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Abstract: Accumulating evidence shows that brain functional deficits may be impacted by damage
to remote brain regions. Recent advances in neuroimaging suggest that stroke impairment can be
better predicted based on disruption to brain networks rather than from lesion locations or volumes
only. Our aim was to explore the feasibility of predicting post-stroke somatosensory function from
brain functional connectivity through the application of machine learning techniques. Somatosen-
sory impairment was measured using the Tactile Discrimination Test. Functional connectivity was
employed to model the global brain function. Behavioral measures and MRI were collected at the
same timepoint. Two machine learning models (linear regression and support vector regression)
were chosen to predict somatosensory impairment from disrupted networks. Along with two feature
pools (i.e., low-order and high-order functional connectivity, or low-order functional connectivity
only) engineered, four predictive models were built and evaluated in the present study. Forty-three
chronic stroke survivors participated this study. Results showed that the regression model employing
both low-order and high-order functional connectivity can predict outcomes based on correlation
coefficient of r = 0.54 (p = 0.0002). A machine learning predictive approach, involving high- and
low-order modelling, is feasible for the prediction of residual somatosensory function in stroke
patients using functional brain networks.

Keywords: functional connectivity; machine learning; regression; predictive modelling; stroke;
somatosensory function

1. Introduction

Stroke is now the second largest cause of death and disability, with a lifetime risk of
1 in 4 [1]. There are more than 80 million people living with the consequences of stroke
worldwide [1]. A good recovery of brain function, and motor and somatosensory function
in particular, is crucial for regaining independence and quality of life for most people
who have experienced a stroke [2–4]. However, there has been rare success in predicting
patient’s recovery and outcome using clinical assessment alone [4,5].
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Intuitively, neurological impairment following stroke is caused by damage to brain
regions. Following this perspective, previous studies have mainly focused on the mapping
of symptoms to a focal lesion. However, accumulating evidence has demonstrated that
brain functional deficits can extend to remote connected brain areas [6,7]. This is consistent
with recent evidence from us that structural connectivity remote from lesions correlates
with somatosensory outcome post-stroke [8].

Neuroimaging biomarkers have clinical significance for research translation as they
can provide clinically useful information when planning the personalized rehabilitation of a
patient. While the benefits of employing neuroimaging predictors of outcome and recovery
have been highlighted in a recent consensus statement, the relative lack of diagnostic and
predictive biomarkers for somatosensory outcomes was also identified [6]. Functional
biomarkers, including task-related activation and resting-state functional connectivity were
considered as a developmental priority [6]. Predictive modelling of the association between
somatosensory outcome and functional brain networks is indicated.

Brain connectomics is a field studying the topological characteristics of the brain
network or ‘connectome’—the comprehensive map of the neural elements (nodes) and
their inter-connections (edges) that constitute the brain. At a macroscale, two types of
connectomes are commonly used, i.e., the functional and structural connectome using
functional MRI (fMRI) and diffusion-weighted MRI (dMRI), respectively [9]. Increasing
evidence supports that the brain should be modelled as an ensemble of functional networks
rather than focusing on local functional brain areas. Human imaging data show strong
associations between connectivity and outcome after stroke [8,10–13].

Resting-state functional connectivity has been emerging as a powerful tool to map the
functional networks across the whole brain using either Blood-oxygen-level dependent
(BOLD) fMRI [14] or arterial spin labelling perfusion fMRI [15,16]. Resting-state functional
connectivity provides a direct and simple measure of regional interaction without any
explicit task requirements, as is needed for task-based fMRI. While resting-state functional
connectivity measures are mostly used at the group level, they could also provide personal-
ized information at the individual level, which provides the potential of using single-subject
data for individual diagnosis and prognosis. Distributed brain networks are shown to be
involved in processing somatosensory information, including both hemispheres, primary
and secondary somatosensory regions, and subcortical areas [17]. The extent to which
an individual may experience interruption to one or more regions within this distributed
brain network after stroke likely impacts the nature and severity of somatosensory deficits.

