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Abstract: Leveraging advancements in metabolomics and other cutting-edge technologies, precision
neuronutrition aims to identify personalized nutrient requirements to optimize brain health outcomes
and prevent neurological disorders. The main pathological mechanisms of brain health disruption
include neuroinflammation, oxidative stress, gut–brain disturbances and nutrient deficiencies. Re-
cent studies have identified biological markers for all those mechanisms. Precision interventions
for maintaining brain health and optimizing outcomes include omega-3 fatty acids, vitamin B12,
vitamin D, magnesium, coenzyme q10, polyphenols, l-carnitine, prebiotics and probiotics. Preci-
sion neuronutrition offers a promising approach to optimizing brain health through personalized
nutrient interventions. Continued research in this field holds great potential for improving brain
health outcomes.
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1. Introduction

According to WHO experts, brain health is the state of proper cognitive, sensory,
socio-emotional, behavioral and motor functioning, allowing a person to reach their full
potential throughout time, regardless of presence or absence of disorders [1]. In the con-
text of brain health optimization, a number of researchers [2,3] call for attention to the
developing field of neuroscience–nutritional cognitive neuroscience. This scientific branch
aims to investigate how nutrition impacts the brain’s development, overall well-being,
and the aging process [4,5]. Recently, the term neuronutrition has been used actively [6,7].
Neuronutrition is an interdisciplinary field studying the influence of various aspects of
nutrition on brain health, neurological disease prevention and treatment throughout life.
The brain requires specific nutrients to maintain its structural integrity, support cognitive
processes, and protect against neurodegenerative diseases [8]. Assessing brain health objec-
tively is a crucial challenge in neuroscience, particularly in detecting and diagnosing early
neurocognitive changes, including those caused by nutritional deficiencies [9]. Precision
neuronutrition aims to identify personalized nutrient requirements to optimize brain health
outcomes and prevent neurological disorders [10,11].

2. Brain Health Status

Biomarkers indicative of brain health status reflect neuroinflammation, oxidative
stress, gut–brain disturbances and nutrient deficiencies.
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2.1. Neuroinflammation

The main biomarkers of neuroinflammation are C-reactive protein, interleukin-6 and
tumor necrosis factor-alpha. Levels of these biomarkers are altered in a number of neuro-
logical diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), epilepsy
and others [12–14]. However, for a more accurate assessment of neuroinflammation, taking
into account other molecular markers, such as chemokines, microglial cytokines [15,16] and
angiogenesis factors [17], is necessary. However, assessing the degree of neuroinflammation
poses a number of difficulties, due to the complex biology of the process, and the need for
new strategies to collect and analyze relevant data [18,19].

2.2. Oxidative Stress

Oxidative stress has been proven to play a crucial part in pathogenesis of many neu-
rodegenerative diseases, including AD, PD, amyotrophic lateral sclerosis and Huntington’s
disease [20–22]. The brain is particularly vulnerable to oxidative damage, and the excessive
formation of reactive oxygen species (ROS) can lead to neuronal cell death [23]. Antioxidant
enzymes catalase and glutathione peroxidase-1 have been quantified in plasma as indica-
tors of oxidative stress [24]. F2-isoprostanes are stereoisomers of prostaglandin F2 and are
considered the most reliable markers for monitoring oxidative stress [25,26]. 8-isoprostane
is considered a marker of oxidative stress. It can be measured in various biological flu-
ids, including urine, plasma [27], saliva [28] and exhaled air condensate [29]. Advanced
oxidation protein products are the end products of the reaction between plasma albumin
and chlorinated oxidants [30], and can be measured in blood plasma [24]. Protein carbony-
lation is an oxidative transformation induced by ROS, reactive nitrogen species, reactive
halogen species and reactive aldehydes [31]. They are considered markers of oxidative
stress [25] that can be measured in blood plasma. 8-hydroxy-2′-deoxyguanosine, 8-oxo-
7,8-dihydroguanosine and malondialdehyde are also indicative of oxidative stress [32–34].
Many biomarkers associated with oxidative stress can be measured in biological samples
using standard assays [35,36]. The ability to accurately detect free radical formation in
cells and tissues is critical for the development of appropriate therapeutic antioxidant
approaches to brain health [37].

