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Simple Summary: Some of the earliest studies using molecular data to resolve evolutionary history
separated birds into three main groups: Paleognathae (ostriches and allies), Galloanseres (ducks
and chickens), and Neoaves (the remaining ~95% of avian species). The early evolution of Neoaves,
however, has remained challenging to understand, even as data from whole genomes have become
available. We have recently proposed that some of the conflicts among recent studies may be due to
the type of genomic data that is analyzed (regions that code for proteins versus regions that do not).
However, a rigorous examination of this hypothesis using coding and non-coding data from the same
genomic regions sequenced from a relatively large number of species has not yet been conducted.
Here we perform such an analysis and show that data type does influence the methods used to
infer evolutionary relationships from molecular sequences. We also show that conducting analyses
using models of sequence evolution that were chosen to minimize reconstruction errors result in
coding and non-coding trees that are much more similar, and we add to the evidence that non-coding
data provide better information regarding neoavian relationships. While a few relationships remain
problematic, we are approaching a good understanding of the evolutionary history for major avian
groups.

Abstract: The phylogeny of Neoaves, the largest clade of extant birds, has remained unclear despite
intense study. The difficulty associated with resolving the early branches in Neoaves is likely driven
by the rapid radiation of this group. However, conflicts among studies may be exacerbated by the
data type analyzed. For example, analyses of coding exons typically yield trees that place Strisores
(nightjars and allies) sister to the remaining Neoaves, while analyses of non-coding data typically
yield trees where Mirandornites (flamingos and grebes) is the sister of the remaining Neoaves. Our
understanding of data type effects is hampered by the fact that previous analyses have used different
taxa, loci, and types of non-coding data. Herein, we provide strong corroboration of the data type
effects hypothesis for Neoaves by comparing trees based on coding and non-coding data derived
from the same taxa and gene regions. A simple analytical method known to minimize biases due
to base composition (coding nucleotides as purines and pyrimidines) resulted in coding exon data
with increased congruence to the non-coding topology using concatenated analyses. These results
improve our understanding of the resolution of neoavian phylogeny and point to a challenge—
data type effects—that is likely to be an important factor in phylogenetic analyses of birds (and
many other taxonomic groups). Using our results, we provide a summary phylogeny that identifies
well-corroborated relationships and highlights specific nodes where future efforts should focus.

Keywords: RY coding; GC content; partitioned analyses; multispecies coalescent; phylogenomics;
raptors; waterbirds; landbirds

1. Introduction

Since the advent of molecular phylogenetics, it has been recognized that birds can
be reliably separated into three clades: Paleognathae (ratites and tinamous), Galloanserae
(landfowl and waterfowl), and Neoaves (all other birds, representing about 95% of all
extant species). The base of Neoaves is one of the most difficult problems in phylogenetics
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(reviewed by [1]). It has long been clear that Neoaves underwent an extremely rapid
radiation [2–4], probably close in time to the K-Pg (Cretaceous-Paleogene) mass extinction
(reviewed by Field et al. [5]). Many studies using large sequence datasets [6–16] have
corroborated many clades within Neoaves, but some relationships among these clades
deep in the bird tree remain surprisingly recalcitrant to resolution. Reddy et al. [13] sug-
gested that Neoaves should be viewed as a radiation of ten major clades, seven clades that
comprise multiple orders (“the magnificent seven”) and three “orphan orders.” Indepen-
dently, Suh [17] highlighted a virtually identical set of major clades. Thus, even in the
phylogenomic era, relationships among these 10 clades differ among studies, confounding
our ability to understand the early evolution of birds.

One explanation for the differences among studies is taxon sampling. Prum et al. [12]
suggest that their results, using 200 species, differed from those of Jarvis et al. [11], which
only included 48 species, due to denser taxon sampling. However, Reddy et al. [13] ana-
lyzed a slightly larger number of species than Prum et al. [12] and they recovered a tree
with similarities to the primary Jarvis et al. [11] tree (which they called the “TENT”). This
suggests that differences are due to data type effects. The use of large-scale (“phyloge-
nomic”) datasets to examine relationships among organisms has revealed cases where
analyses of different data types (e.g., coding versus non-coding data) yield different tree
topologies [11,13,18–23]. Some data type effects are strong enough that the tree topology
based on one data type can be rejected in analyses using the other data type. Examples of
data type effects involving distinct sources of genomic information include the different
topological signals that emerge in analyses of coding vs. non-coding data [13,19], sites
in different protein structural environments [24], or proteins with distinct functions [22].
While some conflicts may be due to analyses of small data matrices (limited sampling of
either taxa or loci) that lack the power to confidently resolve relationships, alternative
topologies due to different data types can remain even when large data sets are analyzed
(systematic data type effects). These systematic data type effects represent a fundamental
challenge for phylogenomic studies.

While recovery of the magnificent seven is independent of data type [11,13], the
relationships among the magnificent seven and the orphan orders exhibit substantial
variation. This does not mean that results of analyses using various datasets of non-coding
and coding data have yielded absolutely identical topologies; instead, the non-coding
and coding topologies represent parts of tree space that share certain features (Figure 1).
The most prominent feature of non-coding trees is that clades VI (doves, mesites, and
sandgrouse) and clade VII (flamingos and grebes) are sister to all other Neoaves (called
Passerea by Jarvis et al. [11]) with clades VI and VII either united or as successive sister
groups of Passerea (Figure 1A). In contrast, trees based on large coding datasets (Figure 1B)
have tended to yield trees with “clade P1” [13], which comprises all Neoaves except
clade V (nightjars, hummingbirds, swifts, and allies). Coding exon trees may also include
an “extended waterbird clade” (Aequorlitornithes sensu Prum et al. [12]. Beyond these
features, which are present in many (but not all) trees based on each data type, clustering
trees using topological distances separates those trees into coding and non-coding groups
(cf. Figure 8 in Reddy et al. [13]).

