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Abstract: Conventional means of Parkinson’s Disease (PD) screening rely on qualitative tests typi-
cally administered by trained neurologists. Tablet technologies that enable data collection during 
handwriting and drawing tasks may provide low-cost, portable, and instantaneous quantitative 
methods for high-throughput PD screening. However, past efforts to use data from tablet-based 
drawing processes to distinguish between PD and control populations have demonstrated only 
moderate classification ability. Focusing on digitized drawings of Archimedean spirals, the present 
study utilized data from the open-access ParkinsonHW dataset to improve existing PD drawing 
diagnostic pipelines. Random forest classifiers were constructed using previously documented fea-
tures and highly-predictive, newly-proposed features that leverage the many unique mathematical 
characteristics of the Archimedean spiral. This approach yielded an AUC of 0.999 on the particular 
dataset we tested on, and more importantly identified interpretable features with good promise for 
generalization across diverse patient cohorts. It demonstrated the potency of mathematical relation-
ships inherent to the drawing shape and the usefulness of sparse feature sets and simple models, 
which further enhance interpretability, in the face of limited sample size. The results of this study 
also inform suggestions for future drawing task design and data analytics (feature extraction, shape 
selection, task diversity, drawing templates, and data sharing). 

Keywords: Parkinson’s Disease; biomarker; Archimedean Spiral; disease screening; digitized draw-
ing; machine learning; feature extraction 
 

1. Introduction 
1.1. Parkinson’s Disease Symptoms and Standard Diagnosis Methods 

The diagnosis of Parkinson’s Disease (PD) has proven to be challenging for physi-
cians. Currently, diagnosis is still based on the observation of a patient’s clinical features 
such as bradykinesia, resting tremor, or rigidity followed by the observation of a set of 
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supportive criteria and the absence of a set of exclusion criteria outlined by the Movement 
Disorder Society Clinical Diagnostic Criteria for PD [1,2]. Furthermore, disease severity 
and progression are characterized using the Movement Disorder Society-Unified Parkin-
son’s Disease Rating Scale (MDS-UPDRS), which is also based on observation of clinical 
features associated with PD [3,4]. These types of assessments are subjective and prone to 
overlooking small changes in motor function that are representative of the disease, which 
poses challenges for PD screening [5]. This makes additional clinical tools that can be lay-
ered on to clinical evaluations by neurologists all the more critical [6]. An automated, 
point-of-care diagnostic platform that can be readily scaled in clinical and field settings 
could substantially advance screening capacity globally and detect PD earlier, leading to 
improved patient outcomes. 

1.2. Advantages of Automation in Screening 
While there is currently no reliable way to image Lewy bodies (the key pathological 

finding in PD patients), rapid advances in the precision and sophistication of technologies 
involved in the diagnosis of PD, from DaTscans to RT-QUIC to skin biopsies, have al-
lowed for a more nuanced understanding of the disease and significant increases in the 
confidence of PD diagnosis [7–9]. However, there still remains a clear lack of readily ac-
cessible and sensitive PD screening methods that can be carried out prior to full-scale di-
agnostic evaluations by neurologists. 

In recent years, smartphone and tablet technology has allowed for the potential de-
velopment of high-throughput screening tools for PD. Automation provides several dis-
tinct advantages when it comes to disease screening and diagnosis, including low cost of 
use and enhanced speed and accessibility [10]. An automated screening tool can provide 
baseline information for neurologists and identify potential PD patients before symptoms 
bring them to a neurologist. This is particularly useful because there is a growing shortage 
of neurologists worldwide [11,12]. 

1.3. Handwriting Analysis for Parkinson’s Disease 
Handwriting assessments for PD screening, in the form of serial signatures from pen-

