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Abstract: High-Throughput technologies are producing an increasing volume of data that needs large
amounts of data storage, effective data models and efficient, possibly parallel analysis algorithms.
Pathway and interactomics data are represented as graphs and add a new dimension of analysis,
allowing, among other features, graph-based comparison of organisms’ properties. For instance,
in biological pathway representation, the nodes can represent proteins, RNA and fat molecules,
while the edges represent the interaction between molecules. Otherwise, biological networks such as
Protein–Protein Interaction (PPI) Networks, represent the biochemical interactions among proteins
by using nodes that model the proteins from a given organism, and edges that model the protein–
protein interactions, whereas pathway networks enable the representation of biochemical-reaction
cascades that happen within the cells or tissues. In this paper, we discuss the main models for
standard representation of pathways and PPI networks, the data models for the representation and
exchange of pathway and protein interaction data, the main databases in which they are stored and
the alignment algorithms for the comparison of pathways and PPI networks of different organisms.
Finally, we discuss the challenges and the limitations of pathways and PPI network representation
and analysis. We have identified that network alignment presents a lot of open problems worthy of
further investigation, especially concerning pathway alignment.

Keywords: biological pathways; protein–protein interaction; networks alignment; local and global
alignment

1. Introduction

High-Throughput Omics (HTO) experimental platforms that include protein, Single-
Nucleotide polymorphisms (SNPs) and gene expression microarrays, Genome-Wide As-
sociation Studies (GWAS) and Next-Generation Sequencing (NGS) can simultaneously
investigate thousands of genes for a single experiment. In addition, experimental tech-
niques such as yeast two-hybrid (Y2H) and mass spectrometry (MS), are commonly used
to detect interacting proteins. HTO platforms promoted the holistic theory that both com-
plex and common diseases are due to the interactions of several muted genes or proteins,
contrasting with the old theory that a disease is due to the mutation of a single gene [1].
In this landscape, the main problem was to define a model that can effectively represent
interactions among genes and proteins. In general, different biological systems are mod-
eled according to graph-theory formalism, which enables us to represent the entities of a
system as nodes and their relations as edges. For instance, Protein–Protein Interaction (PPI)
Networks model biochemical interactions among proteins [2]. Nodes represent the proteins
from a given organism, and the edges represent the interactions among proteins. The repre-
sentation as a graph is convenient for a variety of reasons. Networks provide a simple and
intuitive representation of heterogeneous and complex biological processes. Additionally,
the graph formalism enables us to conduct network-based analysis. A common analysis
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regarding the comparison of graphs is based either on comparing their global properties,
such as their clustering coefficient or node degree distribution, or the analysis of their inter-
nal structure, formally known as network alignment (NA). For instance, the comparison
of PPI networks, based on NA, has evidenced the conservation of patterns of interactions
among the evolution [3]. Instead, in biological pathways, the nodes represent proteins,
RNA and fat molecules, for example, while the edges represent the interaction between
molecules. It is notable that, since the pathways are classified in metabolic, signaling and
regulatory ones, this definition does not hold for metabolic pathways. Biological pathways
consist of proteins, RNAs and other molecules connected by interactions such as activation
or catalysis. For example, the trigger of interactions among biological entities in cells
produces new molecules (e.g., fat or protein). This is more straightforward if expressed
in a visual format. Biological pathways simplify the description, representation and mod-
eling of several biological events such as reactions, phosphorylation, catalysis, inhibition,
deactivation, etc., that govern the biochemical machinery normal or abnormal cell cycle.
Using a graphical or textual model to represent biochemical events makes it easier to share
information, study and understand these complex events [4].

Using graphs to model pathways and PPI networks has made it possible to orga-
nize, store and exchange pathway information, promoting the development of pathway
databases containing the relevant experimental and electronically inferred evidence infor-
mation. On the other hand, problems related to the integration, visualization and repre-
sentation of such massive networks arise, spurring computer scientists to develop new
efficient algorithms to deal with these vast networks [5].

The remaining part of the manuscript is arranged as follows. Section 2 presents the
main data models used to represent pathways and PPIs. Section 3 introduces pathways
and PPI formats for integration, exchange, visualization and analysis. Sections 4 and 5
provide a review of some well-known pathway and PPI databases. Section 6 provides a
review of the NA algorithm available for PPI and pathway, highlighting their strengths and
weaknesses. Section 7 discusses the differences between PPI and pathway NA algorithms.
Finally, Section 8 concludes the manuscript and delineates some possible solutions to the
NA algorithm open problems.

2. Background

In this section, we present the available data models to represent pathways and PPI.

2.1. Pathway Data Models

Pathways can be classified in three main classes: Metabolic, Gene Regulation and Signal
Transduction.

• Metabolic Pathways represent chemical reactions carried out by a cell to transform food
into energy, for example.

• Gene Regulation Pathways are responsible for the activation (or inhibition) of genes
(e.g., on, off).

• Signal Transduction Pathways govern the transmission of signals from a source to a
destination.

This classification can be helpful in the process of discovering new pathways or func-
tions. Indeed, identifying the constituents involved in a pathway provides clues about the
pathway working principles and, thus, the pathway type. Thus, representing pathways as a
network enables the investigation of global structures instead of the behavior of individual
molecules, making it possible to highlight and develop a remarkable understanding of how
these complex networks work.

To represent a pathway as a network, it is possible to use graph theory. A graph is
a pair G = (V, E) consisting of a set of vertices V and a set of edges E, where an edge
connects two vertices. An edge e ∈ E connecting the vertices u, v ∈ V is denoted by
{u, v} ∈ E, and u and v are called adjacent (or neighbors) and they are incident with e.
This definition describes undirected graphs; that is, graphs where connections between
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vertices are without a direction. Instead, in directed graphs, the two edges are different
e1 = {u, v} 6= e2 = {v, u}; thus, the connections between vertices have a direction. Often,
this needs to extend graph models by adding attribute to the vertices and edges, such as text,
numerical values, types, colors and coordinates. Typical examples include the stoichiometry
of reactions in metabolic pathways represented as numerical values on the edges. To assign
attribute to edges or nodes, it is possible to use a mapping function Π. The mapping
function Π maps an attribute type to the vertices or edges. Thus, a stoichiometry value can
be represented as a numeric value and mapped to an edge, e.g., a real value connecting
two vertices. The Π function can be formally defined as: Π : < → E, that assigns at each
edge e a weight Π(e).

Due to the different type of biological pathways with different properties, the graph
models have to be tailored to the specific network under consideration. Thus, graphs can
be classified as directed, undirected, mixed. Undirected graphs represent PPI networks where
interactions (edges) are without a direction. In an undirected graph, an edge between the
vertices u and v is an unordered vertex pair {u, v} ∈ E. Conversely, directed graphs are
suitable to model metabolic, signaling and gene-regulation pathways. In a directed graph,
an edge between the vertices u and v is an ordered vertex pair {u, v} ∈ E 6= {v, u} ∈ E.
In a mixed graph, both undirected and directed edges are present. Mixed graphs are also
relevant in pathways representation, where some interactions are undirected and others
are directed, such as, for instance, activation and phosphorylation.