It is perhaps telling that the two most important unresolved questions regarding the
phylogeny of extant birds identified by Pittman et al. [25] appear to reflect issues of data
type. Specifically, Pittman et al. [25] asked: (1) “Which clade is the sister taxon to the rest
of Neoaves?”; and (2) “Are most aquatic avian lineages part of a monophyletic aquatic
radiation?” Although we believe that these are the most important issues for the data
type effects hypothesis, they do not represent all potential cases where data type might
have an influence on the phylogeny of Neoaves. For example, coding data tend to place
at least some raptorial landbird lineages sister to the other core landbirds (clade I) [1].
The Prum et al. [12] tree, largely based on coding data, united clades IV and VI in a clade
they called Columbaves (Figure 1B) but this grouping was not perfectly congruent with
the relevant Jarvis topology and Kuhl et al. [16] recovered Columbaves in their non-coding
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tree, prompting us to exclude it from the coding indicator clades. Reddy et al. [13] defined
another potential non-coding indicator clade, which they called clade J3N; this clade
comprises clades I and III (Figure 1A). We excluded clade J3N from our set of indicator
clades because it was not present in the Kuhl et al. [16] non-coding tree. Despite the
challenges associated with defining data type indicator clades for Neoaves, it seems clear
that Passerea vs. clade P1 and the extended waterbirds are likely to be robust indicators.

Figure 1. Consensus topologies for Neoaves emphasizing the “magnificent seven” and the “indicator clades” that differ in
trees resulting from analyses of (A) non-coding vs. (B) coding data. The primary non-coding indicator clades is Passerea.
The coding exon indicator clades are clade P1 (all Neoaves except clade V), the extended waterbird clade, and a paraphyletic
assemblage of raptors sister to the other landbirds. The thin dashed lines highlight potential indicator clades that we view as
uncertain at this time (see text). Magnificent seven clade names: I = “core landbirds” or Telluraves [26]. II = “core waterbirds”
or Aequornithes [27]; III = Phaethontimorphae [11]; IV = Otidimorphae [11]; V = Strisores [28]; VI = Columbimorphae; [11];
VII = Mirandornithes [27].

Although Reddy et al. [13] defined and examined the most important data type
indicator clades, that study did have some limitations. The taxon sample that Reddy
et al. [13] used was similar in size to the Prum et al. [12] taxon sample, but the distribution
of taxa across the avian tree of life differed between those two datasets. At least some
of the benefits of increased taxon sampling are thought to reflect the subdivision of long
branches when taxa are added [29,30] and the Prum et al. [12] and Reddy et al. [13] studies
probably broke up different long branches due to the inclusion of different taxa in each
study. Additionally, the two studies used different loci throughout the genome. Given
that different parts of the genome have different evolutionary histories, there could be
localized biases [8,31] that may affect one or both of these datasets—but likely in different
ways due to the different sampling across the genome. Finally, Reddy et al. [13] considered
the Prum et al. [12] tree to represent a coding tree, yet that data matrix included almost
20% non-coding data (introns, untranslated regions (UTRs), and intergenic regions). Thus,
the “Prum tree” is not a coding exon tree in the strict sense. A better approach to testing
the data types hypothesis is to use the same species and loci in both the coding and non-
coding analyses, but ideally with improved taxon sampling over the 50 species included
in Jarvis et al. [11]. Given that the Prum data matrix includes both data types for most
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loci, subdividing this dataset allows the Reddy et al. [13] data type effects hypothesis to be
tested in a direct manner. If that hypothesis is correct, we predict that:

(1) Analyses of the non-coding subset of the Prum et al. [12] data matrix will yield trees
with a “non-coding-type” topology (Figure 1A).

(2) Analyses of the coding subset of the Prum et al. [12] data matrix will yield trees with
a “coding-type” topology (Figure 1B). The basis for the first prediction is straight-
forward, but the second may seem trivial. After all, it seems likely that analysis of
the Prum coding subset will yield a tree similar to the published Prum tree because
the complete matrix is 80% coding data. However, it is possible that excluding the
non-coding data could alter the topology in various ways. Thus, it is important to
examine both predictions empirically.

There is a third prediction that could also be made. Reddy et al. [13] hypothesized that
the non-coding trees were closer to the true evolutionary history of Neoaves based on two
observations: (1) the non-coding cluster includes trees based on rare genomic changes (e.g.,
the transposable element insertion tree from Suh et al. [32]), which are a distinct source
of phylogenetic information; and (2) coding data exhibit greater variation in GC-content
(guanine-cytosine content) among taxa than non-coding data, violating the assumptions of
the time-reversible models used in most maximum-likelihood (ML) and Bayesian analyses
of phylogeny. The second point allows us to predict that analytical methods that limit the
impact of variation in base composition on phylogenetic estimation will yield coding exon
trees that are more congruent with non-coding trees.

Here we perform a direct test of the data type effects hypothesis for the base of Neoaves
by conducting phylogenetic analyses of the coding and non-coding subsets of the Prum data
matrix. More specifically, we examined the first two predictions by conducting analyses of
concatenated nucleotide data. To test the third prediction, we recoded nucleotide sequences
for the coding subset as purines (R) and pyrimidines (Y). This approach, called RY coding,
is a simple method that limits the impact of base compositional variation [24,33]. To extend
these results into the multispecies coalescent framework, we used ASTRAL [34] to estimate
the species tree by combining gene trees. However, we used gene trees that were estimated
using the original nucleotide alignments and alignments subjected to RY coding of the
data. Finally, we discuss the implications of our results for the theory and practice of
phylogenomics and for the tree topology at the base of Neoaves.