and-paper tests, were initially intended to detect micrographia, defined as abnormally 
small handwriting. Since micrographia and other kinematic variations in handwriting can 
be measured long before the onset of other PD symptoms, handwriting analysis has the 
potential to be an effective and scalable PD screening tool prior to formal clinical evalua-
tion [13–16]. The earliest complex drawing tasks thereafter involved patients drawing a 
simple, circular clock (with the numbers one to twelve along the circumference) to screen 
for general neurological disorders [17]. With the development of computational tools and 
analytical methods in recent decades, handwriting analysis has become digitized to utilize 
kinematic data extracted from tablets during the writing process. This allows clinicians 
and researchers to quantitatively detect micrographia, tremors, and a variety of other PD 
symptoms. An analogous tool for Alzheimer’s disease screening, the DCTclock testTM, has 
demonstrated the feasibility of designing and implementing digital drawing tasks in clin-
ical settings to assess areas of cognitive state. The DCTclockTM test has demonstrated clin-
ically significant associations for Alzheimer’s disease biomarkers as well as strong capa-
bilities for discriminating between cognitively healthy individuals and patients with mild 
cognitive impairment or early Alzheimer’s dementia [18]. Passing clinical trials and re-
ceiving FDA clearance, the successful deployment of this tool speaks to the feasibility of 
a similar approach to PD screening as well as the readiness of modern clinical settings to 
incorporate these digitized methods. While qualitative analysis from a neurologist still 
serves as the standard for PD diagnosis, digitized handwriting and drawing tests have 
increasingly shown their potential in a clinical setting to be implemented as a cheap, easy-
to-use, and accurate early-detection tool [19–21]. 

Beyond feasibility, digital handwriting analysis presents a number of clinical benefits 
for early screening and monitoring. Considering the familiarity of handwriting as well as 
the accessibility of a tablet-based tool, individuals can identify potential symptoms with 
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greater ease and seek out a neurologist earlier. The collection of this data also serves to 
support a clinician’s potential diagnosis. Moreover, since motor symptoms of a PD patient 
are prone to fluctuate over time, readily available quantitative data on handwriting may 
aid clinicians in longitudinally monitoring patients and tracking the progression of dis-
ease. Personalized treatment strategies, novel drugs, and experimental approaches may 
also benefit from more extensive monitoring through digitized drawing tests due to their 
influence on a patient’s motor function [22,23]. 

1.4. Archimedean Spiral Drawings for Diagnosis of Parkinson’s Disease 
Researchers have demonstrated the strong potential of digitized Archimedean spiral 

drawing tests in detecting motor dysfunctions associated with PD [24–27]. These tests fo-
cus on time-series kinematic and pressure measurements. Previous studies have designed 
batteries to detect features such as variability of spiral width, overall shape, spiral smooth-
ness, pen velocity, and pen pressure. Advancements in digital spiral drawing, computer-
ized feature analysis, drawing task design, and complex machine learning techniques es-
tablished greater diagnostic ability, achieving impressive classification accuracies ranging 
from 79.78% to 97.52% [28–35] and area under the receiver operating characteristic curve 
(AUC) values ranging from 0.82 to 0.992 [33,36–38]. Research has continued to refine, aug-
ment, and standardize Archimedean spiral drawing assessments, exploring novel in-
formative features for PD detection [39–42]. Our study builds on past studies involving 
the Archimedean spiral by combining spiral-specific features with traditional kinematic 
and pressure features to improve classification performance with simple and highly in-
terpretable models. 

1.5. Our Study 
While existing studies have conducted the automation of spiral drawing analysis in 

PD patients, very rarely has the use of the Archimedean spiral been rationalized. As a 
result, many works neglect the unique features of the Archimedean spiral that make it 
powerful for PD diagnosis. We use these mathematical relationships inherent to the Ar-
chimedean spiral as bases of novel features, and we focus on important drawing metrics 
(such as pressure) to improve existing features in literature. These new features we pro-
pose are studied in addition to others described in the literature to create a comprehensive 
list of diagnostic features in PD spiral drawings. We then construct interpretable models 
with high diagnostic accuracy using these features. From this work and from existing in-
vestigations, we also provide guidelines and recommendations for future studies attempt-
ing to diagnose PD and other motor-coordination pathologies using digitized drawings 
so that this promising technique can eventually become a robust screening tool in the clin-
ical setting. 

