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Abstract: Traumatic brain injury (TBI) is highly prevalent in children. Attention deficits are among
the most common and persistent post-TBI cognitive and behavioral sequalae that can contribute to
adverse outcomes. This study investigated the topological properties of the functional brain network
for sustained attention processing and their dynamics in 42 children with severe post-TBI attention
deficits (TBI-A) and 47 matched healthy controls. Functional MRI data during a block-designed
sustained attention task was collected for each subject, with each full task block further divided
into the pre-, early, late-, and post-stimulation stages. The task-related functional brain network
was constructed using the graph theoretic technique. Then, the sliding-window-based method was
utilized to assess the dynamics of the topological properties in each stimulation stage. Relative to the
controls, the TBI-A group had significantly reduced nodal efficiency and/or degree of left postcentral,
inferior parietal, inferior temporal, and fusiform gyri and their decreased stability during the early
and late-stimulation stages. The left postcentral inferior parietal network anomalies were found to be
significantly associated with elevated inattentive symptoms in children with TBI-A. These results
suggest that abnormal functional network characteristics and their dynamics associated with the left
parietal lobe may significantly link to the onset of the severe post-TBI attention deficits in children.

Keywords: pediatric; traumatic brain injury (TBI); attention deficits; functional MRI (fMRI); graph
theory; dynamic functional connectivity

1. Introduction

Pediatric traumatic brain injury (TBI) is a significant public health issue, which occurs
in more than 3 million children each year globally [1]. Neurocognitive impairments and
behavioral abnormalities, including attention problems, depression and mood disorders,
anxiety, and posttraumatic stress disorder, were frequently reported in children with
chronic TBI [2–5]. Attention deficits are among the most common and persistent cognitive
and behavioral consequences that can be observed in at least 35% of children within two
years of their injuries [6,7]. Childhood post-TBI attention deficits (TBI-A) have been found
to link with a significantly heightened risk for the development of severe psychopathology
and impairments in overall functioning in late adolescence [8,9]. The neural substrates
associated with TBI-A in children have not yet been well investigated. Understanding the
early brain mechanisms of TBI-A have considerable heuristic value for informing novel
and timely strategies of prevention and intervention in affected individuals.

The blood-oxygen level-dependent (BOLD) response-based functional MRI (fMRI) has
been widely implemented to examine the neurophysiological alterations associated with
TBI-related functional brain damages [10]. The majority of task-based fMRI studies in TBI
have used working memory paradigms and have reported abnormal functional activation
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in cortical and subcortical areas, such as the prefrontal cortex, the superior temporal gyrus,
and hippocampus, which were associated with working memory impairments in subjects
with TBI [11–14], while a recent study reported no significant working memory-related
brain differences between children with TBI and controls [15]. Other fMRI studies have
also reported functional alterations in frontal, parietal, temporal, and occipital regions
in children with TBI during motor tasks [16], language tasks [17], and social cognition
tasks [18]. Only a few pediatric TBI studies have investigated brain activations during
attention-related tasks [19–22]. Studies have reported that during sustained attention
processing, children with TBI demonstrated reduced activations in frontal, parietal, and
occipital regions when compared with healthy controls [22] and children with orthopedic
injuries [19]. Tlustos and colleagues reported that children with TBI, relative to controls,
showed decreased activation in anterior cingulate and motor cortex during inhibitory
control processing [20]. Children with TBI also showed hyperactivations in the middle
frontal gyrus, the precentral gyrus, and the parietal lobule during interference control
processing [21]. The discrepancies of findings from the existing studies might be partially
explained by the differences of task design, techniques implemented for data analyses,
sample size, environmental factors, and subject-related biases without controlling the
heterogeneity of neurocognitive/behavioral outcomes induced by TBI [23].