2. Methods
2.1. Dataset Construction

We identified data types within the Prum dataset by using BLASTX [35] to search
avian proteins using all 259 of the Prum loci as queries. Then we assigned codon positions,
refined feature boundaries manually, and annotated the non-coding subsets of the loci
as introns or UTRs based on examination of gene structure. All introns annotated in this
way had the canonical GT-AG (Chambon’s rule) boundaries [36]. We considered the sites
upstream of the start codon to be 5′ UTRs and the sites downstream of the stop codon to be
3′ UTRs. This median length of UTR regions was short (175.5 nt; Additional file) so the
UTR partition should contain little or no intergenic sequences; obviously, if any intergenic
data were included in the UTR partition it would still represent non-coding data and would
not affect our results. Finally, the nine completely non-coding loci in the Prum dataset were
divided into intronic and intergenic sequences based on BLASTN searches of the chicken
genome (assembly version Gallus-gallus-5.0). We exported various subsets of each locus
(first, second, and third positions of coding exons, the intronic sequences, and the UTR
sequences) using PAUP* 4.0a167 (https://paup.phylosolutions.com). Although most loci
included more than one data type (Supplementary File S1), the nine non-coding loci were
limited to a single data type (six were intronic and three were intergenic sequences) so
they were used without modification. Then all subsets were concatenated into a single
nexus file [37] with charsets for each data type within each locus. The complete dataset

https://paup.phylosolutions.com
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and alignments of individual loci (also in nexus format with charsets for the data types)
are available in Supplementary File S2.

Our annotated and modified version of the Prum dataset comprises 394,462 base
pairs (bp) of aligned data. Although most of the alignment corresponds to coding exons,
64,147 bp of aligned non-coding data, most of which were intronic, were also present
(Figure 2). Thus, the Prum dataset actually includes more non-coding data than the Hackett
et al. [6] dataset (which comprises 19 loci and ~32,000 bp of aligned data). We view this as
important because Hackett et al. [6] was the first analysis of deep avian phylogeny where
the topology was robust to single gene jackknifing (i.e., conducting analyses after excluding
each individual locus). We interpret that result as evidence that the Hackett dataset is
large enough to provide meaningful information about challenging branches at the base
of Neoaves. The relatively high proportion of informative sites in the various non-coding
partitions (Figure 2) provides further reason to believe that we will be able to obtain useful
estimates of avian phylogeny from both the coding and the non-coding subsets of the Prum
dataset.

Figure 2. Nucleotide sequence variation in the Prum data matrix. These graphs emphasize the
much larger number of aligned coding sites but also the larger proportion of informative sites in the
non-coding data. Note the different y-axis scales for the two graphs. Detailed information about the
number of sites in each data partition are available in Supplementary File S1.

2.2. Analysis of Base Composition

We examined base composition for all subsets of the data using the statefreq option
in PAUP*. Base composition was examined separately for the invariant sites and the
parsimony informative sites (i.e., sites with the potential to unite at least two taxa). To
examine variation in base composition, we extracted the proportions of A, C, G, and T
from the PAUP* statefreq output for each taxon and calculated the interquartile range
for the three axes of variation in nucleotide composition space: (1) the RY axis (i.e., the
purine- pyrimidine or AG-CT axis); (2) the SW axis (i.e., the strong-weak or GC-AT axis);
and (3) the KM axis (i.e., the keto-amino or GT-AC axis). We calculated base composition
for each taxon using the binary-coded informative sites, which we defined as those sites
that remain informative after recoding the nucleotide data as binary characters (e.g., RY
informative characters are those sites that would be informative after RY coding). We
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identified generated binary datasets (RY, SW, and KM) using a Perl program available from
https://github.com/ebraun68/RYcode.

2.3. Phylogenetic Analyses

We used IQ-TREE v. 2.0.6 [38] for all ML analyses. We used -m TEST to identify the
best-fitting model in the unpartitioned analyses and -m TESTMERGE [39] to identify the
best partitioning scheme and the best model for each merged partition. We began with
998 initial partitions for the complete dataset: 750 initial partitions for the coding exons
(250 loci, with 3 codon positions per locus), and 248 initial partitions for non-coding data
(Supplementary File S2). We assessed clade support using the ultrafast bootstrap [40]
values (calculated using 1000 replicates).

We used ASTRAL-III [34] for analyses in the multispecies coalescent (gene tree-species
tree) framework. We used complete genes for this analysis, without separation into coding
and non-coding regions. This maintained each “gene” as a single locus within the genome
and resulted in datasets that were of sufficient size to yield reasonable gene tree estimates.
Gene trees were estimated by IQ-TREE using -m TEST to identify the best-fitting model
and the –polytomy option to collapse very short (i.e., effectively zero length) branches.
We used two sets of estimated gene trees: (1) trees generated using standard nucleotide
models; and (2) trees for RY data generated using two-state models (i.e., the Cavender-
Farris-Neyman model [41–43] and its unequal state frequency extension, which are called
JC2 and GTR2 in IQ-TREE). We assessed clade support in the ASTRAL tree using local
posterior probabilities [44].

We compared tree topologies by calculating matching distances [45,46] using PAUP*
and then clustering trees by neighbor joining [47] of those tree-to-tree distances (this
allowed us to visualize treespace in the same way as Reddy et al. [13]). We conducted this
topological clustering analysis in two ways: (1) using the matching distances among the
ML trees; and (2) using the matching distances among ML trees with branches with ≤50%
support collapsed. We used AfterPhylo.pl (available from https://github.com/qiyunzhu/
AfterPhylo) to collapses the low support branches.

3. Results
3.1. Base Composition and the Impact of RY Coding

The coding exons in the Prum dataset are more GC-rich than the non-coding data
(48.3% GC for the coding exons vs. 39.7% GC for the non-coding data). However, the
base composition of the various data types is much more complex than implied by this
straightforward difference in GC-content (Table 1). The base composition of invariant sites
in each data type differed from the composition of informative sites. This was particularly
apparent in the 2nd and 3rd codon positions, but very minor for the non-coding data.
Differences in the base composition of invariant vs. informative sites are not expected
given the assumptions for most models of sequence evolution used for phylogenetic
analyses. We also observed substantial differences in base composition among the loci and
among the codon positions and non-coding data types within loci (i.e., the introns and
UTRs) (Supplementary File S1).

Table 1. Base composition for invariant and parsimony informative sites in the Prum data matrix. UTR—untranslated region.