2.3. Gut–Brain Disturbances

Gut microbiota and its metabolites have been shown to play a role in pathogenesis and
progression of a number of neurological diseases through gut-brain axis regulation [38].
Short-chain fatty acids are metabolites that may affect brain function and are associated with
some neurological disorders [38]. Indoles are involved in various neurological functions
and are associated with several neurological disorders [39]. Secondary bile acids can serve
as activators of bile acid receptors in the brain, and their affinity for individual receptors
varies [40]. The gut-brain axis is a potential target for the development of new treatments
for neurological disorders, and the role of secondary bile acids in this axis is an area of active
research [41]. Serotonin, dopamine, 5-aminovaleric acid and taurine are neurotransmitters
produced by intestinal bacteria that regulate neurotransmission in the brain as well as gut
itself [42]. Liposaccharide binding protein, zonulin and claudin-3 are biomarkers reflecting
damage to the epithelial blood-gut barrier [43–45].

2.4. Nutrient Deficiencies

Nutrient deficiencies can lead to the manifestation of neuroinflammation, oxidative
stress and a wide range of neurological problems, including encephalopathy, cognitive
impairment and psychiatric disorders [42,46,47]. Deficiency is most often caused by poor
nutrition, including not eating enough calories, a lack of certain foods such as fruits and
vegetables in diets and eating disorders, and alters vitamin and mineral absorption [48,49].
Vitamin B12 deficiency is associated with cognitive impairment, polyneuropathy and
psychiatric manifestations [46]. Thiamine deficiency can cause Wernicke–Korsakoff syn-
drome [50]. Vitamin D deficiency can lead to neurological manifestations such as depres-
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sion, cognitive impairment and multiple sclerosis [51]. Magnesium deficiency has been
associated with many neurological disorders such as AD, stroke, migraine, depression and
cerebellar syndrome [52–54]. Coenzyme Q10 may have neuroprotective effects in neurolog-
ical diseases, including AD, PD, Huntington’s disease, amyotrophic lateral sclerosis and
stroke [55,56]. Neurological manifestations of carnitine deficiency include hypotension,
burning pain, decreased endurance, sensory impairment, developmental delay, rigidity and
myopathy [57,58]. These biomarkers could provide real-time feedback on the effectiveness
of nutrient interventions.

3. Precision Nutrient Interventions

There are other crucial substances that play a significant role in brain health [59].
These substances can specifically target neuroinflammation, oxidative stress, and gut–brain
disturbances. Recent research has shown that dietary polyphenols may have beneficial
effects on neurological diseases by attenuating oxidative stress and reducing the risk of
developing neurodegenerative diseases such as AD, stroke, multiple sclerosis, PD and
Huntington’s disease [60]. Polyphenols have great potential to address brain aging by
simultaneously modulating the gut–brain axis [60]. Probiotics can have beneficial effects
on patients with neurological diseases by reducing oxidative stress and reducing the risk of
developing neurodegenerative diseases such as AD, stroke, multiple sclerosis, PD, etc. [61].
Non-digestible oligosaccharides have neuroprotection effects by modulating the gut–brain
axis [62]. Consuming omega-3 fatty acids has been shown to improve learning, memory,
cognitive well-being and blood flow in the brain [63]. Omega-3 supplementation may also
target neuroinflammation [64], oxidative stress [65] and gut-brain disturbances [66]. A
deficiency in omega-3 fatty acids increases the risk of neurodegenerative disorders [67]
and accelerates brain aging [68]. Overall, omega-3 fatty acids are essential for maintaining
optimal brain health (Figure 1).
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4. Conclusions

The field of precision neuronutrition holds great promise in optimizing brain health
through targeted nutrient interventions based on an individual’s brain health status. In
order to accurately assess brain health, a personalized approach is necessary, taking into
account an individual’s nutrient, biochemical and metabolic characteristics. By adapting
scientific findings to each person’s unique profile, brain health outcomes can effectively be
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optimized. Continued research in this area has the potential to revolutionize approaches to
nutrition for the brain and to improve overall brain health.
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