Certain brain subnetworks have been demonstrated to be compromised in stroke sur-
vivors following cortical or subcortical lesions, with dysfunction manifested in behavioral
impairment [18]. For example, in our previous studies using task-related brain activation in
stroke survivors with impaired touch sensation, evaluated using the Tactile Discrimination
Test (TDT) [19], we showed distinct differences in patterns of brain activation between
stroke survivors with varying lesion location [20] and in age-matched healthy controls [21]
whilst performing a touch discrimination task in the scanner. We have also applied univari-
ate analyses to explore the relationship between performance on the TDT and functional
brain networks, using both resting-state and seed-based functional connectivity [13,22].

However, to date we have not been able to predict residual somatosensory function
from interruption to brain networks, partly because of the complex interactions between
brain regions and the limitations in the current methods interrogating these effects. Method-
ologically, these limitations could be attributed to the following reasons:

Firstly, conventional resting-state functional connectivity is the most popular tech-
nique for measuring functional connectivity; this is also referred to as low-order functional
connectivity (LOFC) because it simply measures the temporal correlation of the resting-
state fMRI time courses between any pair of brain regions. More recently, the concept of
‘high-order’ functional connectivity (HOFC) has been proposed to measure the “correlation
of the correlation” [23,24]. In LOFC, each row (column) of the connectome encodes the
correlation of BOLD time series between one area to all the other areas in the brain in
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a pairwise manner; in HOFC, each row (column) encodes the correlation between one
row (column) to every other row (column) of the LOFC. In this way HOFC is designed to
capture the important interactions among all related brain regions (e.g., the correlations
among different edges in a network), essentially characterizing the high-order relationships
between brain regions and networks by including global anatomical information. As
demonstrated in Zhang and colleagues’ work [23,24], HOFC has been shown to be useful
in providing ‘high-level’ information for brain disease studies and for building predictive
models. Simultaneous estimation of both LOFC and HOFC might also be of value [25].

Second, whole-brain connectomics (region-based or voxel-wise) involves high-
dimensional data, which essentially requires multivariate analysis. However, univari-
ate analysis has been predominantly employed for such investigations in previous stud-
ies [13,26]. Therefore, it is expected that new insights into stroke recovery can be obtained
by employing machine learning techniques due to their multivariate capabilities.

In the current study, we aim to investigate whether the residual somatosensory func-
tion of stroke survivors, estimated by TDT scores, can be predicted from resting-state
functional connectivity using multivariate predictive modelling techniques. Given the
observation that brain functional and structural disruptions can extend to remote con-
nected brain areas [6–8], we hypothesize an association between post-stroke residual
somatosensory function and functional brain connectivity based on predictive modelling
using machine learning techniques, and that the strength of the relationship will be en-
hanced when high-order relationships are included. Specifically, we seek to identify the
functional connectivity pathways that are closely associated with somatosensory impair-
ment. This preliminary work might provide new insights to disruption of functional brain
networks associated with impaired somatosensory function after stroke, thereby advancing
the foundation for the development of biomarkers of somatosensory recovery and novel
therapeutic interventions in the future.

2. Materials and Methods
2.1. Participants

Participants were recruited for the Connecting New Networks for Everyday Contact
through Touch (CoNNECT) study (https://anzctr.org.au/Trial/Registration/TrialReview.
aspx?id=364147, accessed date: 18 October 2021). Inclusion criteria included: (1) at least
three months post first episode of stroke (ischaemic or haemorrhagic); (2) experiencing
somatosensory impairment in the upper limb; (3) medically stable; (4) able to give informed
consent; (5) able to comprehend simple instructions; (6) right-hand dominant. Exclusion
criteria included: (1) a brainstem infarct; (2) previous neurological dysfunction; (3) history
of impaired hand function; (4) peripheral neuropathy in upper limbs; (5) evidence of
neglect on standard neuropsychological tests; (6) not suitable for MRI scanning. Informed
consent was obtained from all participants and all protocols were approved by hospital
and university Institutional Review Boards.