Multigraphs are graphs holding multiple edges; that is, two or more edges between the
same two vertices, and in the case of directed graphs, they could have different directions.
In a multigraph, such edges are also called multiedges. Multiedges are, useful for the
modeling of metabolic pathways, where the same compounds can be transformed by
different reactions.

Hypergraphs are an extension of graphs and multigraphs. Hypergraphs enable the
representation of metabolic reactions in pathway networks, where several compounds react
together to catalyze new products. For instance, in signaling pathways, several molecules
interact among them to control one or more small molecules to transport the signal from
inside to the external of nucleus. Meanwhile, in regulatory pathway, hypergraphs can
effectively show the interactions of multiple biological entities necessary to activate or
deactivate the gene’s activity. A hypergraph H = (V, E) consists of a set of vertices V and
a set of hyperedges E, where each hyperedge is a non-empty subset of V. Hypergraphs can
be directed or undirected. Hypergraphs are not commonly used in graph theory, but such
graphs are used to model biological networks, especially pathways.

2.2. Protein–Protein Interaction Data Models

Protein–protein Interaction (PPI) Networks represent the interactions among pro-
teins [6]. PPI networks are fundamental for cellular functions; for example, the assembly
of cell structural components or transcription, such as processes translation and active
transport. PPI networks are modeled by using graphs. In general, PPIs are represented
as directed or undirected graphs, where the nodes represent the proteins and the edges
correspond to the interactions among connected proteins. Clearly, this simple represen-
tation does not capture the following aspects of interaction: the kind of interaction itself,
e.g., phosphorylation or complexation or colocalization, and some other particular aspects
strictly tied to the kind of reaction, such as the direction or the kinetics. If one wants to
provide a distinction between reagent and product, or one wants to represent biochemical
reactions, a bit of complexity is necessary. In this case, a directed graph will represent the
distinction between reagents and products. Finally, a label on the edges can specify the
kind of interaction, i.e., phosphorylation, alkylation, ubiquitination. The model based on
directed graphs can be similarly used to model metabolic reactions. In this case, nodes
can be proteins, nucleic acids, compounds or metabolites, and edges represent all kind of
interactions. The determination of a correct model for PPI networks could be important
for effective experimental planning, helping to determine possible interactions. Currently,
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there are three common models used for PPI networks: Random Graph, Scale Free and
Geometric Random Graph [7]. Starting from the highest abstract level, the components
of interactions (e.g., proteins and enzymes) can be modeled as a set of nodes connected
by edges representing the interactions. This informal model is easily traduced in a graph
by using a formal mathematical language.

The Erdos–Renyi model [8] is an abstract representation of a random network in which
a specified probability describes the existence of an edge between each couple of nodes.

Formally, a random graph, G(n, p) is a graph with n nodes, where each possible edge
has probability p of existing. Consequently, the number of edges in such a graph is a
random variable. G(n, p) can be seen as a set of graphs with n nodes, in which each graph
is denoted by its probability related to its number of edges. For a random graph, the
average degree z of a vertex is equal to

z =
n(n− 1)

n
≈ np (1)

for large number of n. So, once one knows n, any property can be expressed both in
terms of p or z. Consequently, this model presents the advantage of summarizing the
topological properties in two parameters, n and p. Briefly, it is possible to recall that for
large values of n (or alternatively, when z = 1), random graphs exhibit a transition phase
causing the formation of a so-called giant component. A component is a subset of nodes,
which are all reachable from other nodes. A giant component, consequently, is the largest
component. The formation of a giant component is a characteristic of many real networks,
both biological and social. Despite this, random graphs do not capture the high clustering
coefficient property of real networks. This drawback also appears in metabolic networks,
as reported in [9]. In that work, authors analyze a metabolic network of E. coli by building
a graph of interactions in which vertices represent substrates and products and edges
represent interactions. The clustering coefficient of the network is 0.59 while a random
graph with the same number of node presents a value of 0.09.

The main characteristic of scale-free networks [10] is the power-law degree distribu-
tion; that is, the probability that a generic node has exactly k edges, that is expressed by
P(k) = kγ, where γ is the degree exponent. A property of these networks is the presence of
a small number of highly connected nodes (called hubs) which determine other properties.
Generally, for these networks, the clustering coefficient is independent of the number of
nodes n and the diameter is very small, following the d ' log log(n) formula.

A geometric graph [11] G(V, r) is a graph whose nodes are points in a metric space
which are connected by an edge if their distance is below a threshold value r, called radius.
Formally, let u, v ∈ V; the edge set is E = {{u, v}|(u, v ∈ V) ∧ (0 < ‖u− v‖ < r)}, where
‖.‖ is a defined distance norm. Generally, a two dimensional space is considered, and norms
are the well known Manhattan or Euclidean distance and the radius takes values in (0, 1).

Thus, a random geometric graph G(n, r) is a generalization of a geometric graph in
which nodes correspond to n points in a metric space. Clearly, these points are distributed
uniformly and independently. The properties of these graphs have been studied when
n→ ∞ [11]. Surprisingly, certain properties of these graphs appear only when a specific
number of nodes is reached.

3. Standards for Pathway and PPI Networks Encoding

Biologists need to use information from many sources to support their research,
and this led to an increase in the number of pathway databases. On the other hand,
each database adopted different representation data formats, making data integration
and exchange between multiple databases a challenge. Thus, the need to establish an
unique pathway representation format that can integrate data from various databases
arises. Pathway data are encoded using several formats such as: BIOPAX-LEVEL 1,2,3-,
CellML, HUPO, PSI-MI and SBML, as described below.
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3.1. BioPAX

BioPAX (Biological Pathway Exchange) [12] aims to simplify the integration and
exchange of data stored in biological pathway databases through a unique way to represent
data. BioPAX defines pathway data through the OWL DL meta-language and represented
in the RDF/XML format. Traditionally, the integration and comparison of different data
formats has always been a challenge in bioinformatics. Thus, BioPAX purses the goal
of simplifying data integration, comparison and exchange by using a unique common
format. BioPAX Level 3 is the recommended version, since it supports the representation
of metabolic pathways, signaling pathways (including states of molecules and generic
molecules), gene regulatory networks, molecular interactions and genetic interactions.
BioPAX Level 3 is not fully backward compatible with Levels 1 and 2.

3.2. CellML

CellML [13] is an XML-based markup language for describing, storing and exchanging
computer-based mathematical models. CellML allows scientists to share models even if
they are using different model-building software, to reuse components from one model
into another one, accelerating model building. CellML allows the description of biolog-
ical models, including information about the model structure, equations describing the
underlying processes and additional information, simplifying the search of specific models
or model components in a database. The CellML provides a comprehensive word-list
describing biological information with different resolutions, starting from the sub-cellular
to the organism level.

3.3. HUPO

HUPO PSI Molecular Interactions Tab-Delimited format (PSI-MITAB) The authors
of [14] introduce a tabular data exchange format suitable for describing interactions between
biological entities. PSI-MITAB improves the annotations and representations of molecular
interaction data and the exchange of molecular interaction data to the user community.
Thus, data stored in multiple databases can be downloaded and easily integrated.