2. Methods 
2.1. The ParkinsonHW Dataset 

The ParkinsonHW dataset [43] contains kinematics, pressure, and pen angle-related 
data on Archimedean spiral (with three revolutions about the center) drawings performed 
on Wacom Cintiq 12WX graphics tablets with digital pens for 62 PD patients and 15 
healthy controls. Three different types of the test were administered: the Static Spiral Test 
(SST; subjects trace a given spiral pattern), the Dynamic Spiral Test (DST; subjects trace a 
given blinking spiral pattern), and the Circular Motion Test (CMT; subjects draw circles 
around a red point) [43]. However, the majority of patients only performed SST and DST, 
with some only performing one of the tests. All healthy controls drew 2 spirals (SST and 
DST spirals) while 57 of the 62 patients drew DST spirals and 61 of the 62 patients drew 
SST spirals. Overall, 57 patients had two spiral drawings, 4 patients only had one spiral 
drawing, and 1 patient only performed the CMT (no spiral drawings). During each draw-
ing, the x and y coordinates of the pen tip, the pen azimuth and altitude, the pressure 
exerted on the surface of the tablet by the pen tip, and the timestamp associated with each 
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discrete data point are recorded. Figure 1 shows sample control and patient SST and DST 
drawings. Note that while some patients exhibit distinct motor dysfunctions (ex. Patient 
A), others draw almost just as well as the controls (ex. Patient B), increasing the difficulty 
of classification and motivating the use of digital data collection and modern machine 
learning techniques.  

 
Figure 1. Sample of ParkinsonHW drawings. The top row of drawings is from the SST, and the 
bottom row is from the DST. Patients are colored in red, and controls are colored in blue. Unlike 
Patient A, Patient B would be difficult to diagnose visually due to the relatively normal drawing. 

In evaluating the efficacy of the current model of tablet-based spiral drawings in dif-
ferentiating between PD patients and healthy controls, we focused our analysis efforts on 
the SST and DST drawings, in which patients were given a fixed spiral pattern to trace. 

2.2. Data Preprocessing 
We first extracted the kinematic (velocity, acceleration, jerk) and curvature data from 

the raw data. Starting with the x and y coordinates, we performed 4th-degree univariate 
spline interpolation to smooth the signal and filter the noise present in the raw signals 
(Supplementary Section 1). We then computed derivatives of the spline-interpolated func-
tions to get the desired kinematic data. Curvature of the subject’s drawing was also calcu-
lated. 

Additionally, we calculated polar metrics of the spiral drawings. For each individual 
data point, we calculated the corresponding radius as the point’s distance from the center 
of the spiral and computed the point’s corresponding angle (referred to as theta in the rest 
of the paper) from the x-axis. Examples of polar features and Cartesian pre-processed fea-
tures are included in Supplementary Materials Section 2. 

We also broke down the pressure signal into three separate components: the rising 
edge, main signal, and falling edge (Supplementary Material Section 3).  

2.3. Feature Engineering 
To extract meaningful information, the kinematic, pressure, and angle-related data 

from the ParkinsonHW dataset were further processed into higher-order features. We in-
cluded basic statistical measures for kinematic and pressure data signals, as well as inter-
esting previously proposed features (normal velocity variability, entropy, skewness and 
kurtosis of raw data signals, rate of inversions in raw data signals, overall time duration, 
and time duration and numerical range of components of the pressure signal). We also 
constructed novel curvature, regression, and Fourier-transform-based features leveraging 
the unique mathematical properties of the Archimedean spiral. The complete list of fea-
tures calculated is summarized in Supplemental Table 1. The details of each feature are 
described in Supplementary Material Section 4. 
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Table 1. Most informative features. For both static and dynamic drawings and using AUC and p-value as metrics, we 
identified the most informative features for patient classification. The features marked with asterisks (*) are our newly 
proposed features. r = radius, t = time. 

 p-Value Cutoff AUC Cutoff 

Static Drawing 

1. Radius vs. Theta Regression Sum of 
Residuals * 
2. Rate of Inversion in Pressure 
3. Radius vs. Theta Regression R2 * 
4.  Standard Deviation* 

5.  Standard Deviation* 
6. Jerk Standard Deviation 
7. Max Jerk 

1. Radius vs. Theta Regression Sum of 
Residuals * 
2. Rate of Inversion in Pressure 
3. Radius vs. Theta Regression R2 * 
4.  Standard Deviation * 

5.  Standard Deviation * 

Dynamic Drawing 

1. Radius vs. Theta Regression Sum of 
Residuals * 
2. Radius vs. Theta Regression R2 * 
3.  Standard Deviation* 
4. Max Jerk 
5. Jerk Standard Deviation 
6. Curvature vs. Time Regression Sum of 
Residuals* 
7. Acceleration Standard Deviation 
8. Velocity vs. Radius Regression Sum of 
Residuals* 
9. Mean Jerk 
10. Max Acceleration 
11.  Standard Deviation* 
12. Curvature vs. Time Regression R2 * 
13. Velocity vs. Time Regression Sum of 
Residuals * 
14. Rate of Inversion in Pressure 
15. Velocity Standard Deviation 