Resting-state fMRI (rs-fMRI) studies in TBI have also reported inconsistent results.
Relative to matched controls, children with chronic TBI have been found to have reduced
functional connectivity (FC) between caudate and motor network [24], increased FC be-
tween the frontal and fusiform gyrus [25], or reduced FC between rostral anterior cingulate
cortex and amygdala [26]. In addition, graph theoretical technique (GTT)-based rs-fMRI
studies have reported system-level topological alterations in adults with TBI, relative to
controls [27]. For instance, studies have shown decreased functional network integration,
including decreased network global efficiency and increased characteristic path length, in
adult with TBI when compared with healthy controls [28–30]. A more recent longitudinal
study reported that increased functional integrations were associated with better overall
cognitive recovery in adults with TBI [31]. With the help of the advances in recent tech-
niques and methodologies, dynamic FC patterns during both resting-state and cognitive
processes have been increasingly observed and linked to neurobehavioral variations in
normal controls and subjects with mental disorders [32–35]. Relative to the procedure
of constructing the functional network using overall time duration (referred to as static
functional network), dynamic analysis evaluates the functional network topology at a
temporal basis. Gilbert et al. reported that during a working memory and information
processing task, adults with TBI demonstrated more brain states than controls but with less
between-state transitions [35]. An rs-fMRI study found both static and dynamic alterations
in adult with TBI at the acute stage, which were associated with persistent symptoms at a
chronic stage [36].

Indeed, the GTT- and dynamic FC-based investigations in functional brain networks
during resting state and cognitive tasks have allowed a new dimension in understanding
the neural mechanisms associated with post-TBI neurocognitive and behavioral impair-
ments in adults. However, the system-level functional brain organizations, their temporal
dynamics, and their associations with TBI-related cognitive/behavioral deficits have not
yet been sufficiently revealed in children. The current study proposed to utilize the GTT-
and dynamic FC-based techniques to study the topological properties and their dynamics
of the functional network for attention processing, and their relations with TBI-related
attention deficits in a homogeneous group of children with TBI-A and matched controls.
Our previous research has showed disrupted structural network topological properties in
frontal, parietal, and temporal regions in children with TBI-A [37]. Based on the existing
findings from our and other groups, we hypothesize that relative to matched controls, chil-
dren with TBI-A may exhibit significantly altered topological properties and their dynamic
features in frontal, parietal, and temporal areas, and these system-level anomalies in the
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functional network for attention processing strongly link to the severe attention problems
in children with TBI-A.

2. Materials and Methods
2.1. Participants

A total of 89 children, including 42 children with TBI-A and 47 controls were involved
in the study. The TBI-A subjects were recruited from the New Jersey Pediatric Neuroscience
Institute, Saint Peter’s University Hospital, and local communities in New Jersey. Controls
were solicited from the local communities by advertisement in public places. The study
received institutional review board approval at the New Jersey Institute of Technology and
Saint Peter’s University Hospital. Prior the study, all the participants and their parents or
guardians provided written informed assent and consent, respectively.

The inclusion criteria for the TBI-A group were: (1) history of clinically diagnosed
mild-to-moderate non-penetrating TBI with the severity scores ranging from 9 to 15 using
the Glasgow Coma Scale (GCS) [38] and no overt focal brain damages or hemorrhages;
(2) the first TBI incidence happened at least 6 month prior to the study; (3) T score ≥ 65 in
inattention subscale, hyperactivity subscale, or both in the Conners 3rd Edition—Parent
Short form (Conners 3–PS) [39] assessed during the study visit. In addition, subjects
with a history of diagnosed attention-deficit/hyperactivity disorder (ADHD) (any sub-
presentations) prior the diagnosis of TBI, or severe pre-TBI inattentive and/or hyperactive
behaviors that were reported by a parent were not included, to minimize con-founding
factors. The control group included children with (1) no history of TBI; (2) no history
of diagnosed ADHD (any sub-presentation); (3) T-scores ≤ 60 in all the subscales in the
Conners 3–PS assessed during the study visit. The two groups were matched on age, sex
(male/female) distribution, and socioeconomic status (SES) (estimated using the average
education year of both parents).