3.4. PSI-MI

PSI-MI (Proteomics Standards Initiative—Molecular Interaction) [15] format provides
an XML standard for molecular interactions and is supported by many molecular interac-
tion databases and tools. The PSI-MI format defines a standard for data representation in
proteomics to facilitate data comparison, exchange and verification, and it is not a proposed
database structure.

3.5. SBML

SBML (Systems Biology Markup Language) [16] is an XML-based language used to
represent, store and exchange models of biological systems of varying complexity. SBML
offers a collection of components and features fundamental for describing a wide range
of dynamical models, simulated by using ordinary differential equations (ODEs) and
stochastic formalism. The ongoing development of SBML contributed to enhancing its
extensibility, portability and re-usability, for describing whole-cell models. SBML levels
are intended to coexist. Thus, the definition of a new level does not make the previous
one obsolete, since it introduces new functionalities, constructs and features, enhancing
analyses and simulations performance.

3.6. PPI Networks

In proteomics, the description of the set of protein–protein interactions remains one
of the main objectives. In fact, several experiments both on a small and large scale have
made it possible to shed light on the different nature of interaction networks. In this
context, the necessary data integration between experiments is currently hampered by
the fragmentation of public availability protein interaction data, which exist in different
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formats in databases, on corporate and academic websites or sometimes just in scientific
publications. In general, there are several consolidated databases for protein interactions
(which will be covered in a dedicated section), which mainly use two standard data models
for the representation and exchange of protein interaction data. These standards are
PSI-MI [15] and HUPO [14]. For a complete description, see above.

4. Pathway Databases

Each database organizes its pathways data in networks to provide insight into the
affected biological functions underlying the cellular mechanisms. Although this division
into pathways is not arbitrary and is based on physical criteria in each database, there is no
generally accepted pathway definition. The description of the main characteristics of some
well-known pathway databases can be seen below.

Biocarta (https://www.hsls.pitt.edu/obrc/index.php?page=URL1151008585) [17] is a
database of maps representing metabolic pathways, signal transduction pathway, and other
biochemical pathways. Pathway data can be downloaded by using the provided Rest appli-
cation programming interface (API) or through the Harmonizome web-portal. A REST API,
also known as a RESTful API, is an application programming interface that conforms to the
constraints of the REST architectural style, enabling interaction with RESTful web services.
The term REST, coined by computer scientist Roy Fielding, stands for REpresentational
State Transfer. Biocarta provides information on 254 human and mouse pathways collected
from 66 online sources.

BioCyc (https://biocyc.org) [18] is a collection of 20,005 Pathways and Genome
Databases (PGDBs) for model eukaryotes and for thousands of microbes. BioCyc is an
encyclopedic reference that contains curated data from about 130,000 publications. Bio-
Cyc integrates genome data with additional data including metabolic reconstructions,
regulatory networks, protein features, orthologs, gene essentiality and atom mappings.
In additon, BioCyc provides several software tools for data analysis. BioCys requires a paid
subscription to access data, whereas the EcoCyc and MetaCyc databases are freely available.

INOH (Integrating Network Objects with Hierarchies) (https://dbarchive.bioscien
cedbc.jp/en/inoh/desc.html) [19] provides information on the molecular pathways in
humans, mice, rats and other organisms. INOH collects pathway data from the litera-
ture. INOH pathway’s terms are enriched with information from at least two additional
databases, SWISS-PROT [20] and Gene Ontology (GO) [21]. Pathway data are freely avail-
able to download for later use in BioPAX, OBO and INOH formats.

KEGG (Kyoto Encyclopedia of Genes and Genomes) (https://www.kegg.jp/kegg/) [22]
is an integrated database encompassing 16 databases, providing systems information,
genomics information, chemical information and health information. Pathways in KEGG
are manually drawn as maps representing knowledge about metabolism, cellular process,
human diseases, drug development, genetic information processing and environmental
information processing. KEGG pathway data can be visualized through a web browser
and accessed by using KEEG API available only for academic use; for other purposes, the
download requires a licence.

NetPath (http://www.netpath.org) [23] is a manually curated resource of signal path-
ways. In the current version, NetPath contains 36 curated human pathways. NetPath
pathways are freely available under an adaptive Creative Commons License for download
as BioPAX level 3.0, PSI-MI version 2.5 and SBML version 2.1 formats.

PathwayCommons (https://www.pathwaycommons.org) [24] is a collection of public
pathway databases, such as Reactome, PID and Cancer Cell Map, as well as protein–protein
interaction databases, such as HPRD, HumanCyc, IntAct and MINT. The main goal of
PathwayCommons is to provide an access point for a collection of public databases, and
it includes technology for integrating pathway information. Pathway creation, extension,
and curation remain the duty of the source pathway databases. PathwayCommons provides
a web interface to browse pathways, as well as a web service API for automatic access to
the data. Additionally, PSI-MI and BioPAX formats are supported for the data download.

https://www.hsls.pitt.edu/obrc/index.php?page=URL1151008585
https://biocyc.org
https://dbarchive.biosciencedbc.jp/en/inoh/desc.html
https://dbarchive.biosciencedbc.jp/en/inoh/desc.html
https://www.kegg.jp/kegg/
http://www.netpath.org
https://www.pathwaycommons.org
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Furthermore, the complete PathwayCommons database can be automatically accessed
using the PathwayCommons plugin.

Reactome (https://reactome.org/) [25] is a manually curated and peer reviewed repos-
itory of signaling and metabolic pathways and processes. In the current version, Reactome
contains pathways for 15 different organisms, including the Homo sapiens. Reactome in-
cludes 2553 pathways and 11,071 annotated proteins for the Homo sapiens. All pathway
data are freely available for download in the following formats: Neo4j GraphDB, MySQL,
BioPAX, SBML and PSI-MITAB files. They are also accessible through the Reactome Web
Services APIs.

SMPDB (Small Molecule Pathway Database) (https://www.smpdb.ca) [26] is an
interactive visual database containing about 30,000 small molecule pathways discovered in
humans. SMPDB is explicitly designed to support pathway elucidation and discovery in
metabolomics, transcriptomics, proteomics and systems biology. SMPDB pathways include
information on the relevant organs, subcellular compartments, protein complex cofactors,
protein complex locations, metabolite locations, chemical structures and protein complex
quaternary structures. SMPDB supports full searching through lists of metabolite names,
drug names, gene names, protein complex names, SwissProt IDs and GenBank IDs. Result
search produces lists of matching pathways and highlights the matching molecules on each
pathway diagram. SMPDB’s images, maps, descriptions, and tables are freely available
for download.

WikiPathways (https://www.wikipathways.org/) [27] is an open, collaborative plat-
form for the curation of biological pathways. WikiPathways is a new model of pathway
databases that improves and complements ongoing efforts, such as KEGG, Reactome and
PathwayCommons. WikiPathways has a dedicated web page, displaying diagrams, de-
scription, references, download options, version history and component gene and protein
lists. WikiPathways is freely available for download in the form of images, and in GPML,
or in a custom XML format. In addition, data can be accessed programmatically by using
the available Webservice/API.