1. Radius vs. Theta Regression Sum of 
Residuals * 
2. Radius vs. Theta Regression R2 * 
3.  Standard Deviation * 
4. Max Jerk 
5. Jerk Standard Deviation 
6. Curvature vs. Time Regression Sum of 
Residuals * 
7. Acceleration Standard Deviation 
8. Velocity vs. Radius Regression Sum of 
Residuals * 
9. Mean Jerk 
10. Max Acceleration 
11.  Standard Deviation * 

2.4. Feature Importance 
For both static and dynamic features, the Mann–Whitney U Test was used to compare 

the distributions of each feature between patient and control groups. The p-value was 
used to assess the discriminative capacity of features. In addition, the AUC of each feature 
was calculated using the basic definition of AUC, which is the probability that a randomly 
selected patient has a higher value of the feature in comparison to a randomly selected 
control. 

After extracting features from both the static and dynamic datasets, we selected the 
most informative features for further analysis using strict significance cutoffs at a maxi-
mum p-value of 1 × 10−5 or a minimum AUC of 0.9 to account for the testing of multiple 
features. 

2.5. Subject Classification 
Facing a heavy class imbalance, we chose to use the random forest classifier: a widely 

used machine learning technique employing an ensemble of decision trees. During classi-
fication, each decision tree returns a class prediction, and the random forest returns the 
class receiving the most such “votes.” With each of the individual decision trees trained 
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on a different data subset (bootstrapping) and on a different feature subset (feature ran-
domness), the random forest classifier prevents the overall model from relying too heavily 
on a set of values or features. Therefore, this classifier is especially applicable to our task 
because it is relatively robust against outliers and noise, can help reduce overfitting, and 
automatically weighs and selects useful features via decision trees [44]. 

Additionally, to avoid overfitting, we used a small training set, used a small number 
of predictor variables, and performed cross-validation. In particular, we aimed to improve 
generalization and reduce model complexity by discovering sparse feature subsets which 
are highly informative, rather than simultaneously applying a large number of features to 
our relatively small dataset. To this aim, we trained random forest classifiers containing 
at most 2 features, identified by the individual AUCs and Mann–Whitney U tests. We 
used 100 trees and the default values in sklearn version 0.24.2 for the other parameters in 
our classifier. Changing the parameters did not appreciably change the results. The 
strongest-performing feature sets are provided in the Results section. For each set of fea-
tures and for both the static and dynamic tests, the classifier was run 50 times for cross-
validation, each time with a different random state and train-test sets, using a 50:50 train-
test-split. Moreover, our models used features from either the SST or the DST (not both), 
so it is impossible for a subject to be represented in both the train and test set. The mean 
AUC, accuracy, precision, recall, and F-score of the classifier over the 50 runs is then cal-
culated as the evaluation criteria for the effectiveness of that set of features. 

All of the analyses were conducted using Python 3.7.1. Pandas, NumPy, SciPy and 
SciKit-Learn libraries were used for data pre-processing, feature calculations, and model 
construction. The use of specific libraries is discussed in their corresponding sections in 
the Supplementary Materials.  

3. Results 
3.1. Feature Selection 

We extracted a total of 79 features, each of which were calculated for both the static 
and dynamic spirals. Out of the 79 features per sample, a total of 7 static features and 15 
dynamic features satisfied the p-value cutoff of 1 × 10−5 described in the Methods. Simi-
larly, a total of 5 static features and 11 dynamic features satisfied the 0.9 AUC cutoff. Table 
1 gives a summary of these “significant” features.  