Data Type Sites %A %C %G %T %GC

Coding data
Exon c1 Invariant 29.6 21.1 31.4 17.9 52.5

Informative 31.0 26.4 24.7 17.9 51.1
Exon c2 Invariant 33.3 23.7 15.9 27.0 39.6

Informative 31.0 29.1 22.4 17.5 51.5
Exon c3 Invariant 17.0 21.6 43.4 17.9 65.0

Informative 23.8 26.0 22.4 27.8 48.4
Non-coding data

https://github.com/ebraun68/RYcode
https://github.com/qiyunzhu/AfterPhylo
https://github.com/qiyunzhu/AfterPhylo


Birds 2021, 2 7

Table 1. Cont.

Data Type Sites %A %C %G %T %GC

Intron Invariant 29.0 14.6 21.7 34.7 36.3
Informative 26.4 19.9 20.5 33.2 40.4

UTR Invariant 26.6 16.4 20.3 36.6 36.7
Informative 29.1 19.4 22.0 29.5 41.4

Intergenic Invariant 31.3 18.8 22.0 27.8 40.8
Informative 30.2 20.8 21.3 27.6 42.1

There were also striking differences in the among taxon patterns of base composi-
tional variation (Table 2). The data type with the greatest variation among taxa in base
compositional variation was actually the non-coding intergenic regions, though there were
very few intergenic loci and so limited number of base pairs (Table 2), making it difficult
to interpret this result. If we limit consideration to better sampled data types, it was clear
that introns exhibited the least base compositional variation among taxa, and 3rd codon
positions exhibited the greatest variation. Overall, base compositional variation along the
SW axis was three to eight times greater than variation along the other two axes (Table 2).
Within an axis, there was limited variation among most data types along the RY or KM
axes (excluding the poorly sampled intergenic partition); however, for the SW axis, there
was about four-fold variation among data types (Table 2). The phylogenetic models that
are practical for large-scale studies assume that base composition remains constant over
time (in expectation) so this variation among taxa may be problematic for phylogenetic
estimation. We examined the impact of RY coding because the variation evident in the
Prum dataset, particularly along the SW axis, violates the assumptions of models of DNA
evolution. RY coding, which converts purines (A and G) to R, and pyrimidines (C and T)
to Y, should eliminate any variation along the SW (and the KM) axis, so it is expected to
improve estimates of phylogeny in cases where among taxa base composition is highly
variable, such as we observed in the coding data. However, RY coding also reduces the
number of informative sites (Table 2); thus, RY coding also has the potential to reduce the
power of phylogenetic estimation.

Table 2. Variation in base composition for the Prum data matrix.

RY (AG-CT) SW (GC-AT) KM (GT-AC)

Data Type Inf Sites 1 Variation 2 Inf Sites 1 Variation 2 Inf Sites 1 Variation 2

Coding exons
Exon c1 11,374 0.39% 23,325 1.29% 21,170 0.37%
Exon c2 6958 0.32% 13,774 1.17% 14,531 0.35%
Exon c3 37,673 0.56% 87,299 2.56% 87,755 0.32%
Non-coding data
Introns 22,510 0.25% 31,014 0.73% 30,780 0.29%
UTRs 7654 0.40% 12,522 1.23% 12,383 0.32%
Intergenic 310 1.90% 648 3.24% 638 1.28%

1 Number of sites that remain parsimony informative after nucleotides are coded as R (purine) and Y (pyrimidine), S (strongly pairing), and
W (weakly pairing), or K (keto) and M (amino). 2 Interquartile range for the composition of all taxa (see Supplementary File S1 for details).

3.2. Different Data Types within the Prum Dataset Yield Distinct Topologies

To determine whether we could find evidence for data type effects within the Prum
dataset, we analyzed three different concatenated matrices (all sites, coding exons, and
non-coding data) using three analytical approaches (unpartitioned ML, partitioned ML,
and ML analysis after RY coding). Five members of the magnificent seven were present
in all trees, often with complete (100%) support (Figure 3A; see Figures 4 and 5 and the
complete trees showing all species in Supplementary File S3). Although the levels of
support varied, the results for the coding and non-coding indicator clades were clear
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(Figure 3A). First, all trees based on the non-coding data included at least one, and usually
both, non-coding indicator clades (Figure 3A). Second, trees based on nucleotide analyses
of the complete dataset and the coding exon data always included one or more coding
indicator clades (Figure 3A). Finally, RY analyses of the complete dataset and the coding
exons yielded trees with non-coding indicator clades (Figure 3A). Clustering trees using
topological distances (Figure 3B) revealed that the trees based on analyses of non-coding
nucleotide sequence data clustered within the trees based on analyses conducted after RY
coding. The all data and coding exon tree were placed on other side the midpoint root from
the non-coding and RY trees. The basic structure of this “tree-of-trees” remained when
the most poorly supported branches (those with ≤50% support) were collapsed to form
polytomies, although the all data and coding exon RY trees were closer to the partitioned
and unpartitioned non-coding trees (Supplementary Figure S1). This clustering analysis
complements the examination of indicator clades since the tree-to-tree distances reflect all
branches. Both of these analyses (presence/absence of indicator clades and tree clustering)
yielded data consistent with our three predictions, corroborating the data type hypothesis
for the base of Neoaves.

Figure 3. Analyses of coding and non-coding data result in different conclusions. (A) Recovery of the magnificent seven
clades and indicator clades, with ultrafast bootstrap support values for each clade presented in cells (colored as shown
in the key). The positions of clades VI and VII have varied in previous analyses of non-coding data so we viewed both
alternatives as potential non-coding indicators and indicated them using two shades of blue (for successive divergences)
and dark cyan (VI and VII united as the clade Columbea). Note: “raptors sister” indicates the clade comprising all core
landbirds except raptors. The different colors (red and orange) for the extended waterbird clade reflect the composition of
that clade (orange reflects inclusion of Hoatzin). (B) Clustering of trees based on matching distances. The position of the
midpoint is indicated using a dashed arrow. Trees from this study are presented in bold to distinguish them from the two
concatenated trees from the original Prum et al. [12] study. This “tree-of-trees” is based on fully resolved trees; a cluster
analysis for trees with very poorly supported branches collapsed is available as Supplementary Figure S1.
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Although the overall pattern was clear, there was additional complexity in the tree
topologies (Figures 4 and 5). We expected coding exon indicator clades to be present
in trees based on analyses of nucleotide sequences for all sites and for the coding exons
alone; instead, only one indicator clade (clade P1, which comprises all Neoaves except
clade V) was present in all four trees of the trees expected to exhibit a “coding-type”
topology. The extended waterbird clade was only present in the unpartitioned analysis
of all data (Figure 4A), although the partitioned analysis of all data placed Hoatzin in a
larger clade that included all “extended waterbirds” (Figure 4B). We recovered the “raptors
sister” topology (i.e., a clade of all non-raptorial landbirds nested within a paraphyletic
assemblage of raptors) in the unpartitioned analysis of coding exons (Figure 4D). In contrast,
all other analyses of nucleotide data for the complete dataset and the coding exons placed
Accipitrimorphae (hawks, eagles, and vultures) sister to all other landbirds, placing owls
and falcons elsewhere.