The main features of the listed pathway databases are summarized in Table 1.

Table 1. The table summarizes the main characteristics of the listed databases. The column #Pat
refers to the total number of memorized pathways for each database; PathType provides infromation
about the handled pathway type; #P− G provides information about the total number of covered
proteins/genes for each database; #Int is the total number of interactions available in each database;
organism provides information on the pathway origin organism; Cur specifies how pathway data
are handled in each databases. In the table, SMT is the contraction of Signaling, Metabolic and
Transduction pathways. MO indicates Multi-Organisms. H is short for Human. LC and EC are short
for Literature and Electronic Curation.

Pathway DB #Pat PathType #P − G #Int Organism Cur

Biocarta 254 SMT 1396 × H,M LC
BioCyc 20,005 MT 14,544 × MO LC
INOH 9606 SMT 22,799 5625 MO LC
KEGG 551 M 19,618 3568 H LC
NetPath 36 S 5337 7214 H LC
PathwayCommons 5772 SMT 18,490 2,424,055 H EC
Reactome 2553 SMT 31,506 16,017 MO LC
SMPDB 908 MT 1576 × H LC
WikiPathways 3053 SMT 7858 × MO LC

5. Protein–Protein Interaction Databases

The increase in high-throughput experiments and the development of computational
prediction methods to discover protein–protein interactions have led to the introduction of
several publicly available PPI databases. In general, the PPI databases can be distinguished
in two kind of classes: databases of experimentally determined interactions, such as

https://reactome.org/
https://www.smpdb.ca
https://www.wikipathways.org/
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DIP [28], BioGRID [29], MINT, [30], Intact [31], that store interactions extracted from both
literature and high-throughput experiments, and databases that store predicted interactions
obtained using in silico methods, such as I2D [32], STRING [33].

The first class of databases contain the data of experimentally determined interactions.
These databases go beyond the storing of the interactions and integrate them with func-
tional annotations, sequence information and references to corresponding genes. They also
enable some visualization that presents a subset of interactions in a comprehensive graph.

DIP (Database of Interacting Proteins) (https://dip.doe-mbi.ucla.edu/dip/Main.cgi)
contains interactions experimentally determined in different organisms, such as Saccha-
romyces cerevisiae, Drosophila melanogaster, Escherichia coli, Caenorhabditis elegans, Homo
sapiens, Helicobacter pylori, Mus musculus, Rattus norvegicus, Bos taurus and Arabidopsis
thaliana. Currently, the database contains 81,923 interactions of 28,850 different proteins
obtained from 82,143 distinct experiments. The interaction data in DIP have been revised
both by expert curators and by computational approaches that apply prior knowledge
about the protein–protein interaction networks.

DIP can be searched through its web-based interface, which allows users to query for
a protein. Various subsets of the DIP interaction data are available in a variety of formats
such as PSI-MI, MITAB2.5 (tab-delimited format) and the legacy XIN format (a legacy XML
format that was used before introduction of PSI-MI (MIF)). The sequences of the proteins
participating in DIP interactions are provided in FASTA format.

BioGRID (Biological General Repository for Interaction Datasets) (https://thebiogrid
.org/) is a biomedical interaction repository. The current version contains 2,467,140 proteins
and 1,740,000 interactions curated from both high-throughput datasets and individual fo-
cused studies, as derived from over 70,000 publications in the primary literature, from major
different model organism species (Arabidopsis thaliana, Bos taurus, Caenorhabditis elegans,
Chlorocebus sabaeus, Cricetulus griseus, Danio rerio, Drosophila melanogaster, Gallus
gallus, Homo sapiens, Macaca mulatta, Mus musculus, Rattus norvegicus, Saccharomyces
cerevisiae, Severe acute respiratory syndrome coronavirus 2 and Xenopus laevis). The
query interface of BioGRID is based on a web interface that enables searches by inserting
protein or gene identifiers as well as article identifiers or publication keywords. The whole
set of BioGRID data may be downloaded in multiple file formats, including PSI-MI XML.

MINT (Molecular Interaction database) (https://mint.bio.uniroma2.it/) is designed to
store data on functional interactions between proteins. The current version of the database
contains 132,249 interactions and 27,069 proteins from Homo sapiens, Saccharomyces
cerevisiae, Mus musculus, Rattus norvegicus, Helicobacter pylori, Drosophila melanogaster
and Caenorhabditis elegan organisms. This database does not contain only physical
interactions between proteins, but also, it is conceived to store other kinds of molecules
(e.g., enzymes or nucleic acids). The database can be accessed through a web interface by
inserting the protein name, the accession number or other identifying keywords. Results
are presented in in HUPO PSI-MI XML and PSI-MI TAB format.

IntAct (https://www.ebi.ac.uk/intact/home) database is a repository of interac-
tions and is completely based on open-source software. It contain 118,759 proteins and
1,184,144 interactions from Homo sapiens, Saccharomyces cerevisiae, Mus musculus, Rat-
tus norvegicus, Escherichia coli, Drosophila melanogaster , Caenorhabditis elegan, He-
licobacter pylori, Schizosaccharomyces pombe, Bacillus subtilis and SARS-CoV-2 model
species organisms. The query interface of BioGRID is based on a web interface that enables
searches by inserting proteins or gene identifiers in the UniProt ACs, Taxon IDs, Publication
IDs, Complex ACs, GO terms formats. The BioGRID data may be downloaded in multiple
file formats, including PSI MI XML.

The second class of databases contain the predicted interactions starting from ex-
isting databases of verified interactions. Different algorithms have been developed to
predict putative interactions. These algorithms work on verified interactions datasets
by storing biological information in order to produce a set of putative interactions. For
example, the algorithms use orthologs information, i.e., the information that the interac-

https://dip.doe-mbi.ucla.edu/dip/Main.cgi
https://thebiogrid.org/
https://thebiogrid.org/
https://mint.bio.uniroma2.it/
https://www.ebi.ac.uk/intact/home
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tion mechanisms are conserved through the evolution, and starting from two interacting
proteins in a organism, e.g., A and B, they find the orthologs of A and B in other organisms.

For example, I2D (Interologous Interaction Database) (http://ophid.utoronto.ca/op
hidv2.204/) is an online database of known and predicted mammalian and eukaryotic
protein–protein interactions. It has been built by mapping high-throughput data between
species. Thus, until experimentally verified, these interactions should be considered predic-
tions. It remains one of the most comprehensive sources of known and predicted eukaryotic
PPIs. The prediction algorithm is based on the hypothesis of conservation of patterns of
molecular interaction through the evolution. On the basis of such consideration, a model
for mapping interactions of model organisms into humans has been developed. I2D is
searchable via a web interface. The latest release of I2D contains 687,072 proteins and
1,279,157 (predicted and source) interactions, and it includes data for S. cerevisiae, C. elegans,
D. melonogaster, R. norvegicus, M. musculus and H. sapiens. I2D can be queried by using
single or multiple protein IDs. Results can also be visualized using its graph visualization
program. A freely downloadable software tool called NAViGaTOR [34,35] (Network Anal-
ysis, Visualization, Graphing TORonto) queries the I2D database and visualizes networks.
Data can be exported both in tab-delimited and PSI-MI formats.