To further improve the homogeneity of the study sample, the general inclusion criteria
for both groups included (1) only right-handed, to remove handedness-related potential ef-
fects on brain structures; (2) full scale IQ ≥ 80, to minimize neurobiological heterogeneities
in the study sample; (3) ages of 11–15 years, to reduce neurodevelopment-introduced
variations in brain structures. In the current study, handedness was evaluated using the
Edinburgh Handedness Inventory [40]. Full scale IQ was estimated by the Wechsler Abbre-
viated Scale of Intelligence II (WASI-II) [41]. None of the subjects involved in this study
had (1) current or previous diagnosis of Autism spectrum disorders, pervasive develop-
ment disorder, psychosis, major mood disorders (except dysthymia not under treatment),
post-traumatic stress disorder, obsessive compulsive disorder, conduct disorder, anxiety
(except simple phobias), or substance use disorders, based on Diagnostic and Statistical
Manual of Mental Disorders 5 (DSM-5) [42] and supplemented by the Kiddie Schedule for
Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Ver-
sion (K-SADS-PL) [43]; (2) any types of diagnosed chronic medical illnesses, neurological
disorders, or learning disabilities, from the medical history; (3) treatment with long-acting
stimulants or non-stimulant psycho-tropic medications within the past month; (4) any
contraindications for MRI scanning, such as claustrophobia, tooth braces or other metal
implants. In addition, pre-puberty subjects were also excluded to reduce confounders
associated with different pubertal stages [44]. Puberty status was evaluated using the
parent version of Carskadon and Acebo’s self-administered rating scale [45]. After initial
processing of the neuroimaging data from each subject, 3 subjects were excluded from
further analyses due to heavy head motion. Therefore, a total of 40 patients with TBI-A
and 46 controls were included in group-level analyses. All the demographic and clinical
measures were summarized in Table 1.
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Table 1. Demographic and clinical characteristics of the study sample.

Controls
Mean (SD)

TBI-A
Mean (SD) t or χ2 Value p Value

n 46 40
Male/Female 26/20 24/16 0.106 (χ2) 0.744

Socioeconomic Status 1 16.19 (1.80) 15.57 (4.19) 1.450 0.151
Full Scale IQ 115.00 (10.60) 110.48 (12.68) 1.802 0.075

Age 13.24 (1.47) 13.27 (1.72) −0.075 0.940
Ethnicity/Race 2.411 (χ2) 0.300

Caucasian 27 29
Hispanic 8 3
Others 11 8

Conners 3–PS-based T Score
Inattention 46.67 (6.22) 71.75 (8.09) −16.366 <0.001

Hyperactivity/Impulsivity 47.91 (5.68) 63.50 (14.23) −6.835 <0.001
1 Socioeconomic status was estimated using the average education year of both parents. TBI-A: children with traumatic brain injury related
attention deficits; SD: standard deviation; n: number of subjects; Conners 3–PS: Conners 3rd Edition–Parent Short-Form T-score.

2.2. Neuroimaging Data Acquisition Protocol

MRI scans for each subject were performed on a 3-Tesla Siemens TRIO (Siemens
Medical Systems, Erlangen, Germany) scanner at Rutgers University Brain Imaging Cen-
ter. The fMRI data were acquired using a whole brain gradient echo-planar sequence
(voxel size = 1.5 mm × 1.5 mm × 2.0 mm, repetition time (TR) = 1000 ms, echo time
(TE) = 28.8 ms, and field of view = 208 mm, slice thickness = 2.0 mm). For data co-
registration, a high-resolution T1-weighted structural image was also collected with a
sagittal multi-echo magnetization-prepared rapid acquisition gradient echo (MPRAGE)
sequence (voxel size = 1 mm3 isotropic, TR = 1900 ms, TE = 2.52 ms, flip angle = 9◦,
FOV = 250 mm × 250 mm, and 176 sagittal slices).

2.3. Visual Sustained Attention Task for fMRI

Clinical studies have suggested that sustained attention in children is vulnerable to
TBI-induced damages [46,47]. The continuous performance task (CPT) is one of the most
widely used tasks to measure sustained attention and was shown to be a robust instrument
to challenge the sustained attention in children with TBI [48]. In the current study, all
subjects were asked to perform an enhanced CPT, the visual sustained attention task (VAST),
during fMRI data acquisition. The VAST is a block-designed task that was established
and validated in our previous functional imaging studies for achieving optimal power
in maintaining sustained attention and assessing related functional brain pathways in
children [49–51]. The task contains 5 task stimulation blocks that interleaved with 5 resting
blocks, as shown in Figure 1A. Each block lasts for 30 s, with a total scan time of 5 min.
Within each task stimulation block, a sequence of 3 single-digit numbers was first shown in
red to serve as the target, followed by 9 stimulus sequences in black, when subjects were
asked to response if each sequence matches the target. Subjects were instructed to stay
focused and respond only after the third number of each sequence was shown. To ensure
full understanding of the instructions, practical trials of the task were provided to each
subject before the scan session.
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Figure 1. Functional network construction steps. (A) Block design and sub-stage definitions. (B) Selected nodes for
functional network construction; (C) The network global and local efficiency curves of TBI-A and controls over the cost
range of 0.05 to 0.5; (D) The group connectivity matrices of controls and TBI-A. L: left hemisphere; R: right hemisphere;
TBI-A: children with severe post-traumatic brain injury attention deficits; Pre: pre-stimulation stage; Early: early stimulation
stage; Late: late-stimulation stage; Post: post-stimulation stage.