Figure 4. Cont.
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Figure 4. Estimates of phylogeny for all sites in the Prum dataset and for the coding exon data, with terminals labels
using the common names of orders. The first three cladograms reflect analyses of the complete data matrix (A) without
partitioning, (B) with partitioning, and (C) after RY coding. The last three reflect analyses restricted to the coding exons (D)
without partitioning, (E) with partitioning, and (F) after RY coding. The magnificent seven are emphasized using the same
color scheme as Figure 1 and brackets to the right of the tree. Paraphyletic groups (e.g., Columbea in part (C) of this figure)
are indicated using dashed brackets. The trees based on nucleotide data are in a red box to indicate that one or more coding
indicator clades are present whereas the RY trees are in a blue box to emphasize that they include non-coding indicator
clades. Ultrafast bootstrap support values are presented adjacent to branches. Unlabeled branches received 100% support.
Complete trees, showing all species, with branch lengths and support values are in Supplementary File S3.
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Figure 5. Estimates of phylogeny for the non-coding data. Ultrafast bootstrap support values are shown adjacent to relevant
branches; the first value reflects the unpartitioned analysis and the second reflects the partitioned analysis. Branches with
full (100%) support are blank. The unpartitioned and partitioned trees differed within clade V, although the rearranged
branch had limited supported in both analyses. Complete trees, showing all species, including the non-coding RY tree, with
branch lengths and support values are in Supplementary File S3.

RY coding had a major impact on the analyses of all data and coding exons; after RY
coding, both supported Passerea (Figures 3 and 4C,F). However, these two trees differed
in the sister group(s) of Passerea. RY analysis of all data placed clade VII sister to clade
VI plus Passerea (Figure 4C) whereas RY analysis of coding exons yielded Columbea (the
larger clade comprising both clades VI and VII; Figure 4F) as sister to Passerea.

All non-coding nucleotide trees placed clade VII (flamingos and grebes) sister to
Clade VI plus Passerea (Figures 3 and 5), like the RY analyses with the complete dataset
(Figure 4C). None of the non-coding trees (Figure 5 and Additional file) recovered clade
J3N, corroborating our decision to exclude that clade from the data type indicators. The
RY non-coding tree differed from the other analyses of non-coding data in that it did not
include Passerea (Figure 3). Instead, clade VII and doves were successive sister groups to
the remaining Neoaves and a mesite + sandgrouse clade shifted to an alternative position
sister to shorebirds (Additional file). We attribute this to the reduction in the number
of informative sites associated with RY coding. Since the more limited variation in base
composition for non-coding sites (Table 2) removes the compelling reason to conduct RY
analyses of the non-coding data, we do not view that tree as particularly informative.
Despite some complexities these results show that data type effects can be detected within
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the Prum dataset (i.e., the evidence for data type effects in the Reddy et al. [13] is not
specific to the loci and taxa in that study).

Moving away from the indicator clades, all members of the magnificent seven except
clade IV were recovered in our analyses (with the exception of the non-coding RY tree,
which, as noted above, has a limited number of informative sites). Since the magnificent
seven reflect a comparison of trees from Jarvis, Prum, and Reddy, their recovery is un-
surprising for the analyses of all sites. The recovery of six members of the magnificent
seven in analyses of both the coding and non-coding subsets of the Prum data emphasizes
that those lineages are data type independent. Failure to recover clade IV almost always
reflected shifts in the position of turacos; a bustard + cuckoo clade was present and strongly
supported in almost all trees (the only exception is the RY non-coding tree; Additional file).
Turacos were sister to gruiforms (cranes and rails) with relatively high (>80%) support in
both analyses of non-coding nucleotide data (Figure 5); Reddy et al. [13] using a mostly
non-coding dataset also placed turacos sister to gruiforms. On the other hand, clade IV
actually did receive appreciable support in RY analyses of the all sites and coding exon
datasets (Figure 4C,F). Taken as a whole, these results further corroborated six of the
magnificent seven clades and raised questions about clade IV and its sensitivity to data
type.

One question might be whether those clades that are sensitive to data types exhibit
some similar characteristics, such as elevated (long branches) or slowed (short branches)
rates of evolution that might help identify factors driving the differences. All analyses
revealed substantial branch length heterogeneity (Figure 6 and Supplementary File S3).
The aspect of the branch lengths most relevant to this discussion is the distance from the
root of Neoaves to the tip for each taxon. All taxa had similar root-to-tip branch lengths
regardless of data type for all data types. There were no clear patterns for the branch
length heterogeneity of groups involved in the topological differences between coding
and non-coding data (Figure 1). The possible exception to that statement might be the
raptorial landbirds which are all characterized by shorter branches than the remaining
landbirds. However, overall, the absence of patterns for other clades suggests rates of
evolution cannot underlie the differences among data types.
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Figure 6. Patterns of branch length heterogeneity across taxa are similar for the coding exons and non-coding data. These
phylograms reflect partitioned maximum-likelihood (ML) analyses of (A) non-coding data and (B) coding exons. Scale bars
represent substitutions per site. The magnificent seven and the orphan orders are indicated using the same color scheme
and, wherever feasible, with brackets to the right of the tree. When there was not sufficient space for brackets, we used
arrows. We simply presented the number or name of the taxon. We removed the crocodilian outgroup to better emphasize
heterogeneity within birds. Raptors I = falcons and seriemas; Raptors II = hawks, eagles, New World vultures, and owls.
The complete set of trees is available in Supplementary File S3.