A total of 43 participants with chronic stroke were recruited, of which 2 were excluded
due to excessive head motion and 1 removed due to significant signal dropout in the
anterior region of the brain caused by an implant. As a result, 40 stroke survivors were
included in the present study. Demographic and clinical details of participants are provided
in Table 1.

https://anzctr.org.au/Trial/Registration/TrialReview.aspx?id=364147
https://anzctr.org.au/Trial/Registration/TrialReview.aspx?id=364147
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Table 1. Demographics of the participants.

Stroke (n = 40)

Sex, F/M 11/29
Mean age, years (SD) 51.8 (13.2)
Stroke type, I/H 32/8
Stroke chronicity, mean months (SD) 18.6 (22.1)
Side of lesion, L/R 20/20
Lesion location, C/S/M 19/12/9
Lesion size (c.c.) [Q1, Q3] [12.5, 70.1]
TDT contralesional affected hand, mean (SD) * 22.6 (23.2)
TDT ipsilesional hand, mean (SD) 65.9 (18.6)

I = ischemia; H = Haemorrhage; C = cortical lesion; S = subcortical lesion; M = mixed cortical and subcortical
lesion; TDT = the Tactile Discrimination Test [19]; n = number of subjects; SD = standard deviation; Q1 = lower
quartile; Q3 = upper quartile. * Criterion of abnormality for the TDT is 60.25 Area Under the Curve (AUC).
A score (AUC) greater than 60.25 indicates intact tactile discriminative sensibility (relative to normative data).
Impaired tactile discrimination is suggested if the area under the curve score is less than or equal to 60.25.

2.2. Tactile Discrimination

The TDT test was performed within 48 h of the MRI scan and 2-weeks earlier. The
average scores of the two baseline measures were used [19]. Participants are required
to discriminate differences in finely graded plastic texture surfaces using the method of
constant stimuli and a three-alternative forced-choice design. Five texture differences are
each sampled across five test runs (i.e., twenty-five trials of triplet-textures in total). The
area under the curve (AUC) score is then calculated to determine texture discrimination,
after accounting for chance responses. The TDT has age-appropriate normative standards,
high test-retest reliability, and good discriminative properties [19].

2.3. MRI Data Acquisition

All of the MRI data were collected on a 3T Siemens Tim Trio (Siemens, Erlangen,
Germany) with a 12-channel head coil. Resting-state BOLD fMRI data were acquired
with a gradient-echo echo-planar imaging (EPI) sequence using the following parame-
ters: TR/TE= 3000/30 ms, voxel size = 3 mm isotropic, number of slices = 44, matrix
size = 72 × 72, number of time points = 140. Participants were instructed to keep eyes
closed and stay awake during the scan, which was further confirmed when scans were
completed.

Anatomical images were acquired with a three-dimensional Magnetization-Prepared-
Rapid-Gradient-Echo (MPRAGE) sequence, using the following parameters:
TR/TE/TI = 1900/2.55/900 ms, flip-angle = 9◦, 1 mm isotropic resolution, field-of-
view = 256 × 256 mm2, 160 partitions. Two-dimensional T2-weighted fluid attenuation in-
verse recovery sequence (T2 FLAIR) images were acquired axially for delineation of infarcts,
with the following parameters: TR/TE = 6000/388 ms, voxel size = 0.5 × 0.5 × 3 mm3.

2.4. Lesion Mask Creation

Lesion Masks were manually drawn on 2D Axial FLAIR images using MRIcron
(https://www.nitrc.org/projects/clinicaltbx/, accessed date: date: 3 October 2021) by a
trained neuroimaging researcher. These lesion masks were quality-checked and modified
as necessary by an experienced neurologist to ensure accurate delineation of the infarct.