3.2. Feature Visualizations 
We created overlaid box plots and swarm plots to visualize the discriminative pow-

ers of our most informative features, as listed in Table 1, for static spiral tests (Figure 2) 
and dynamic spiral tests (Figure 3). See Supplementary Material Section 5 (Static Features 
Visualization) and Supplementary Material (Dynamic Features Visualization) for visuali-
zations of other novel features that were not designated as the most informative.  
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Figure 2. Static spiral test most informative features based on Mann–Whitney U test overlaid box 
and swarm plots. The distribution of each feature is visualized for patients and controls separately. 
Controls are on the left of each sub-figure and have a blue box plot. Patients are on the right of each 
sub-figure and have an orange box plot. Within this figure, we excluded sets of outliers in the “Ra-
dius vs. Theta Regression R2”, “  Standard Deviation”, “  Standard Deviation”, “Jerk Standard 
Deviation”, and “Max Jerk” feature plots to improve visibility of the separation between patients 
and controls. Newly proposed features are denoted with an asterisk (*). 
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Figure 3. Dynamic spiral test most informative features based on Mann–Whitney U test overlaid 
box and swarm plots. The distribution of each feature is visualized for patients and controls sepa-
rately. Controls are on the left of each sub-figure and have a blue box plot. Patients are on the right 
of each sub-figure and have an orange box plot. Within this figure, we excluded sets of outliers in 
every feature plot except the “Curvature vs. Time Regression R2”, “Rate of Inversion in Pressure”, 
and “Velocity Standard Deviation” feature plots to improve visibility of the separation between 
patients and controls. Newly proposed features are denoted with an asterisk (*). 

Across the most informative features, we see clear visual separation between the pa-
tient and control data distributions, as the medians substantially differ, and interquartile 
ranges do not overlap. Additionally, feature value distributions for patient populations 
generally exhibit much greater variabilities than those of control populations. 

In addition to examining individual features, we consider patient and control distri-
butions across pairs of features to visualize the separability identified by our top-perform-
ing models. In Figure 4, we display the top two features from the static drawings as iden-
tified by the p-value and individual AUC cutoffs (rate of inversion in pressure and radius 
vs. theta regression sum of residuals). We see nearly linear separability between classes in 
these two dimensions. 
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Figure 4. Plot of the two most informative features for the static drawing test. Each point represents 
a subject. The rate of inversion in pressure is plotted against the radius vs. theta regression sum of 
residuals for each subject. Orange points are patients and blue points are controls. 

3.3. Classification Results 
The selected feature sets and random forest classification AUCs are summarized in 

Table 2. We included the top performers for the static and dynamic tests with only two 
features. We also show highly informative individual features to understand classification 
accuracy with the simplest of models. The highest performing model for the static spirals 
had an AUC of 0.999, accuracy of 0.976, precision of 0.986, F-score of 0.985, and recall of 
0.984. The highest performing model for the dynamic spirals had an AUC of 0.996, accu-
racy of 0.964, precision of 0.987, F-score of 0.977, and recall of 0.969. 

Table 2. Random forest classification performance using different sets of features. The AUC for both static and dynamic 
tests are displayed for informative feature sets and individual features. The highest AUCs for the static and dynamic tests 
are bolded. 

Features Static AUC Dynamic AUC 

Rate of Inversion in Pressure, Radius vs. Theta Regression Sum of Residuals 0.999 0.975 

Curvature vs. Time Regression Sum of Residuals, Radius vs. Theta Regression 
Sum of Residuals 

0.894 0.996 

Rate of Inversion in Pressure 0.934 0.779 

Radius vs. Theta Regression R2 0.910 0.906 

Radius vs. Theta Regression Sum of Residuals 0.887 0.956 

Curvature vs. Time Regression Sum of Residuals 0.666 0.911 

Velocity vs. Radius Regression Sum of Residuals 0.675 0.843 

4. Discussion 
4.1. Discussion of Classification Results 
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4.1.1. Model Accuracy 
Instead of evaluating many features that are mildly associated with PD, we focused 

on engineering specific features that are strongly indicative of PD on which to base our 
model construction. Using only two features of different categories, we were able to train 
remarkably accurate models, producing AUCs of 0.999 and 0.996 for the static and dy-
namic tests respectively and accuracies of 0.976 and 0.964 for the static and dynamic tests 
respectively. These performance metrics are greater than or equivalent to the maximum 
AUC of 0.992 and accuracy of 0.975 currently reported in the literature [32,33]. Our model 
also uses relatively small training data sizes to ensure the robustness of the features. Most 
importantly, in comparison to past studies that trained models on larger feature sets, cre-
ated complex models, and used black box like approaches to patient classification, our 
study, which uses simple models, confers more interpretability, allowing researchers to 
pinpoint the specific diagnostically powerful features. This characteristic will help clini-
cians better understand and utilize drawing-based screening tools. 