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins database) (https:
//string-db.org/) is a database of predicted interactions for different organisms such as
Homo sapiens, Mus musculus, Arabidopsis thaliana, Saccharomyces cerevisiae, Escherichia
coli, Caenorhabditis elegans, Rattus norvegicus, Drosophila melanogaster, Bacillus subtilis
and Pseudomonas aeruginosa PAO1. The database can be accessed on the website by
specifying a protein identifier, or alternatively, by inserting the protein primary sequence.
The current version contains 67,592,464 proteins and 20,052,394,041 total interactions.
The prediction algorithm is based on the concept of functional association. It considers
conserved genomic neighbourhood, gene fusion events and co-occurrence of genes across
genomes, as well as information about orthologs. The user can also download the primary
data and the predictions as flat files or PSI- MI files, which cover selected views or the
whole database. Table 2 summarizes the main characteristics of the listed databases.

Table 2. The table summarizes the main characteristics of the listed databases. In the table, the col-
umn #Proteinst refers to the total number of memorized proteins for each database; the column
#Intereraciton refers to the total number of memorized protein interactions for each database; the
column Organism is related to the organisms on which the ppi are inferred; the column Exper Det.
records whether the interactions have been experimentally determined.

PPI Networks DB #Proteinst #Intereraciton Organism Exper. Det.

DIP 28,850 81,923
SC, DM, EC, CE,

HS, HP, MM,
RN, BT, AT

Yes

BioGRID 2,467,140 1,740,000

SC, DM, EC, CE,
HS, HP, MM,

RN, BT,AT, SC,
SARS-CoV-2, XL

Yes

MINT 27,069 132,249 HS, SC, MM,
RN, HP, DM, CE Yes

IntAct 118,759 1,184,144

HS, SC, MM,
RN, EC, DM ,
CE, HP, SP, BS,
SARS-CoV-2

Yes

I2D 687,072 1,279,157 SC, CE, DM, RN,
MM, HS No

STRING 67,592,464 20,052,394,041
HS, MM, AT, SC,

EC, CE, RN,
DM, BS, PAO1

No

http://ophid.utoronto.ca/ophidv2.204/
http://ophid.utoronto.ca/ophidv2.204/
https://string-db.org/
https://string-db.org/
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Finally, the high level of heterogeneity among available databases contributes to limit
the effectiveness of automatic data analysis.

6. Methods for the Analysis of Pathways and PPIs.
6.1. Alignment of Biological Pathways

Similar to the alignment of sequence and structure, the alignment of pathways is
obtained through a general optimization strategy that minimize differences among paired
entities. Differences are defined in terms of both nodes and edges. Consequently, at the
end of the alignment process, the closeness between two pathways is reflected by a score
computed through a similarity function relying on a scoring model.

Alignment can be classified in two main groups: local alignments that maximize the
similarity among local structures, and global alignment that maximizes the total number of
corresponding nodes. More recent comparative research focuses on alignment techniques
that can identify similar parts between pathways.

More formally, given two pathways P1, P2, the pairwise comparison and align-
ment of pathways is obtained by representing pathways as two directed hyper-graphs
DHG1 = {V1, E1}, DHG2 = {V2, E2}, where V is a finite set of nodes and E is a set of
directed hyper-edges. A directed hyper-edge is an ordered pair of subsets of nodes
E = (X, Y), where X is the set of input nodes of E, while Y is its set of output nodes.
The local alignment can be defined as a matching function π : {v ∈ V1} → {w ∈ V2},
where π reflects the alignment of of a sub-set of pathway compounds (nodes in V1 and V2).
Conversely a global alignment is a complete matching among all the nodes of two hyper-
graphs, i.e., Π : V1 → V2. Recently, the traditional one-to-one matching was extended to
one-to-many matching.

Here, we recall some well-known approaches for pathway alignments.
MP-Align [36] provides a methodology for the pairwise comparison and alignment

of metabolic pathways, aiming to provide the largest conserved substructure of the path-
ways under consideration. MP-Align computes the alignment by means of the maximum
weighted bipartite matching algorithm and the largest conserved sub-hypergraph methods.
The method relies on five main phases. The first phase regards the reaction paths compu-
tation that is a reaction’s sequence, e.g., P1 and P2. The second phase establishes the first
correspondence between P1 and P2. The third phase refines the correspondence between P1
and P2, defining a match called σ. The fourth phase translates the reaction path matching σ
into a well-defined match between reactions in P1 and P2. The fifth phase determines the
similarity score and the alignment of the two given pathways. MP-Align is implemented in
Python, and it is freely available to download.

PathAligner [37] performs alignment by mapping the coordinates of one pathway onto
the coordinates of one or more other pathways. PathAligner uses metabolite matching and
EC number alignment to analyze the similarities between metabolic pathways. PathAligner
assesses the alignment through a hierarchical alignment method.

SubMAP (Subnetwork Mappings in Alignment of Pathways) [38] extends the classical
one-to-one mapping to the one-to-many mapping among the molecules (nodes) of the input
graphs. SubMAP evaluates the alignment through the maximum weighted independent
set and the eigenvalue problem methodologies. The method is based on a two-step strategy.
SubMAP initially measures the similarities among nodes using a combination of genetic
and topological information. Then it merges the two metric using a single scoring function.
Finally the alignment is evaluated between two input pathways to maximize a similarity
score, evaluated as the sum of the similarities of the mapped sub-networks of size k,
excluding conflicting mappings. SubMAP is based on the maximum weight independent
set (MWIS) problem.

MPH (MetaPathwayHunter) [39] is a pathway alignment tool that, given a query path-
way and a pathway database, finds and reports all approximate occurrences of the query
in the collection, ranked by similarity and statistical significance. MetaPathwayHunter
figures out the alignment by means of the weighted assignments in bipartite graphs and
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the subtree homeomorphism methods.MPH relies on graph matching to resolve the labeled
graph isomorphism problem. MPH is implemented by using a combination of C++ and
Java code.

MetaPAT (Metabolic pathway alignment) [40] is able to perform the alignment of
metabolic pathways and it does not restrict the topology of the network in any way. Instead,
it exploits a property of metabolic networks known as ’local diversity property’. MetaPAT
calculates the alignment by using the subgraph isomorphism method. MetaPATH has been
implemented in C++.

MetNetALigner [41] aligns metabolic networks, taking in account the similarity of
network topology and the enzymes’ functions. MetNetAligner allows users to predict
unknown pathways, compare and find conserved patterns and resolving ambiguous
identification of enzymes. The tool supports several alignment options such as allowing or
forbidding enzyme, deletion and insertion. MetNetAligner models alignment as a dynamic
programming whose solution is the alignment.

CAMPways (Constrained Alignment of Metabolic Pathways) [42] aligns pair of matabolic
pathways. As a result, it provides one-to-many alignments of reactions in a pair of metabolic
pathways, corresponding to a mapping between similar sub-structures of the pair. CAMP-
ways implements an improved and effective version of the constraint alignment. CAMP-
ways computes alignment solving the constraint alignment problem. Constraint alignment,
even in a very primitive setting, is computationally intractable. CAMPWays provides bet-
ter alignment results on metabolic networks compared to the state-of-the-art alternatives.
CAMPWays is implemented by using C++ LEDA.

