing,
and management to ensure a proper translation from preclinical to clinical scenarios and
reproducibility of the results [82] (Figure 3). The most important factors affecting low
reproducibility include a lack of access to raw data, misidentified or cross-contaminated
samples, inability to properly manage complex datasets, low-quality research practices and
experimental design and a competitive culture that rewards novel findings and undervalues
negative results [83].

The action needed to overcome these challenges has been already started including
different potential improvements in different scenarios. Investigators, institutions, and jour-
nals are now demanding the application of good scientific methods and data accessibility
from early stages of the research workflow [83].

In addition, policies have to face and overcome their own valleys of deaths that are
both mainly present in T1 and T2 translational phases. Improvements to ameliorate
regulations in translational science include new legislation and regulations, guidance
for professionals, standards, and evidence-based guidelines and commercialization and
innovation strategies [84].

Finally, at the clinical level, it is necessary to clarify and redesign the concept of
evidence-based healthcare to facilitate understanding, analysis, improvement and/or re-
placement of the process as it is currently conceived, purported, and practiced [85]. Among
the most important translational science priorities, some important factors were found,
such as the predictive efficacy of preclinical trials, new therapeutic modalities to reach
currently inaccessible diseases or pathologies, new methodologies to increase efficiency
in preclinical development, identification of new biomarkers for human clinical response
prediction, and clinical trial redesigns to facilitate fast clinical practice incorporation [13].

4. Conclusions

Digital Health has highly disrupted the cardiovascular panorama by including tools
that help to identify biomarkers that can be transferred from preclinical stages into clini-
cal scenarios. In this sense, several advances have been made in bioinformatics, in vitro
research, and preclinical animal models to identify and standardize potential biomark-
ers that can contribute to a successful translation of the results from these scenarios to
clinical practice.

This translation has been highly enhanced by the development of new analytical tools
that include AI algorithms, by processing and extracting patterns in data from preclinical
scenarios to clinical practice. However, a lot of efforts have to be made to continue with
this transition and validate the standardization protocols proposed.

This evolution is expected to continue in the upcoming years, leading to the develop-
ment of new personalized treatments.
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