2.5. Data Analysis

All of the MR image pre-processing was conducted using the SPM8 toolbox
(https://www.fil.ion.ucl.ac.uk/spm/software/spm8/, accessed date: 2 September 2020)
with the following pre-processing steps: (1) realigning the BOLD data; (2) co-registering
the BOLD data obtained in step (1) to T2 FLAIR space; (3) co-registering the lesion mask
to T1 anatomical space; (4) applying segmentation-normalization to T1 and lesion mask
obtained in step (3) by using the clinical toolbox for SPM (https://www.nitrc.org/projects/

https://www.nitrc.org/projects/clinicaltbx/
https://www.fil.ion.ucl.ac.uk/spm/software/spm8/
https://www.nitrc.org/projects/clinicaltbx/
https://www.nitrc.org/projects/clinicaltbx/
https://www.nitrc.org/projects/clinicaltbx/
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clinicaltbx/, accessed date: 3 October 2021); (4) co-registering the BOLD data obtained
in step (2) to T1 space; (5) normalizing the BOLD data obtained in step (4) to MNI
template; (6) smoothing the BOLD data obtained in step (5) with smoothing kernel of
FWHM = [6 6 6]. Independent component analysis was then applied to pre-processed
fMRI data using FSL’s Melodic tool (https://fsl.fmrib.ox.ac.uk/fsl, accessed date: 5 August
2021). Artifact-related independent components were manually identified and removed by
applying FSL’s fsl-regfilt command.

2.6. Construction of Functional Connectomes

Initially, the automated anatomical labelling (AAL) template was employed to parcel-
late the entire brain into 116 regions [27]. Subsequently, the cerebellum was excluded due
to the potential issue of low fidelity of signal measurement with BOLD signal from cere-
bellum [28], thus yielding the 90-region AAL parcellation. Region-wise time courses were
calculated by averaging voxel-wise time courses across all brain regions, followed by the
computation of connection strength by using Pearson correlation, yielding a connectivity
matrix of size 90 × 90 for each subject. Firstly, LOFCs were constructed to measure the rela-
tionship between brain region pairs using Pearson correlation between any pair of regions.
In addition, HOFCs [23] were also computed to capture second-level relationships using
inter-regional similarity of the FC topographical profiles, i.e., measuring the ‘correlation of
the correlation’ described previously.

2.7. Regression Predictive Modelling

To predict residual somatosensory function (using the TDT scores as the indicator)
from participants who had experienced a stroke, functional connectomes were employed as
potential features. Specifically, the predictive modelling was conducted with two regression
models: linear regression (LR), and support vector regression (SVR) with linear kernels. The
prediction framework is described as follows (see Figure 1 for flow chart of the framework).
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2.7.1. Feature Engineering

Feature engineering aims to transform data into features that can optimally train
the predictive models, resulting in improved model accuracy on unseen data. Predictive
outcomes could be largely affected by the obtained features. Importantly, the extrac-
tion of more accurate features leads to higher flexibility in choosing models, or even
simplifying model selection. In this study, feature engineering employed the following

https://www.nitrc.org/projects/clinicaltbx/
https://www.nitrc.org/projects/clinicaltbx/
https://fsl.fmrib.ox.ac.uk/fsl
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two feature pools: (1) LOFC; and (2) the combination of LOFC and HOFC (denoted as
LOFC + HOFC hereafter).

As for neuroimaging data, they often have a much larger dimension size than the sam-
ple size, which are easily subject to overfitting. To address this issue, sparse feature selection
approaches are of particular interest, such as the Least Absolute Shrinkage and Selection
Operator (LASSO) approach [29]. Recently, a stability selection approach was proposed to
solve the notoriously difficult problem of variable selection. For high-dimensional data,
stability selection was demonstrated to be very useful in selecting sparse variables. The ro-
bustness of stability selection has been already demonstrated in estimating sparse network
edges from high-dimensional brain connectome data [30,31]. Therefore, the randomized
LASSO with stability selection was conducted to select optimal and robust features for
predictive modelling using sklearn (scikit-learn.org, accessed date: 20 October 2021).