4.1.2. Important Features 
Features that achieved particularly high classification AUCs by themselves and in 

conjunction with other features include Rate of Inversion in Pressure, Radius vs. Theta 
Regression R2, Radius vs. Theta Regression Sum of Residuals,  Standard Deviation, 
Velocity vs. Radius Regression Sum of Residuals, and Curvature vs. Time Regression Sum 
of Residuals (Table 2). 

Examining individual features, the Rate of Inversion in Pressure was observed to be 
significantly lower among patients than controls. This result, although counterintuitive—
since we expect tremors and large degrees of variation in pressure among the patient pop-
ulation—can be attributed to how pressure changes during tremors are captured by the 
pencil. Since the sampling frequency of the pen is greater than the tremor frequency 
[45,46], the pressure signal during a tremor will be recorded as a series of increasing pres-
sure values followed by a decreasing series (or vice versa), amounting to only a single 
inversion in pressure at the local extremum. In contrast, a sample of pressure values span-
ning the same amount of time taken from a control drawing will likely produce many 
pressure values that are very close in magnitude but fluctuate randomly rather than sys-
tematically increase and decrease, so several inversions in pressure are recorded. In other 
words, actual patient tremors are distinctly captured, while random variations in the rel-
atively smooth control pressure signals contribute to a large number of insignificant, fine 
inversions.  

The radius vs. theta regression R2 feature was observed to be significantly lower 
among patients than controls. Since the radius of an Archimedean spiral varies directly 
with its angle about the origin, the R2 value of the linear regression between the two fea-
tures of a drawing indicates the degree to which the drawing deviates from a perfect spiral 
form. The tremors of patients and other abnormalities in handwriting resulted in draw-
ings that varied more from the spiral template, producing a lower Radius vs. Theta Re-
gression R2 value on average. For the same reason, the Radius vs. Theta Regression Sum 
of Residuals, was observed to have significantly higher values among patients than con-
trols. Further explanations of the other informative features are provided in Supplemen-
tary Material (Explanation of Further Informative Features). 

In practice, conventional qualitative tests rely upon baseline heuristics which may 
capture clearly-presenting symptoms characteristic of mid-stage PD patients. It is unlikely 
that the same broad heuristics would be sufficient to capture more subtle motor symptoms 
associated with early-stage neuromotor conditions. To reduce the incidence of undetected 
symptoms and increase early diagnoses, having a test with greater sensitivity to these 
“hidden” symptoms is necessary.  

It seems that our data analysis pipeline could be well-suited for this role. Notably, 
our models seem to extract enough useful information from higher-order features to cor-
rectly classify particularly tricky test cases. Figure 5 depicts an example of a control spiral 
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which is visibly more shaky than a patient spiral; visual inspection would indicate that 
the control spiral on the left is more likely to have been drawn by a PD patient. Despite 
this, our trained models were consistently able to use indicative factors gleaned from 
higher-order features to correctly classify both spirals. 

 
Figure 5. Spiral drawings colored by pressure. Visual classification is difficult, but our model clas-
sifies these subjects correctly. The difference in pressure profiles is shown clearly in the patient 
(right) and control (left). Darker areas are regions of low pressure and lighter areas are regions of 
high pressure. 

4.2. Future Diagnostic Recommendations 
4.2.1. Drawing Shape Recommendations 

The choice of drawing shapes is one of the most important aspects of drawing test 
design. We have reasoned that shapes with distinctive mathematical relationships fit well 
with quantitative analyses of digitized drawings. Deviations from these mathematical re-
lationships inherent to the drawing figure can be used to distinguish between patient and 
control, or even assess the stage of disease progression. The Archimedean spiral used in 
this study is an example of such a mathematically interesting shape, featuring unique cur-
vature characteristics and distinctive relationships between radius and theta about the 
origin (see more detail in the Methods section). Other mathematically interesting shapes 
include those with nonconstant curvatures such as lemniscates and spirographs—the var-
iations in their curvatures could be diagnostically important.  