3.3. RY Coding also Affects Species Tree Analyses

Prum et al. [12] also estimated avian phylogeny using several multispecies coalescent
(“species tree”) methods, such as ASTRAL. Given the increased congruence between the
non-coding trees and the trees estimated with RY coding, we compared the performance of
ASTRAL with and without RY-coding before estimating gene trees. Both ASTRAL trees
had limited support, but RY coding had a substantial impact on the ASTRAL tree topology
(Figure 7). The ASTRAL tree based on gene trees estimated using nucleotide sequences
(the “ASTRAL NT” tree) was especially unusual in that it placed core landbirds sister to all
other Neoaves (Figure 7A), in contrast to all other analyses (including species tree analyses
in prior studies [8,11,15,34]). The ASTRAL NT tree also included the extended waterbird
clade and exhibited the “raptors sister” landbird topology. In contrast, the ASTRAL RY tree
(Figure 7B) was more congruent with our non-coding analyses. In particular, it placed clade
VII sister to all other Neoaves (which, beyond being a non-coding indicator clade, also
renders the extended waterbird clade non-monophyletic). RY coding also had an impact
on raptor topology, with falcons and seriemas shifting to a position closer to the parrots
and passerines (as found in other studies that use large datasets [6,7,11,48]). However,
the limited support evident in both ASTRAL trees in this study suggests that the number
of loci in the Prum dataset is not sufficient to recover an accurate estimate of deep avian
phylogeny. Thus, we did not subdivide each locus into coding and non-coding subsets
(which would reduce the size of each locus as well as the number of loci). Nevertheless,
this provides evidence that RY coding has an impact on species tree analyses similar to its
impact on analyses of concatenated data.
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Figure 7. Species trees estimated using ASTRAL. The trees were generated using input gene trees estimated using (A)
nucleotide data or (B) RY data. Support values are local posterior probabilities multiplied by 100 (to increase readability).
These trees are available in Supplementary File S3.

4. Discussion

These analyses corroborated all three of the predictions that we made based on the
data type hypothesis for neoavian phylogeny [13]. First, we predicted that analyses of the
non-coding subset of the Prum dataset would yield trees with non-coding indicator clades.
Second, we predicted that analyses of the coding subset of the Prum dataset would yield a
tree with coding indicator clades. We believed it was likely that we would support this
prediction given that the original Prum data matrix was mostly coding exons; as expected,
the coding sequence indicator clade P1 was present in the coding exon trees estimated
using nucleotide data. However, our prediction was further corroborated by the fact that
unpartitioned analyses of coding data yielded a tree that was more congruent with the
Jarvis et al. [11] exon trees (due to the placement of raptorial taxa) than in analyses of the
complete dataset. On the other hand, neither analysis of the coding exon data recovered the
extended waterbird clade, emphasizing the complexity of efforts to identify indicator clades.
Finally, we predicted that analyzing coding data after re-coding nucleotides as purines (R)
and pyrimidines (Y) would yield trees closer to the non-coding trees. Although we did not
make an explicit prediction regarding the performance of multispecies coalescent methods,
we also observed that the estimate of the avian species tree obtained by combining ASTRAL
with RY-coding was more congruent with trees based on non-coding data. These results
have important implications for the theory and practice of phylogenomics as well as for
our understanding of deep avian phylogeny.

4.1. The Role of Data Types in Phylogenomic Analyses

For this study, we defined data type effects in a simple and empirical manner: data
type effects are those cases where phylogenetic analyses of distinct subsets of the genome
defined using non-phylogenetic criteria (e.g., structural or functional criteria) yield different
results [1,13,24,49]. It is necessary to restrict consideration to data types dispersed across
the genome so discordant histories for individual genes [50,51] do not obscure the data type
dependence (if it exists). As long as the sample of loci is large enough and they are sampled
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from many genomic locations the expected set of discordant gene histories should be fairly
similar for all data types. There might be some differences in the expected gene tree spectra
due to Hill-Robertson effects [52] if the average strength of selection on each data type
differs. However, those effects are unlikely to have an impact on this study because we
analyzed tightly linked coding and non-coding regions. Almost all sequenced regions
contained both coding and non-coding sequences (204 loci included both data types) and
the median length of each sequenced region was 1634 bp (Supplementary File S1) and
therefore likely have the same histories (or very similar histories if there is intralocus
recombination). The tight linkage between coding and non-coding in the Prum dataset
makes this study an excellent complement to Reddy et al. [13], which compared trees
estimated using unlinked coding and non-coding data. When the evidence for data type
effects in this study is combined with the results of Reddy et al. [13] and Jarvis et al. [11],
they provide strong evidence that the important variable is the data types and not any
idiosyncratic features of specific genomic regions in each study or different gene histories.

Data type effects have been described in a number of studies, though the nature of the
effects range from those that are quite subtle [49,53] to much stronger effects [11,13,18–23].
Some reported examples of data type effects reflect analyses of the same coding regions as
nucleotides and after translation to amino acids [18,54–56]. Although those studied can be
viewed as data type effects we believe that data type effects involving analysis of sequences
that represent distinct sources of genomic information, such as coding vs. non-coding
data [13,19], or sites in different protein structural environments [24] represent a more
compelling case. One thing that makes the case for birds being unusual is the evidence for
relatively consistent data type effects across multiple studies that use datasets with little or
no overlap in the exact dataset (in addition to this study, data type effects are evident Jarvis
et al. [11] and Reddy et al. [13]). Understanding whether a putative data type effect is truly
genome-wide (as with birds) or simply an idiosyncratic feature of a specific dataset and
taxon sample will be very important in future studies.