Table 3 summarizes the available types of pathway alignment algorithms.

Table 3. Pathway alignment algorithms.

Algorithm one2Many Many2Many Method

MP-Align
√

× Maximum weighted bipartite matching algorithm, largest conserved
sub-hypergraph

PathAligner
√

× Hierarchical alignment
SubMAP

√
× Maximum weight independent set and eigenvalue problem

MetaPathwayHunter
√

× Subtree homeomorphism and weighted assignments in bipartite graphs
MetaPAT

√
× Subgraph homeomorphism

MetNetALigner
√

× Dynamic programming
CAMPways

√
× Constrained alignment

6.2. Alignment of PPI Networks

A most promising method for the analysis of PPI networks to infer knowledge is
Network Alignment (NA). Network alignment (NA) is a computational technique widely
used for comparative analysis of PPI networks to discover evolutionarily conserved sub-
structures among different species. Network alignment relates to the collection of methods
that aim to find similarities among networks. The problem of graph alignment consists of
the mapping between two or more networks to maximize cost function that represents the
similarity among nodes or edges. Conventionally, given two graphs, G1 = {V1, E1} and
G2 = {V2, E2}, the graph alignment searches an alignment function f : V1 → V2, where
V1,2 are set of nodes, that maximizes the similarity between mapped nodes. Therefore,
the graph alignment problem is based on the subgraph isomorphism issue, and for this, it
results computationally NP-hard [43], and it should be resolved by heuristic methods. The
alignment quality is a function of cost that measures the level of similarity of the analyzed
network, and it is defined as follows: Q(G1, G2, f ). Q conveys the correspondence among
the input networks on a precise alignment f . So, the Q definition highly affects the mapping
approach [44].

In general, network alignment can be classified as Local Network Alignment (LNA)
and Global Network Alignment (GNA). LNA algorithms usually aim to find regions of
similarity between two or more networks by producing a many-to-many node mapping,
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and they are applied for the comparison of small regions extracted from two or more
input networks.

These subnetworks are conserved patterns of interaction that can correspond to pre-
served or activity patterns. LNAs employ a two-step schema to build the alignment. At first,
they take as input a set of seed nodes chosen by biological information; then, the algorithms
merges the inputs in a complementary structure, also called an alignment graph. Finally,
LNAs mine the alignment graph to extract interesting modules. Over the years, different
LNAs algorithms have been implemented.

An example of the most recently developed algorithm is GLAlign (Global Local
Aligner).

GLAlign (Global Local Aligner) is a novel LNA methodology [45] that first applies a
GNA to generate a list of seed nodes on the basis of topological information. GLAlign com-
putes the alignment through Seed nodes and Alignment Graph methods. Then, GLAlign
integrates this topology information with biological information (i.e., homology relation-
ships) by using a linear combination schema. At the end, GLAlign takes as input the
generated global to compute a LNA.

AlignNemo [46] ensures the detection of sub-graphs of proteins with similar biological
function according to the topology. AlignNemo assesses the alignment through a suitable
Score Function. AlignNemo can build the alignment of sparse PPI networks because it
analyzes the topology of adjacent nodes of interacting proteins.

AlignMCL [47] is the evolution of the previous AlignNemo. AlignMCL constructs
the local alignment by integrating all the input data in the alignment graph, which is
subsequently clustered by using MCL algorithm [48] to mine the conserved subnetworks.
AlignMCL computes the alignment through Seed nodes and Alignment Graph methods.

NetworkBLAST [49] searches highly connected node groups corresponding to groups
of proteins with the same function. NetworkBLAST builds an alignment of the analyzed
networks, which is searched for conserved protein complexes. NetworkBLAST assesses
the alignment through a suitable Score Function. Each candidate complex is scored by its
fit to a protein complex model, which assumes a certain density of interactions within a
complex, versus the likelihood that it arises at random.

NetAligner [50] presents a strategy to identify evolutionarily conserved interactions,
on the basis of consideration that interacting proteins evolve at rates significantly
closer than expected by chance. NetAligner computes the alignment through a suitable
evolutionary method.

On other hands, GNA algorithms, search for the best mapping that covers all nodes of
the input networks by generating a one-to-one node mapping. This strategy considers only
the topology of input graphs, leaving out the similarity among small regions. In general,
GNAs exploit a two-step schema to build the alignment. At first, the algorithms adopt a
cost function, that maximises the node likeness also known as “node preservation”, or the
quantity of preserved edges, i.e., “edge preservation”, to estimate the similarity among pair
of nodes. Then, they apply an alignment method to find a high-scoring alignment based on
the total similarity over the all aligned nodes among all the possible alignments.

For example, MAGNA [44] applies a genetic algorithm to build an improved align-
ment. MAGNA resembles a set of alignments and it chooses the best among them.
MAGNA++ [51] is the MAGNA extension and it ensures to maximize any edge and node
conservation measures. MAGNA and MAGNA++ assess the alignment through a suitable
genetic algorithm.

SANA (Simulated Annealing Network Aligner) [52] uses the Simulated Annealing
to build a final alignment, starting with two networks, and an input alignment randomly
built or by applying different aligners. It starts to explore a solution space to improve the
initial alignment. The solution space consists of alignments neighbors, i.e., alignments that
vary only in one or two mappings of individual pairs of aligned nodes concerning the
initial alignment. SANA uses neighbours that differ in exactly two mappings to improve
the alignment.
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WAVE [53] uses a seed-and-extend alignment strategy to optimize both node and edge
conservation while constructing an alignment. WAVE is used on top of an established node
cost function and it leads to a new superior method for global network alignment, favoring
conserved edges among nodes with node cost function similar over those with node cost
function dissimilarity.

More recently, Malod-Dognin et al. [54] presented UAlign, that associates different
alignments built by global network aligner. It aims to overcome the limitation of the global
network aligners present in the coverage of built alignments.

There are also different algorithms, such as GRAAL [55] and the GRAAL family (H-
GRAAL [56], MI-GRAAL [57], C-GRAAL [58] and L-GRAAL [59]), that use a special
node similarity measure called graphlet degree vectors [60] to build a global alignment.
The main characteristic of the graphlet degree vector is the generalization of the node
degree, by counting the degree value for all possible connected induced subgraphs up to a
certain node number.

GHOST [61] uses a novel spectral signature based on the local neighborhood’s topology
to measure the topological similarity between subnetworks. The idea behind GHOST
consists of building an alignment by combining the novel spectral signature with a seed-
and-extend strategy.

IsoRank [62] maximizes an alignment quality measure that balances topological and
node similarity using a weight factor α. IsoRank assesses the alignment through a suitable
Score Function.

IGLOO [63] is able to build high functional and topological quality using a seed and
extend strategy on the basis of the integration of GNA and LNA strategies.

6.3. Pairwise vs. Multiple Network Alignment

The network alignment algorithms can be categorized according to the number of
input networks, i.e., pairwise and multiple alignment.