2.7.2. Model Validation: Leave-One-Out Cross-Validation

Given that a limited number of stroke participants (N = 40) were available for training
predictive models, a nested leave-one-out cross-validation approach was employed, with
inner- and outer-loop iterations. In each outer-loop iteration, one participant is retained as
the test set, and the remaining N-1 participants were considered as the training set; feature
selection was applied only to the training set ensuring blind test condition. The inner-
loop leave-one-out cross-validation included N-1 subjects inputted from the outer-loop
iterations, with N-2 subjects as the training set and one participant retained as the test set,
with which hyperparameters tuning for support vector regression (C and gamma) was
conducted in the inner-loop iteration. Optimal hyperparameters were not fully consistent
across the N repetitions due to relatively low signal to noise ratio of fMRI data. As
such, a majority vote was employed to choose the final optimal hyperparameters, i.e., a
hyperparameter was designated as the final optimal one if it was estimated as the optimal
hyperparameter (i.e., achieving the highest correlation coefficient (r) between predicted
and true TDT scores) by the most folds. The trained predictive model on each training set
was then applied to the retained participant, predicting the TDT score of that participant.

With the nested leave-one-out cross-validation conducted, the TDT score of each
participant was predicted using a specific model and obtained features associated with
the training set. The predicted TDT scores were then correlated with true TDT scores,
with a higher correlation coefficient indicating better performance in predicting TDT
scores. Finally, the prediction outcomes were calculated and compared between the two
regression models, linear regression, and support vector regression, using either LOFC or
LOFC + HOFC as the potential feature pools.

2.7.3. Final Model Building

Ideally, selected features are expected to be consistent across all folds while conducting
leave-one-out cross-validation. However, selected features are not necessarily the same
among all folds, in which case a final optimal feature set is needed for constructing the
final model. To achieve this goal, we empirically selected only those that were selected
as features from not less than half of the folds from the leave-one-out cross-validation
implementation. The selected set of features were subject to further feature selection on
all stroke participants using randomized LASSO as described above. The final model was
trained on all available participants, producing the final model for future prediction.

3. Results

Our regression prediction modelling results have shown that the accuracy of predict-
ing residual sensory function from resting-state functional connectivity using 90-region
AAL parcellation is significantly better than by chance, i.e., p < 0.05 for both regression
models (i.e., LR and SVR) with either LOFC or LOFC + HOFC as feature pools, as shown
in Table 2.

scikit-learn.org
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Table 2. Accuracy of predicting TDT scores from stroke participants using resting-sate functional
connectivity. Note: Significant p values are in bold font.

Number of Brain Regions Features Regression Method Correlation Coefficient (r) p Value

90

LOFC
LR 0.28 0.038

SVR 0.31 0.024

LOFC + HOFC
LR 0.45 0.002

SVR 0.54 0.0002

Note: LOFC: low-order functional connectivity; LOFC + HOFC: low-order functional connectivity + high-order
functional connectivity; LR: linear regression; SVR: support vector regression.

When employing support vector regression as the regression method, the comparisons
between 2 feature pools were conducted, i.e., LOFC vs. LOFC + HOFC. Figure 2 shows
that while both predictive models (support vector regression with LOFC or support vector
regression with LOFC + HOFC) can predict TDT scores with relatively high accuracy (i.e.,
with relatively high correlation coefficient values: 0.54 and 0.31, respectively), the support
vector regression model with LOFC + HOFC outperforms support vector regression with
LOFC only.
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Figure 2. Plots of predicted vs. true Tactile Discrimination Test (TDT) scores by employing sup-
port vector regression (SVR) with either LOFC or LOFC + HOFC with feature pools (cerebellum
excluded). Correlation coefficients, r, between predicted and true TDT scores are 0.54 and 0.31 for
SVR_LOFC_HOFC_90AAL, SVR_LOFC_90AAL, respectively. Note: SVR_LOFC_HOFC_90AAL
represents the SVR model using both LOFC and HOFC features based on automated anatomical
labelling (AAL) atlas, while SVR_LOFC_90AAL represents the SVR model using LOFC features
only based on AAL atlas. LOFC = low-order functional connectivity. HOFC = high-order functional
connectivity.