The central role of models should be obvious from our results; analyses of the coding
exons in the Prum dataset after RY coding resulted in trees that were much more congruent
with analyses of the non-coding subset of the Prum data using “standard” models of
nucleotide evolution (by standard models we mean the GTR+I+Γ model and its sub-
models). Other empirical analyses have shown that RY coding can improve the behavior
of phylogenetic analyses judged by congruence with other lines of evidence [18,57–59],
and the improved behavior of analyses conducted after RY coding is thought to reflect
the amelioration of biases due to variation in base composition [33]. Given the observed
variation along the SW axis for the coding data, it is likely that RY coding ameliorated
base composition differences that violated the evolutionary models used in our analyses
as well. However, the use of RY coding also has costs: it reduces the number of character
states from four to two and makes many informative sites invariant—collectively this leads
to datasets that have greatly reduced power for phylogenetic estimation. Recoding data
can lead to positively misleading signals under some circumstances [60] and some unique
characteristics of our RY trees might reflect that positively misleading signal. However, the
observation that the non-coding trees and the RY trees for all data and coding exons are
more congruent than the non-coding trees and the nucleotide trees for all data and coding
exons (Figure 3B and Supplementary Figure S1) is not consistent with the hypothesis that
analyses of RY data are biased. Models of evolution that can accommodate variation in
base composition have been developed [61,62], but they are not practical for analyses of
large datasets. Practical methods to analyze large datasets using models of nucleotide
evolution that accommodate variation in base composition will be critical to establish the
nature of the data type effects we observed and to further resolve the avian tree of life.
Regardless, the analyses reported herein documented the existence of data type effects,
and further suggested that those may be driven, at least in part, by variation among taxa in
the base composition of coding exons.
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Partitioning, which is known to improve model fit by assigning distinct models for
different subsets of the data [63,64], also affected our results. For analyses of the coding data,
the partitioned topology only had one coding indicator clade. The impact of partitioning is
especially clear in Figure 3B, where the distance between the partitioned and unpartitioned
trees estimated using either coding data or all data is relatively large but the distance
between the partitioned and unpartitioned trees for non-coding data is very small. It is
unclear whether this is primarily due to better modeling of the compositional heterogeneity
of the coding data (Table 1) or other aspects of the coding data. However, we also found
that, in general, support values in the partitioned analyses of non-coding data were lower
than for the unpartitioned topology. It seems reasonable to postulate that partitioning may
be especially important for highly heterogeneous datasets (like coding data) but it is not
especially advantageous for more homogeneous datasets (like non-coding data).

Efforts to improve models should also incorporate the multispecies coalescent. In this
study we found that RY coding had a major impact on ASTRAL analyses. However, we
felt that it was impractical to subdivide loci before generating gene trees to conduct a direct
test because the reduced number of nucleotides after loci were split would inflate gene
tree estimation error [65–67]. Likewise, the reduced number of informative sites per locus
after RY coding could also inflate gene tree estimation error. In that sense it is perhaps
surprising that any effect of RY coding was evident in our ASTRAL analyses. The increased
congruence between the ASTRAL RY tree and the coding RY trees (Figure 4C,F) and the
non-coding trees (Figure 5) probably reflects the amelioration of bias; gene tree estimation
error combined with the use of only 259 loci probably explains the limited support in
the ASTRAL trees. Further exploration of this question will probably require the use of
methods to ameliorate bias that do not eliminate as much phylogenetic information as RY
coding combined with the use of a larger number of loci.

4.2. Implications for Avian Phylogeny

The magnificent seven clades were defined based on comparisons of the Jarvis, Prum,
and Reddy trees, so it is unsurprising that reanalyses of the complete Prum dataset also
recovered most of these clades, and that they were robust to data type and model selection
(e.g., unpartitioned, partitioned, or RY coding). We view the observation that support for
Passerea, a non-coding indicator clade, emerged in analyses of the complete Prum dataset
and in analyses of the Prum coding data after RY coding as further evidence that Passerea
is likely present in the true avian species tree. However, the inconsistent relationships
for clades VI and VII in this study and prior studies raise questions about monophyly
of Columbea. Columbea emerged in the Jarvis “TENT” topology (the primary tree in
Jarvis et al. [11]) and the Jarvis intron trees as well as the Reddy et al. [13] and Houde
et al. [15] trees. However, the Jarvis UCE tree and the Kuhl et al. [16] tree both placed
clade VII sister to all other Neoaves; indeed, the Jarvis UCE tree placed clades VI and VII
as successive sister groups of Passerea just like the all sites RY tree (Figure 4C) and the
non-coding trees (Figure 5) in this study. Thus, we view six of the magnificent seven to
be strongly corroborated. When combined with the evidence for Passerea, a relatively
resolved topology for Neoaves is apparent (Figure 8A), even if the relationship between
clades VI and VII remains to be resolved.
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Figure 8. Consensus hypotheses for avian phylogeny and alternative topologies for core landbirds. (A) Cladogram based
on a summary of the analyses presented herein. Clade IV was collapsed to emphasize the uncertainty and lineage with the
potential for gene flow are indicated using ovals with double-headed arrows (see text for additional details). Formal clade
names for the magnificent seven are provided in the legend to Figure 1. (B) Landbird topology that divides core landbirds
into Australaves [26] and Afroaves [68]. (C) Landbird topology placing Accipitrimorphae (hawks, eagles, and New World
vultures) sister to other core landbirds. (D) Landbird topology based on multispecies coalescent analyses (e.g., Figure 7 in
this study and the species tree analyses in Jarvis et al. [11] and Houde et al. [15]). Although the position of mousebirds is
unstable in this and some other studies [7,9], we have placed them in a manner consistent with analyses of the complete
Prum dataset (and other studies [11,13,15,16]) to simplify this illustration.