The pairwise network alignment (PNA) takes two networks as input, and it identifies
a sub-network with high similarity among the input networks. The multiple network
alignment (MNA) builds the alignment among three or more networks and it detects
aligned patterns of nodes. PNA and MNA can be classified in a global approach by
exploiting a many-to-many node mapping and local approach by exploiting a one-to-one
node mapping.

The PNA applies a many-to-many node mapping among the input networks with the
goal of finding similar sub-graphs. Otherwise, PNA exploits one-to-one node mapping to
search best match by considering the entire input networks. The MNA applies a many-
to-many approach to find an alignment as cluster that contains different nodes from one
compared network. Otherwise, MNA exploits one-to-one node mapping to build an
alignment as a cluster that contain only one node for each compared networ.

Though PNA and MNA have been applied on PPI networks to build the alignment
of [2], it has been shown that the alignment constructed with MNA is able to infer more
biological knowledge, since its approach is able to detect function information common to
different species.

There are different proposed multiple network alignment algorithms in the literature.
MultiMAGNA++ [64] is a global MNA algorithm based on one-to-one node map-

ping. MultiMAGNA++ uses a genetic algorithm and introduces a new cost function to
derive from the parent nodes a new childhood that allows the construction of subsequent
multiple alignments.

GEDEVO-M [65] is a global one-to-one MNA algorithm based on an evolutionary
algorithm that uses the Graph Edit Distance (GED) as an optimization model for finding
the best alignments.

LocalAli [66] is a local many-to-many algorithm that uses an evolutionary model to
derive an evolutionary tree of networks nodes. LocalAli uses the maximum parsimony evo-
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lutionary model to infer the evolutionary tree of networks’ nodes. Then, LocalAli extracts
local alignments as conserved modules that have evolved from a single ancestral module.

IsoRankN [62] is a global many-to-many algorithm that builds a multiple network
alignment by using a spectral partitioning method to find dense and clique clusters.

SMETANA [67] is a global many-to-many aligner that computes the node similarities
using a probabilistic model and then applies a greedy approach to build a multiple alignment.

FUSE [68] is a global one-to-one MNA algorithm that defines node similarities be-
tween all pairs of networks by applying a non-negative matrix trifactorization. After that,
FUSE applies an approximate maximum weight k-partite matching algorithm to build an
alignment between the multiple networks.

NetCoffee [69] is a global many-to-many aligner that builds a weighted bipartite graph
for every pair of networks and then it applies a simulated annealing approach to construct
a multi alignment.

BEAMS [70] is a global many-to-many aligner that constructs a graph of node similari-
ties considering protein sequence scores and detects from the graph a set of disjoint cliques
that maximizes an alignment quality measure. BEAMS assesses the alignment through a
suitable nodes cost function.

Table 4 summarizes the different PPI network alignment algorithms.

Table 4. PPI Network alignment algorithms.

Algorithm GNA or LNA PNA or MNA One-to-One or Many-to-Many Method

GLAlign LNA PNA Many-to-many Seed node and alignment graph
NetworkBLAST LNA PNA Many-to-many Score function

NetAligner LNA PNA Many-to-many Evolutionary method
AlignNemo LNA PNA Many-to-many Score function
AlignMCL LNA PNA Many-to-many Seed node and alignment graph
H-GRAAL GNA PNA One-to-one Graphlet
MI-GRAAL GNA PNA One-to-one Graphlet
C-GRAAL GNA PNA One-to-one Graphlet
L-GRAAL GNA PNA One-to-one Graphlet
IsoRank GNA PNA One-to-one Node similarity
GHOST GNA PNA One-to-one Spectral signature
WAVE GNA PNA One-to-one Seed and extend strategy

MAGNA GNA PNA One-to-one Genetic algorithm
MAGNA++ GNA PNA One-to-one Genetic algorithm

SANA GNA PNA One-to-one Simulated annealing
IGLOO GNA PNA One-to-one Seed and extend strategy

MultiMAGNA++ GNA MNA One-to-one Genetic algorithm
GEDEVO-M GNA MNA One-to-one Evolutionary algorithm

IsoRankN GNA MNA Many-to-many Node similarity
SMETANA GNA MNA Many-to-many Greedy approach

LocalAli LNA MNA Many-to-many Maximum parsimony evolutionary model
FUSE GNA MNA One-to-one Non-negative matrix trifactorization

NetCoffee GNA MNA Many-to-many Simulated annealing
BEAMS GNA MNA Many-to-many Node cost function

7. Discussion

The analysis of biological networks, and in particular PPIs and pathways, is an impor-
tant research topic in modern bioinformatics. Biological networks are gaining more and
more attention in the life sciences, and in particular in the omics field.

Several efforts were made by the scientific community to provide NA algorithms for
investigating PPIs and pathways. Following analysis of the scientific literature, it arose that
there is an imbalance concerning the availability of NA algorithms for PPIs and pathways.
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7.1. PPI Network Alignment

PPI NA algorithms are very popular, allowing investigation of local and global net-
work characteristics relying on several different methodologies, pursuing the goal to
discover conserved interactions across multiple species. This can be performed by compar-
ing conserved substructures across species through network alignment. In fact, the goal
of network alignment is to predict the protein functions of an unknown species from
known ones. The alignment network algorithms may be grouped into two major categories
on the basis of their strategy: Local Network Alignment (LNA), and Global Network
Alignment (GNA).

Both LNA and GNA may also be categorized on the basis of the input networks in Pair-
wise Alignment Algorithms, i.e., algorithms that align two input networks, and Multiple
Alignment Algorithms, i.e., algorithms aligning three or more input networks at once.

LNA and GNA are both related to find topological and functional similarities among
networks and to transfer biological knowledge from well-studied species to poorly
studied ones.

In the recent past many independent GNA and LNA algorithms have been developed
that rely on different assumptions and algorithmic solutions. In general, LNA multiple
aligners perform better in finding conserved complexes or functional modules than GNA
pairwise aligners because they better accept the edge loss in PPI networks, and they even
directly or indirectly provide intra-species relationships between proteins.

Moreover, LNA multiple aligners are more suitable for revealing phylogenetic rela-
tionships between different organisms. On the other hand, GNA pairwise aligners are
suitable for detection of similar topological substructures, as well as functional orthologs.

Many of the available algorithms and tools of PPI NA were extended by using high-
performance computing (HPC) paradigms to analyze ever larger networks by exploiting
the multi-CPU and multi-cores architectures also available in personal computers. HPC
improvements make it possible to analyze huge PPIs in reasonable times, making it possible
to provide a solution to previously intractable networks with prohibitive dimensions,
e.g., thousands of vertices and hundreds of thousands of edges.