With respect to linear regression, similar trends to the support vector regression have
been identified. Specifically, the employment of both LOFC and HOFC provides higher
accuracy in predicting TDT scores (Figure 4). Nevertheless, compared with support vector
regression, the regression models with linear regression achieve a lower overall accuracy,
i.e., lower r values and higher p values (see Figures 2 and 3 and Table 2).
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Figure 3. Plots of predicted vs. true Tactile Discrimination Test (TDT) scores by employing
linear regression (LR) with either LOFC or LOFC + HOFC with feature pools (cerebellum ex-
cluded). Correlation coefficients, r, between predicted and true TDT scores are 0.45 and 0.28 for
LR_LOFC_HOFC_90AAL and LR_LOFC_90AAL, respectively. Note: LR_LOFC_HOFC_90AAL
represents the LR model using both LOFC and HOFC features based on automated anatomical
labelling (AAL) atlas, while LR_LOFC_90AAL represents the LR model using LOFC features only
based on AAL atlas. LOFC = low-order functional connectivity. HOFC = high-order functional
connectivity.

Based on the model comparisons, the model achieving highest accuracy, i.e., the
support vector regression model with LOFC + HOFC achieving highest r value, was
selected as the best model, with which the optimal features were also identified. Specifically,
13 functional network edges were identified as important features that can predict TDT
scores (Figure 4). The brain regions connected by these edges include: Left precentral gyrus;
left superior frontal gyrus-dorsal part; left inferior frontal gyrus-opercular; right rolandic
operculum; left superior frontal gyrus-medial part; left insula; right insula; left cuneus; right
inferior occipital gyrus; right fusiform gyrus; left postcentral gyrus; left inferior parietal
lobe; right supramarginal gyrus; left precuneus; left putamen; left pallidum; right pallidum;
left temporal pole-middle; right temporal pole-middle; left inferior temporal gyrus.
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4. Discussion

In this preliminary study, we investigated the feasibility of applying a machine learn-
ing approach to predict somatosensory impairment after stroke using resting-state func-
tional connectivity data. Specifically, texture discrimination of the hand was measured
using the TDT [19]. As the brain is organized into a set of distributed networks, focal stroke
lesions could affect functions in remote but connected regions [6–8], which suggests that
stroke impairment could be better understood by using a brain network model. As such,
stroke impairment may be modelled relative to the disruption of network edges (i.e., con-
nection strength), in which important features (functional network edges) can be identified
with a proposed machine learning approach. Our results demonstrate the potential of the
proposed regression predictive approach for predicting residual somatosensory function,
i.e., tactile discrimination function of the hand, from participants with stroke using a brain
networks approach. These relationships are important to be established as a foundation
for biomarkers at a point in time (for diagnosis/classification), at future time (for predic-
tion), or in association with evidence of neuroplastic changes associated with spontaneous
and/or treatment-facilitated recovery (biomarker of mechanisms underlying recovery).
Further, linking the underlying impairment with disruption to functional brain networks
provides new insights that can be used to inform the development of neuroscience-based
interventions. For example, knowledge that the behavioral TDT outcome is better predicted
with inclusion of high-order relationships in the model suggests the potential explanatory
value of interactions among not only brain regions, but also between brain networks. It
also identifies the specific regions and networks involved, highlighting the value of global
anatomical information rather than relying on focal lesion alone.

The main difficulty of utilizing brain networks in the predictive modelling of stroke
outcomes lies in the fact that there are a greater number of features (p~thousands of features)
than the number of samples (n ~ tens to hundreds of subjects), i.e., p >> n, which usually
leads to overfitting issues. In addition, the reliability of potential features could largely
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affect the performance of the predictive models. Yet, these are real and common issues
in clinical studies. Nevertheless, the combination of LOFC with HOFC achieved higher
performance of predictive modelling (r = 0.54 and 0.45) than that with LOFC only (r = 0.31
and 0.28). Our findings suggest that feature engineering, i.e., the process of generating
features that can be employed to build predictive models, is a crucial step for successfully
predicting stroke outcomes using the resting-state functional connectivity data.