2.4. Individual-Level Neuroimaging Data Pre-Processing

Pre-processing of each set of fMRI data was carried out using the FEAT Toolbox from
FMRIB Software Library v6.0 (FSL) [52]. The data were first manually checked for any
missing volumes and heavy head motions. Then, the motion artifacts were corrected using
rigid-body transformation by registering all volumes to the first volume. The motions for
each subject were measured by extracting the six translational and rotational displacement
parameters. Due to the critical impacts of the head motions on the construction of both
static and dynamic functional networks [53,54], we applied a strict cutoff threshold of
1.5 mm. Three subjects (2 TBI-A subjects and 1 control) were excluded due to heavy head
motion. After corrected for slice timing, fMRI data of each subject were then smoothed
with a 5 mm full-width at half maximum gaussian kernel to improve the signal-to-noise
ratio. A high-pass filter was applied to the time series to remove the low frequency noise
and signal drifting. Finally, the fMRI data were co-registered to a MNI152 template, with a
voxel size of 2 mm × 2 mm × 2 mm, using each subject’s T1-weighted structural image.
Hemodynamic response to task-related condition was modeled using the general linear
model, with 24 motion parameters, including the 6 basic displacement parameters (Rt),
and the derivatives (Rt

′) and squares (Rt
2 and Rt−1

2, where t and t −1 refer to current and
preceding timepoints) of these parameters, and nuisance signals (white matter, cortical
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spinal fluid, and global signal), as additional regressors. The Z statistic images were
thresholded using clusters determined by Z > 2.3 and a cluster-based method for multiple
comparison correction at p < 0.05 [52].

2.5. Network Node Selection and BOLD Signal Extraction

To select the nodes for functional network construction, a combined activation map of
two groups were first generated and parcellated into 118 cortical and subcortical regions
using automatic anatomical labeling (AAL) atlas [55]. A network node was defined as
a spherical region of interest (ROI) with the radius of 5 mm in a parcellated region if
it has a cluster of at least 100 significantly activated voxels, and centered at the highest
local maximum in the cluster. At the end, a total of 59 network nodes were generated
(Figure 1B).

The BOLD time series of each node was extracted from the preprocessed fMRI data
by averaging the BOLD responses of the voxels in the node. The averaged signal was
then decomposed into 5 levels using maximal overlap discrete wavelet transform [56].
Wavelet levels 3, 4, and 5, corresponding to frequency band of 0.015–0.124 Hz, were used
to reconstruct the filtered signal to further minimize motion artifacts and non-relevant
signals. This selected frequency band had been demonstrated to contain most task-related
hemodynamic information [49,50,57].

2.6. Static Functional Network Construction

To construct the overall functional brain network responding to the sustained attention
processing task, pairwise Pearson’s correlation coefficients of the BOLD signals in the
59 network nodes were first calculated to form the 59 × 59 FC matrix. The matrix was
then binarized by thresholding using the network cost, which was defined as the fraction
of existing edges relative to all possible edges within a network. To determine the proper
threshold range for functional network construction, the network global efficiency and
network local efficiency were calculated over the cost range from 0.1 to 0.5, with a step size
of 0.01. The network global efficiency is a metric of the network integration that reflects the
ability of information transferring across distributed brain areas [58]. It was the average of
the inversed shortest distance between each node pair in the network, which is defined as:

Eglob(G) =
1

n(n− 1) ∑i,j∈G,j 6=i
1

dij
, (1)

where n is the number of nodes in the network, and dij is the inverse of the shortest path
length (number of edges) between node i and j. The network local efficiency estimates the
network segregation and represents the fault tolerance level of the network [58]. The net-
work local efficiency is the average nodal local efficiency of all nodes in the network, where
the nodal local efficiency was defined as the network global efficiency of the subnetwork
that consisted of all neighbor nodes of that specific node. This can be calculated using the
following formula:

Enetwork−loc(G) =
1
n ∑i∈G Eglob(Gi), (2)

where Gi is the subnetwork that consists of all neighbor nodes of node i, and the global
efficiency of subnetwork Gi is calculated using Equation (1). Then, both global metrics
of the constructed network were compared with the node- and degree-matched regu-
lar and random networks. The functional brain networks in human brain have been
proved to be small-world networks that provide high global and local efficiency of parallel
information processing while maintaining lower network cost [59]. A network is con-
sidered to be small-world if it meets the following criteria: Eglob

(
Gregular

)
< Eglob(G) <

Eglob(Grandom) and Enetwork−loc(Grandom) < Enetwork−loc(G) < Enetwork−loc

(
Gregular

)
, where

Eglob

(
Gregular

)
, Eglob(Grandom), Enetwork−loc

(
Gregular

)
, and Enetwork−loc(Grandom) represent
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the network global efficiency and network local efficiency of the node- and degree-matched
regular and random networks, respectively [59]. The proper cost range for functional
network construction in both TBI-A and control groups was from 0.15 to 0.45, as shown in
Figure 1C. The proportional thresholding method sets arbitrary thresholds in continuous
data, which artificially inflate differences in network topology and can arise differences in
overall functional connectivity in case–control studies [60]. To validate the eligibility of the
proportional thresholding method in our study, the group differences of network global
efficiency, network local efficiency, and overall functional connectivity were compared at
each network cost step. No significant between-group differences were found in these
measures within the selected cost range.

The global and regional topological properties of the overall functional brain network
from each subject were then calculated and averaged over the cost range, including the
network/nodal global efficiency, network/nodal local efficiency, network/nodal clustering
coefficient, nodal degree, and betweenness centrality.

The nodal global efficiency of a specific node is a measure of its nodal communication
capacity with all other nodes in the network. It was defined as:

Enodal(i) =
1

n− 1 ∑j∈N,j 6=i
1

dij
, (3)

where N contains all the neighbors of node i.
The nodal clustering coefficient describes the likelihood of whether the neighboring

nodes of a node are interconnected with each other [61], which was defined as:

C(G) =
1
n ∑i∈G

1
ki(ki − 1)

×∑j,h∈Gi

(
aijaihajh

)1/3
, (4)

where aij is the connection between node i and j (1 for connected and 0 for not connected),
and ki is the number of neighbors of node i.

The betweenness centrality measures the ability for one node to bridge indirectly
connected nodes by counting the number of shortest paths that pass through a certain
node [62]. The betweenness centrality was defined as:

B(i) =
1

(n− 1)(n− 2) ∑j,k∈N, j 6=k
p(i | j, k)

P(j, k)
, (5)

where j, k are node pairs in the network. p(i | j, k) is whether the shortest path between
node j and node k passes through node i. P(j, k) is the total number of unique shortest path
between node j and node k. For each node in a functional brain network, its nodal global
efficiency represents the integration of its associated subnetworks, whereas its nodal local
efficiency and nodal clustering coefficient represent the modularity [63,64]. All network
topological property calculation were performed using the Brain Connectivity Toolbox [65].

2.7. Analysis of Functional Network Dynamics

A sliding-window approach was used to investigate the functional network dynamics
during the task procedure. A temporal window was defined to include 17 consecutive
volumes in the fMRI data. Therefore, a total of 284 temporal windows were generated, with
a sliding-step of 1 TR applied along the 300 TRs during the entire task period. For each
of the 284 temporal windows, a 59 × 59 FC matrix was formed by the pairwise Pearson’s
correlation coefficients of the 59 network nodes. Each contained only 17 time points within
that temporal window.

Based on the task design, the task duration consisted of pre-, early, late-, and post-
stimulation stages (Figure 1A). The pre-stimulation stage was defined as the 15 s (15 TRs)
right before each task-stimulation block. The early stimulation stage was defined as the
first 15 TRs of each task-stimulation block, and the late-stimulation stage was defined as
the last 15 TRs of each task-stimulation block. The post-stimulation stage was defined
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as the 15 TRs after each task-stimulation block. Based on the estimated hemodynamic
response function, the early stimulation stage corresponds to the recruiting response stage
while the late-stimulation stage corresponds to the stable response stage, also shown in
Figure 1A. During the network dynamics analyses introduced in the following paragraphs,
the temporal window-based FC matrices of the early and late-stimulation stages were
extracted from only the first four task-stimulation blocks, to match the involved duration
of the pre- and post-stimulation stages.