Unorthodox shapes are also suitable for use, as they “normalize” for the level of ed-
ucation and drawing experience among the test subjects. Examples are the Poppelreuter-
type figures or other figures that subjects have not encountered before. This class of shapes 
becomes especially beneficial for more cognitive and memory-based diseases such as Alz-
heimer’s Disease, but they can also be beneficial for revealing PD-associated motor func-
tion as well.  

4.2.2. Template for Drawing 
The structure and guidance provided to the patient during the drawing task is a 

tricky matter of balance. Options include tracing over shapes, giving general guidelines 
such as flashing lines or moving dots, and simply providing an empty drawing pad for 
freehand drawings. While freehand clock-drawing, when used in the mini-cog test and in 
an automated test performed by MIT scientists, have been found to be indicative of PD 
[47,48], Drotar et al. have shown that the large degree of variation in freehand spiral draw-
ings significantly confounds and complicates the analysis [28]. Our preliminary feature-



Brain Sci. 2021, 11, 1297 12 of 17 
 

extraction efforts based on the PaHaW dataset collected by Drotar et al. have also con-
firmed the difficulty in analyzing freehand spirals due to the high variability in these spi-
ral drawings. This variability makes it more challenging to identify disease-associated fea-
tures. 

On the other hand, simple tracings have been proven to be useful in detecting PD 
[49]. The standardization of tracings through drawing templates (including for spirals and 
other shapes) dramatically improves drawing uniformity and creates clearer distinctions 
between patient and control. Finding the middle ground, the presence of some guidance 
without pure tracing may create enough inter-patient variability while still allowing for 
some uniformity, which will allow current analytic methods to detect Parkinsonian fea-
tures. 

4.2.3. Adaptive Framework 
The rigidity of drawing tasks with only a single standardized shape can be improved 

upon [29]. It largely fails to account for different stages of PD [50], different natural draw-
ing abilities [41], and different circumstances, from levels of cognitive ability [51] and 
work experience to technological literacy, especially in older adults who are more likely 
to be tested for PD. As people with PD in its earlier stages will have vastly different clinical 
needs than those with PD in later stages, grouping patients in both of these situations in 
the same category will not be beneficial to patients who want to better understand their 
disease and for doctors interpreting the results [52,53]. These concerns warrant the devel-
opment of drawing tests with varying difficulties. For future studies, an excellent struc-
ture for such drawing tests is the adaptive testing framework, in which patients are given 
drawing tasks of varying difficulty based on their performance on a previous drawing 
task. For instance, one would have the patient draw a shape and if they draw it well, have 
them draw a more complex shape. If they draw it poorly, have them draw a simpler shape. 
Such adaptive testing potentially allows for clearer differentiation between different 
stages of PD.  

4.2.4. Task Variation 
Beyond utilizing adaptive testing frameworks that consider patient abilities for more 

nuanced assessments, drawing tasks can leverage repetitive evaluation (measurement 
over multiple trials) on the same shape to gather informative data on drawing variability 
and also the learning rate of patients. Drawing tasks can also incorporate variations in the 
form of testing conditions, such as requiring the patient to draw a shape in multiple trials 
with different objectives or obstacles. The conditions may range from emphasizing accu-
racy or speed to displaying intermittently flashing template lines for tracing. These devi-
ations from a patient’s previously completed drawing tasks will likely allow for easier 
differentiation between PD patient and control data [54,55]. 

4.2.5. Data Sharing 
There have been many studies that have collected digitized drawing/handwriting 

from PD patients. However, datasets used in the majority of studies are not publicly avail-
able and have very small sample sizes (often less than 50 total subjects). Models trained 
on such small datasets will likely be biased with possibly limited generalizability [56]. 
Additionally, non-publicly available datasets hinder the possibility of external validation 
on similar handwriting or drawing tasks [57]. To address these issues, combining datasets 
from heterogeneous populations can help reduce imbalances in race, gender, age, etc. that 
will impact model classification accuracies on general populations. Moreover, making 
public datasets with credentialed access and de-identified data information is important 
so that larger groups of researchers can come together to verify that automated drawing 
analysis is a valid and accurate PD screening method. These datasets could even be made 
available on the Michael J. Fox Foundation datasets page [58]. 
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4.2.6. Limitations 
While we have achieved extremely high AUCs with our feature engineering and 

model construction methods on the ParkinsonHW dataset, it is important to validate the 
generalizability of our approach, especially given the class imbalance in the ParkinsonHW 
dataset (low number of control drawings) and the relatively low overall sample size. 
Moreover, there may be possibilities for early detection of PD using this automated 
method, but there are currently no datasets or studies that can robustly prove early detec-
tion capability. The lack of MDS-UPDRS scores or similar disease progression scores is 
another limitation. Future studies should aim to collect MDS-UPDRS from many patients, 
so that we can adequately test automated detection of disease severity. 