The absence of clade IV in some analyses may reflect the underlying evolution-
ary history. Although clade IV is present in some trees generated by analyses of large
datasets [11,12,15], other large-scale studies [13,16,32] have failed to recover clade IV. There
are two explanations for the conflict regarding the recovery of clade IV. First, the size of the
datasets used to examine the early evolution of Neoaves might be insufficient support or
refute monophyly for the putative members of clade IV. This may seem surprising given
the use of whole genome datasets to resolve avian phylogeny [11], but asserting that the
monophyly of clade IV is undecidable using the available data (and methods) is actually
no different from asserting that relationships among the magnificent seven and the orphan
orders cannot be decided. Second, conflicts among studies could reflect bias, such as long-
branch attraction or some other positively misleading signal. The strongest support for
clade IV emerges in Jarvis et al. [11] and Houde et al. [15], which used a small taxon sample
and might therefore be more susceptible to bias. Indeed, the clade comprising turacos +
Gruiformes found in analyses of the Prum non-coding data (Figure 5) is congruent with
the Reddy et al. [13] tree; since the datasets used to estimate those trees are largely (or
completely) non-coding and they both have extensive taxon sampling, it is tempting to
assert that clade IV could reflect bias (perhaps even a data type bias). Overall, we feel that
the results of this study have weakened the case for clade IV (though cuckoos and bustards
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consistently formed a clade) and we therefore collapse it to form a “soft” polytomy (i.e., a
statement of uncertainty) in our summary tree (Figure 8A).

Abandoning the assumption of a strictly bifurcating topology provides a third expla-
nation for the conflicts regarding the recovery of clade IV: ancient gene flow involving
the early stem lineages of one or more putative members of clade IV and other lineages.
Perhaps the turacos + Gruiformes clade recovered in analyses of the Prum non-coding
data (Figure 5) and in Reddy et al. [13] simply reflects gene flow between those lineages.
Likewise, the fact that a doves + cuckoos clade recovered in analyses of coding data [11],
UTRs [16], and transposable element insertions [32] could reflect gene flow involving those
lineages. The hypothesis that ancient gene flow among neoavian stem lineages has an
impact phylogenetic estimation could also explain the observation that clades IV and VI
exhibit higher indel discordance than expected given the length of the branches uniting
those clades [69]. Houde et al. [69] interpreted the apparent elevation of indel discordance
reflected incomplete lineage sorting and hypothesized that a transient increase in the ef-
fective population size led to a period of increased incomplete lineage sorting. However,
introgression would also lead to elevated indel discordance. Gene flow among the early
stem lineages of turacos, gruiforms, doves, and cuckoos is plausible given the very short
branches at the base of Neoaves in timetrees [11,12,70–72]. Perhaps the conflicts evident for
clade IV in this and other large-scale studies of avian phylogeny (and the conflicts evident
for clade VI in other studies) represent the recovery of signals due to different histories that
cannot be explained using the multispecies coalescent alone.

The other part of the bird tree where these analyses provide insights is the base of
the core landbirds. The hypothesis that most raptorial landbirds form a paraphyletic
assemblage at the base of core landbirds (e.g., the 1st and 2nd codon position exon tree
from Jarvis et al. [11] and Figure 3B from this study) can probably be rejected. Instead,
the majority of recent analyses [6,8,11,13,16] favor a topology that divides raptors (and
core landbirds overall) into two major clades (Australaves and Afroaves [26,68]), each
of which has two raptorial lineages at their base (Figure 8B). However, two alternatives
to the Australaves/Afroaves topology have also emerged in analyses of large datasets.
One splits raptors into four independent lineages, placing hawks, eagles, and New World
vultures sister to the remaining core landbirds (Figure 8C); this topology was found in
our analyses of the complete Prum dataset and in the partitioned analysis of coding data
(as well as the multispecies coalescent tree in Kimball et al. [8] and the original Prum
et al. [12] analyses). The third possibility divides raptors into three major clades, a “core”
raptorial clade at the base of landbirds and separate lineages for seriemas and falcons
within Australaves (Figure 8D). The third topology only emerged in our ASTRAL RY
tree (Figure 7B), albeit with limited support. It is also evident (and strongly supported)
in species tree analyses of non-coding data and combined coding and non-coding data
in other studies [11,15,34]. However, there is still much to learn regarding the impact
of the multispecies coalescent on phylogenetic analyses (reviewed by [73]), so it seems
inappropriate to reject any of these three hypotheses at this time. Additionally, the position
of mousebirds is also unclear [7,9,17,74]. Thus, at this point, the topology of some of the
deepest branches within core landbirds is one of the major uncertainties remaining in deep
avian phylogeny, although we stress that it is clear that the community has made major
strides toward resolving many relationships within Neoaves.

5. Conclusions

We believe that these new analyses of the Prum dataset provide answers to the
two fundamental questions posed by Pittman et al. [25]. First, the sister group of the
remaining Neoaves is likely to be either clade VII (flamingos and grebes) or clades VI
and VII (flamingos, grebes, doves, mesites, and sandgrouse). Regardless of the exact
position of the root of Neoaves, our results corroborate monophyly of Passerea [11], the
clade comprising all Neoaves except the members of clades VI and VII. Second, a clade
comprising the majority of aquatic orders is unlikely to exist. Moving beyond those two
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specific questions, we corroborated six of the “magnificent seven” superordinal lineages
proposed by Reddy et al. [13] but raised questions about the seventh (clade IV). The
fact that clade IV is recovered in some large-scale phylogenetic studies but not in others
could reflect currently unappreciated analytical biases or it might reflect ancient gene flow.
Future studies should explore these areas of uncertainties, as well as relationships among
major groupings within the core landbirds (clade I). More broadly, the possibility that
introgression has had an impact on the early evolution of major groups, like Neoaves,
should receive more attention. Regardless of whether one considers bifurcating trees or
networks, we believe that understanding the behavior of analyses when they are applied
to different data types will be critical for efforts to examine rapid radiations deep in
evolutionary time. In that context, we expect expanded data collection, especially whole
genome sequencing [75,76], to play a central role in efforts to resolve the tree of life by
providing more data and by expanding the types of data that can be analyzed (e.g., by
providing more intergenic data and possibly by providing additional ways to subdivide
the data). However, improved models of sequence evolution are likely to be the most
critical ingredient for efforts to improve phylogenomic analyses; the simple approach of RY
coding would ideally be replaced by much more “biologically realistic” models, assuming
those analyses can be implemented in a computationally efficient manner. Only then will a
truly convincing phylogeny of birds (and other groups in the tree of life) emerge.
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