A temporal window-based functional network for each sliding step was constructed
using the same strategy for static network construction introduced in Section 2.6. The
thresholding for network topological property estimations in this step utilized Pearson’s
correlation coefficients ranging from 0.55 to 0.85, which corresponded to the top 45% to
the top 15% strongest FCs among the 284 FC matrices. Selection of such threshold range
can preserve the temporal fluctuation of the overall functional connectivity, while ensuring
that the overall edge density of the current network matches that in the static functional
network. The network topological properties, including global efficiency, local efficiency,
and clustering coefficient at both network and nodal levels, plus degree and betweenness
centrality at nodal level, were then calculated for the functional network in each temporal
window. The mean and the standard deviation values of each network property were
calculated among the temporal networks involved in each of the four task-stimulation
stages. The standard deviation characterizes the stability of the network property, which
was defined as:

S =

√
1

N − 1 ∑N
i=1|Ai − µ|2, (6)

where N is the number of steps in a stage, Ai is the specific topological property at step i,
and µ is the mean of the topological property over all steps in a stage.

2.8. Group-Level Analyses

Group statistics were carried out using R 4.0.3 on macOS Mojave 10.14.1. Between-
group comparisons in demographic, clinical, behavioral, and neurocognitive performance
measures were conducted using a chi-squared test for categorical data (sex and ethics), and
an independent two-sample t-test for numerical measures.

Group comparisons in the static network topological properties were performed using
a mixed-effects general linear model by setting TBI-A and controls as group variables,
and adding IQ, age, SES as random-effect, and sex as fixed-effect covariates, respectively.
Topological properties that showed significant between-group differences (corrected using
false discovery rate) were selected for post hoc independent-sample t-test to provide
directional comparisons. Group comparisons in the static network topological properties
were controlled for potential multiple comparisons, using the Bonferroni correction with a
threshold of significance at corrected α ≤ 0.05 [66].

To test the group difference in sub-stages and the transition between each adjacent
stage-pair, a mixed-model analysis of covariance (ANCOVA) was conducted with topologi-
cal properties at adjacent stages as repeated measure, sex as fixed-effect covariate, and IQ,
age, SES as random-effect covariates. Topological properties that showed significant group
effects or significant group-stage interaction (corrected using false discovery rate) were
selected for post hoc analysis. Group comparison of the selected measures were performed
using independent-sample t-tests as the post hoc analysis. Post hoc analysis was controlled
for potential multiple comparisons (in the total of 4 stages), using the Bonferroni correction
with a threshold of significance at corrected α ≤ 0.05 [66].

Brain–behavior associations in the TBI-A group were assessed using Pearson’s corre-
lation between the T-scores of the inattentive and hyperactive/impulsive subscales from
Conners 3–PS and the network measures that showed significant between-group differ-
ences. The correlation analyses were controlled for potential multiple comparisons (in
the total number of comparisons), by using the Bonferroni correction with a threshold of
significance at corrected α ≤ 0.05.
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3. Results
3.1. Demographic and Clinical/Behavioral Measures

No demographic information was found to have significant group difference. In
addition, children with TBI-A did not demonstrate any significant differences in the per-
formance measures of VSAT when compared with controls. Relative to the controls, the
children with TBI-A showed significantly more inattentive (t = −16.366, p < 0.001) and
hyperactive/impulsive (t = −6.835, p < 0.001) symptoms measured using the T scores in
Conners 3–PS. The demographic information was shown in Table 1.

3.2. Topological Measures in Overall Functional Network

Compared with controls, children with TBI-A showed significantly decreased nodal
clustering coefficient in the left precentral gyrus (t = 2.653, p-Bonferroni = 0.045), and signifi-
cantly decreased nodal local efficiency (t = 3.770, p-Bonferroni = 0.001) and nodal clustering
coefficient (t = 3.380, p-Bonferroni = 0.005) in the left postcentral gyrus. No significant
between-group differences were observed in topological measures at a global level.