7.2. Pathway Network Alignment

Conversely, it is worth noting that all the NA pathway algorithms are suitable to align
only metabolic pathways, pointing out a lack of methods that can align signaling and
regulatory pathways. The lack of NA pathway algorithms for signaling and regulatory
pathways is due to the different meaning of nodes and edges in these two categories of
pathways. Indeed, genes, proteins or small molecules in metabolic pathways concern edges
because they catalyze reactions, whereas node represent the compound of the catalysis.
Differently, nodes in signaling and regulatory pathways represent genes and proteins,
and edges represent the interaction among them. The different meaning of biological
elements in the three types of pathways make it impossible to use NA algorithm developed
to align metabolic pathways for signaling and regulatory pathways, reducing the capability
of discovering new pathways or functions. This limitation is not present in PPIs, since all
the representation preserves the meaning of nodes and edges. Finally, it is not possible to
categorize the available pathway NA algorithm in categories, as is the case for PPI networks.

7.3. Pathway and PPIs Database

PPI databases contain information obtained through low-throughput experiments and
high-throughput technologies. Pathway databases provide information about the cellular
mechanisms’ biological functions through several representation models. This has led to
the information heterogeneity between the different databases, making data analysis from
multiple databases challenging. To improve the accuracy of network alignment analysis,
the researchers need to use both pathway and PPI data. In [45,47], the authors applied the
network alignment algorithms to the PPI network of species extracted from the different
public databases. The results showed that different alignments were obtained using the
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networks extracted from the various databases, which is current with the heterogeneity
of the information among them. In [71] authors provide a merging signaling pathways
method based on protein–protein interaction data. The combined use of pathway and PPI
data can help identify similar pathways with the same name or focus on the same biological
processes from different data sources in the HPD.

7.4. Open Problems in Pathways and PPIs Alignment

It should be noted that the use of graphs has some drawbacks [72]. For example,
a problem related to the use of graphs is the lack of supplementary information use about
interactions such as spatial and temporal information, kinetics parameters etc. [73].

Another criticism is that PPI and pathway networks are often static, as they do
not show the dynamic interaction flow in the cellular over time. Since PPI and pathway
networks provide only one viewpoint of the cell’s status, integration with other data types,
e.g., temporal and spatial data, is necessary to get a more complete and dynamic picture of
cells events.

Furthermore, different models for the PPI networks present some problems limiting
the effectiveness of every attempt at comparison due to the missing knowledge of the real
interaction map.

Nevertheless, molecular machineries inside cells often involve the interplay of molecules
of different types (e.g., genes, proteins and RNA) [74]. Consequently, the use of more com-
plex models such as heterogeneous networks to represent such data has gained the attention
of researchers.

PPI and pathway data need to be stored, queried and analyzed. Regarding PPI data
storage, the main efforts were devoted to the definition of standards for data exchange,
such as HUPO PSI-MI. In addition, each pathway database comes with its own type of data
representation formalism. In this heterogeneous landscape, several initiatives were born to
try to simplify data exchange, integration and storage, such as BioPAX and SBML. Moreover,
both PPI and pathway databases lack a common naming mechanism to uniquely identify
interactions. Both databases, discussed above, do not offer refined query mechanisms
based on graph manipulation, but they aggregate the only available structured repository
for interaction data and permit easy sharing and annotation of such data.

Regarding network alignment algorithms, there are still open problems that have not
yet been solved. The first problem is that there is no gold standard ground truth for network
alignment across PPI and pathway networks because the nature of biological research is
basically a reverse-engineering process due to the unknown mechanisms of evolutionary
events. Moreover, there remain inconsistencies and information loss in PPI and pathway
data caused by the limitation of existing molecular techniques.

The second issue that needs to be addressed is that there have been more and more
large and dense biological networks, and even different types of networks, discovered. This
poses problems in terms of execution time and memory consumption. It is obviously a chal-
lenge for algorithm design to face them by exploiting HPC, contributing to the resolution
of unfeasible problems in a reasonable time without losing accuracy and precision.

8. Conclusions

Biological network analysis is a very interesting research field useful for discovering
evolutionarily conserved substructures among different species. In fact, different biolog-
ical data such as pathway and PPI data are recurring to graph formalism by opening
new network-based analysis perspectives. In this work, we have tackled the problem of
representation and storage, encoding standard and NA algorithms for pathway and PPI
networks.

Regarding the representation, directed and undirected graphs are suitable to repre-
sent PPI, but they are ineffective to represent complex pathways features such as gene
activation/inhibition represented as multiple edges, or reversible catalysis represented
through directed and undirected edges. To overcome these limitations, pathways are
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mainly represented as mixed graphs or hypergraphs. Thus hyper- and mixed graphs allow
us to represent complex features of pathways, but on the other hand, many algorithms
developed for graphs cannot be directly applied to hypergraphs and mixed graphs. Fur-
thermore, several databases are available for both PPI and pathways. Researchers need to
use multiple databases to answer their biological questions; thus, the availability of many
databases could contribute to simplify their work. Regardless, the lack of a gold standard
for interchange among the available databases, makes the integration, annotation and
exchanging process challenging even for bioinformatics. To overcome the lack of standards,
many initiatives are emerging with the goal of providing a common standard to harmonize
heterogeneity in biological databases. BioPAX is trying to impose itself as a gold standard
for integration, exchange, visualization and analysis of biological pathway data. BioPAX
supports data exchange, reducing the complexity of interchange between data formats by
providing an accepted standard format for pathway data. On the other hand, PPI lacks a
standard to uniquely identify interactions.

The network analysis is entangled in precision medicine. Cancer Systems Biology is
an example of network analysis playing an essential role in precision medicine. Cancer
System Biology is the application of system biology approaches to cancer research. This
means studying how intracellular networks of normal cells become cancer cells. The study
of these data can determine effective predictive models that can assist the production of
new therapies and drugs. For example, systems models can incorporate patient-specific
datasets with drug response profiles to define effective personalized treatment options.
Cancer systems biology approaches have been applied explicitly to several types of cancer.
In addition, whole-genome expression data were integrated with patient outcomes to
classify patients’ therapy responses according to gene expression patterns. This allows
the identification of specific expression patterns and pathways associated with particular
mutations in the tumor. In addition, the altered patterns or drug responses in the cancer
cell were also identified. Finally, combining genomic data with mathematical modeling
is a step in the right direction toward precision medicine. This approach can potentially
improve personalized treatment in the future by understanding the biological functions,
and can help study diseases and engineering drugs to fight cancer and other diseases.

Finally, in the literature, many NA algorithms used to analyze pathways and PPI
networks are available, even if there is an imbalance in the availability of NA algorithms
for PPIs and pathways. This is related to large implementation of PPI NA algorithms
for different species with the aim of discovering conserved interactions across multiple
species. Instead, NA pathway algorithms enable to compare only metabolic pathways.
NA presents a lot of open problems worth further investigation, especially concerning
pathway alignment. Although pathways are represented through networks, the devel-
opment of pathway analysis methodologies is slower compared to PPI, perhaps due to
their biological complexity. The development of NA algorithms able to align signaling
and regulatory pathway can help researchers to shed light on the pathways involved in
disease and detecting which components of the pathway exhibit incorrect behavior. This
may lead to more personalized strategies for diagnosing, treating and preventing disease.
In addition, the adoption of a unique data format can promote the integration and sharing
of pathway data coming from several databases. Moreover, it can support the annotation
and integration of pathways with PPI data, since it is becoming increasingly evident that the
connection between pathways and diseases is fashioned at multiple interconnected levels.
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