In addition, considering the significant overlap of PD symptoms with those of other 
neurodegenerative diseases and atypical Parkinsonian disorders, differentiation requires 
that assessments leverage subtle quantitative features to construct powerful tools for cli-
nicians [59]. This necessity has remained the subject of continuous study with numerous 
proposed solutions, and the digitization of screening assessments has only further com-
plicated the discussion. Tremor variation over time during resting tasks, modified shape-
drawing, and supplementary imaging alongside alternative tests are among the many so-
lutions pursued in previous literature in order to differentiate PD motor symptoms from 
those of conditions such as essential tremor, multiple system atrophy, and Lewy body 
dementia (LBD) [60–62]. To separate PD from progressive supranuclear palsy, a fre-
quently-encountered cause of atypical parkinsonism, studies have presented suggestions 
ranging from the identification of hypokinesia without decrement in handwriting tasks to 
the extraction of characteristic features through gait analysis [63,64]. In addressing de-
mentias such as Alzheimer’s disease and LBD, their visuospatial symptoms, which influ-
ence patient handwriting, have been the subject of ongoing research due to their striking 
similarities to symptoms of PD [65,66]. Distinguishing between PD and similar conditions 
continues to present a major obstacle to the development of diagnostic tools, requiring 
further research. Certain features we have extracted will be more associated with a general 
abnormal state such as radius vs. theta regression R2 as it captures overall drawing ability. 
Other, more nuanced features, such as rate of inversion in pressure and curvature regres-
sion may be better suited to differentiate between PD and similar conditions. 

5. Conclusions 
By identifying intuitive and highly predictive features in spiral drawings from PD 

patients, we have been able to differentiate PD patients from controls with a very high 
AUC. While improvements must be made to the drawing task and study design to rigor-
ously determine the accuracy of this method for PD diagnosis, this study demonstrates 
the potential of this method to enable wide-spread, point-of-care PD screening. In the face 
of increasing prevalence of PD and decreasing numbers of neurologists worldwide, tools 
for screening for the disease will be imperative for managing PD, particularly in under-
resourced areas. By developing and validating low-cost, automated handwriting-based 
screening technologies for PD, community health care workers and primary care clinics 
could rapidly identify patients at-risk for PD, reducing the burden of PD globally. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/brainsci11101297/s1. Figure S1: Sample pre-processed data signals. Figure S2: Sample 
pressure signal breakdown into rising edge, main signal, and falling edge. Figure S3: Template Ar-
chimedean spiral and its corresponding curvature. Figure S4: Novel curvature-based features over-
laid box and swarm plots for static spiral tests. Figure S5: Novel Fourier transform-based features 
overlaid box and swarm plots for static spiral tests. Figure S6: Novel linear regression-based features 
overlaid box and swarm plots for static spiral tests. Figure S7: Overlaid swarm and box plots for the 
novel features based on the inversely proportional relationship between velocity and curvature for 
static spiral tests. Figure S8: Overlaid swarm and box plots for the novel features based on the rates 
of change of radius and theta for static spiral tests. Figure S9: Overlaid swarm and box plots for the 
novel features based on the rates of change of radius with respect to theta for static spiral tests. 
Figure S10: Novel curvature-based features overlaid box and swarm plots for dynamic spiral tests. 
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Figure S11: Novel Fourier transform-based features overlaid box and swarm plots for dynamic spi-
ral tests. Figure S12: Overlaid box and swarm plots for novel linear regression-based features for 
dynamic spiral tests. Figure S13: Overlaid swarm and box plots for the novel features based on the 
inversely proportional relationship between velocity and curvature for dynamic spiral tests. Figure 
S14: Overlaid swarm and box plots for the novel features based on the rates of change of radius and 
theta for dynamic spiral tests. Figure S15: Overlaid swarm and box plots for the novel features based 
on the rates of change of radius with respect to theta for dynamic spiral tests. Table S1: Complete 
list of features calculated. 
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