3.3. Dynamics of the Topological Measures

The network topological properties at each stage were calculated using the average
network properties of all steps within each stage. Relative to controls, the TBI-A group
showed significantly decreased nodal local efficiency (t = 2.560, p-Bonferroni = 0.049) in the
left postcentral gyrus at early stimulation stage (Figure 2A); significantly decreased nodal
local efficiency (t = 2.798, p-Bonferroni = 0.026) and nodal degree (t = 2.603, p-Bonferroni = 0.044)
in left inferior parietal lobule at early stimulation stage (Figure 2B); significantly decreased
nodal local efficiency (t = 2.870, p-Bonferroni = 0.021) and nodal clustering coefficient (t = 2.750,
p-Bonferroni = 0.029) in the left inferior temporal gyrus at late-stimulation stage (Figure 2C);
and significantly increased nodal global efficiency (t = −2.702, p-Bonferroni = 0.033) in right
putamen at late-stimulation stage (Figure 2D).
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Figure 2. Mean network topological properties at different stages. The topological properties that showed significant
group difference were marked with asterisk (*). (A) Mean nodal local efficiency at left postcentral gyrus. (B) Mean
nodal local efficiency and mean nodal degree at left inferior parietal gyrus. (C) Mean nodal local efficiency and mean
nodal clustering coefficient at left inferior temporal gyrus. (D) Mean nodal global efficiency at right putamen. L: left
hemisphere; R: right hemisphere; Pre: pre-stimulation stage; Early: early stimulation stage; Late: late-stimulation stage;
Post: post-stimulation stage.
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The stability of each network topological property at each stage was represented
by the standard deviation within each stage. Relative to controls, children with TBI-A
demonstrated significantly increased standard deviation of network global efficiency at
the late-stimulation stage (t = 2.519, p-Bonferroni = 0.048) (Figure 3A). At the late stimulation
stage, the TBI-A group also showed significantly decreased standard deviations of the right
insula nodal local efficiency (t = 3.206, p-Bonferroni = 0.007) and nodal clustering coefficient
(t = 3.052, p-Bonferroni = 0.012) (Figure 3B); significantly increased standard deviations of
the left fusiform gyrus nodal local efficiency (t = −2.707, p-Bonferroni = 0.033) and nodal
clustering coefficient (t =−2.732, p-Bonferroni = 0.031) (Figure 3C); and significantly increased
standard deviation of the left inferior temporal gyrus nodal local efficiency (t = −3.174,
p-Bonferroni = 0.008) (Figure 3D).
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Figure 3. Standard deviation of network topological properties at different stages. The topological properties that showed
significant group difference were marked with asterisk (*). (A) Standard deviation of the network global efficiency.
(B) Standard deviation of the nodal local efficiency and the nodal clustering coefficient at right insula. (C) Standard
deviation of the nodal local efficiency at left inferior temporal gyrus. (D) Standard deviation of the nodal local efficiency
and the nodal clustering coefficient at left fusiform gyrus. L: left hemisphere; R: right hemisphere; Pre: pre-stimulation
stage; Early: early stimulation stage; Late: late-stimulation stage; Post: post-stimulation stage.

3.4. Brain Behavior Correlations

As shown in Figure 4, higher T-score of the inattention subscale in the Conners 3–PS
were significantly correlated with lower nodal global efficiency in the left postcentral gyrus
(r = −0.460, p-Bonferroni = 0.015) and lower nodal degree in left inferior parietal lobule
(r = −0.443, p-Bonferroni = 0.020) in children with TBI-A at the early stimulation stage. No
significant brain–behavior correlations were found in the group of controls.
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4. Discussion

In this study, we found that relative to matched controls, the left precentral gyrus in
children with TBI-A showed significantly lower capacity for functional information trans-
ferring (represented by significantly lower nodal clustering coefficient) during sustained
attention processing. The precentral gyrus, as the location of the primary motor cortex,
has been proven to be significantly involved in response inhibition function [67]. Previous
fMRI studies in pediatric TBI have found significantly decreased precentral activation in
children with TBI during performance of sustained attention [19], inhibitory control [20],
and language processing [17]. Clinical studies have also suggested that children with TBI
are vulnerable to deficits in inhibitory control [68,69], and children with post-TBI attention
deficits have even more severe impairments than children with normal outcomes after
TBI [70].

Meanwhile, the left parietal cortex, particularly the left postcentral and inferior parietal
gyri, showed significantly suboptimal regional efficiency for functional communications
with other brain regions during sustained attention processing, especially at the early
stimulation stage, and these system-level functional anomalies associated with the left
parietal cortex were found to greatly link to the severe inattentive symptoms in children
with TBI-A. The parietal cortex is a key component of the attention network, involving in
both the bottom-up selection and top-down control processes [71,72]. Within the attention
network, the postcentral gyrus is responsible for transferring tactile information during
the spatial attention [73], while the inferior parietal gyrus for information integration in
the frontoparietal pathways during cognitive control [74]. Functional brain alterations
associated with parietal cortex have been frequently reported in previous studies in children
with TBI when performing tasks requiring attention [19,20], interference control [21],
working memory [11,12], and motor control [16].

Indeed, both frontal and parietal lobes are core components subserving attention
processing and cognitive control in the human brain. There has been growing consensus
that dynamic disruptions of the frontal and parietal systems play the central role in chron-
ical post-TBI neurocognitive and behavioral impairment, especially in the attention and
cognitive control domains [75]. Together with the existing findings, results of the present
study further suggest that the suboptimal efficiency of left parietal regions for functional
interactions with other brain areas, especially during the initiation stage of attention pro-
cessing, significantly implicate the TBI-A-specific impairment of the attention network,
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which can contribute to severe behavioral inattentiveness and hyperactivity/impulsivity
in children with TBI.

Compared with the control group, our study also found that at the late-stimulation
stage, the left fusiform gyrus in children with TBI-A had significantly decreased stability
for maintaining the efficiency of functional interactions with other brain regions. The
fusiform gyrus is part of the temporal and occipital lobes, which has been found to be a
key structure for high-order visual (such as face, body, and high special frequency objects)
and imagery processing [76,77]. Functional brain activation and connectivity studies in
children with TBI have also reported fusiform gyrus-related abnormalities, such as reduced
activations during sustained attention processing [22], significantly increased activation
during working memory processing [11], and altered functional connectivity between
the fusiform gyrus and the frontal lobe during resting state [25]. On the other hand,
studies have demonstrated significant involvement of the fusiform gyrus in severe psy-
chopathology, especially psychosocial and emotional dysregulation and thought problems
in patients with major depressive disorder [78,79], schizophrenia [80,81], and other mental
disorders [82,83]. In addition, there is growing evidence to support TBI as a risk factor for
psychosis in both adult [84,85] and adolescent [86]. However, the underlying mechanisms
are still fragmentary. On the basis of these prior studies from our and other groups, we
hypothesize that post-TBI functional alterations associated with the left fusiform gyrus
may significantly link to the development of severe late adolescence psychopathology,
such as anxious/depressed, social and thought problems, in those with childhood TBI-A.
Longitudinal follow-up of children with TBI-A will help to test this hypothesis.

There are several limitations associated with the current study. First, the sample
size is relatively modest, which can limit the statistic power of the proposed analyses.
Compared with other existing studies with similar sample sizes, the effect size of our
study is relatively larger, because of the inclusion criteria of the two diagnostic groups
(the T-scores of inattentive and hyperactive subscales were ≥65 for TBI-A, whereas ≤60
for controls). The increased effect size can help improve statistical power of our study.
Future research with a larger sample size is expected to further validate the results. Second,
due to the nature of the sliding window approach, functional dynamics analysis is highly
sensitive to head motions. Therefore, we took extra precautions during the setup before
each scan and applied a restrictive cut-off threshold of 1.5 mm to minimize potential
errors caused by head motions. In addition, factors such as injury severity, number of
injuries, and time interval between injury and study visit may introduce confounders of
the results. Nevertheless, our supplementary analyses showed that the detected functional
alterations did not show significant correlations with injury severity, number of injuries,
and time intervals. Third, we applied the commonly used cluster-based thresholding
method for network node region determination. This conventional thresholding method
can mistakenly exclude regions with significantly activation, if their size were smaller
than the cluster threshold. Therefore, future studies should consider a combination of
the cluster size and activation density thresholds for network node region determination,
with parameters being adaptively adjusted according to the size of the applied regions.
Such improved thresholding method can better balance the potential false-positive and
false-negative errors in the network node selection step.

5. Conclusions

In summary, the current study reported significant alterations of the topological
properties of the sustained attention processing network and their temporal dynamics in
children with severe post-TBI attention deficits, especially in the temporal and parietal
regions. Additionally, these system-level functional alterations were significantly linked
with the elevated inattentive behaviors in the group of TBI-A. These findings provide
valuable insight into the neurobiological and neurophysiological substrates associated
with the onset of post-TBI attention deficits in children. This study also provided positive
evidence that analysis of functional network dynamics can demonstrate the temporal
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instability of the functional brain pathway characteristics of TBI-related attention deficits
in children.
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