Given the common issue of p >> n for neuroimaging data, we attempted to reduce the
number of features, i.e., p, so that the overfitting issue could be alleviated. Firstly, to achieve
this goal, feature selection was explicitly implemented so that only a limited number of
the most important features were selected. Our results showed that the employment
of the stability selection approach can effectively extract a small number of important
features, i.e., sparse networks were obtained, therefore alleviating the overfitting issue.
Secondly, with the consideration of the relatively small number of participants, we elected
to use simple models rather than complex models (random forest etc.), i.e., only linear
regression (LR) and support vector regression (SVR) models were employed. Results have
demonstrated the outperformance of support vector regression with linear kernel (i.e.,
r = 0.54 and 0.31 for LOFC + HOFC vs. LOFC only) over linear regression (i.e., r = 0.45
and 0.28 for LOFC + HOFC vs. LOFC only). Such observed differences between support
vector regression and linear regression might be well explained by the “winner-take-all”
property of linear regression, i.e., when two features are highly correlated, the weight
assigned to the second feature is close to 0, whereas the weights of both features should be
similar. Therefore, support vector regression is preferred over linear regression for brain
functional connectivity studies, i.e., functional connections highly correlated should have
similar weights.

As a final optimal model for predicting residual somatosensory function (TDT scores),
those 13 features identified are considered crucial in somatosensory information transfer
processing. Such connectivity roles are well supported by the comprehensive functions
of involved brain regions. Interestingly, those regions can be roughly classified into three
categories according to their respective roles in the literature: (i) brain regions involving
basic somatosensory and/or motor functions (low level sensory perception): precentral
gyrus and postcentral gyrus [32]; (ii) brain regions performing multisensory information
integration: inferior parietal lobule [33], insula [34], and precuneus [35]; (iii) brain regions
responsible for multisensory information processing (high-order cognitive processing):
superior frontal gyrus—dorsal and medial parts [36], rolandic operculum [37], cuneus [38],
inferior occipital gyrus [39], fusiform gyrus [38], supramarginal gyrus [40], putamen [41],
pallidum [42], temporal pole—middle [43], and inferior temporal gyrus [44]. Specifically,
those brain regions in multisensory information integration (category ii) act as bridges and
transfer information from regions involved in basic somatosensory and/or motor functions
(category i) to regions in multisensory information processing (category iii).

To the best of our knowledge, this is the first attempt to employ multivariate mod-
elling techniques as a tool to reveal the relationship between somatosensory impairment
after stroke and brain networks. Compared with previous studies that commonly used
univariate analysis [13], our study employed a multivariate approach to identify the re-
lationship between whole-brain connectome and stroke impairment in somatosensory
function. Further, we adopted both low-order and high-order FC as a feature pool. This
approach achieved higher correlation scores relative to the model that only employed
low-order FC as a feature pool, which is consistent with the findings of previous stud-
ies [23,24]. Furthermore, this multivariate approach provides a potential approach to
identify important network edges from the whole-brain network that significantly affect
the residual somatosensory function. Knowledge that the behavioral TDT outcome is better
predicted with inclusion of high-order relationships in the model suggests the potential
explanatory value of including an index of anatomical edges. Further, evidence of the
feasibility of establishing a relationship between brain regions and brain networks and
touch discrimination function at a single point in time can provide a foundation for future
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definition of neuroimaging biomarkers for predicting stroke recovery and rehabilitation if
very large data sample size is available.

Limitations and Future Work

There are a few methodological limitations that need to be considered. Firstly, the
limitation of the current study is that only a limited number of participants were recruited
and analyzed, i.e., 40 in our final analysis, whereas machine learning typically requires a
large amount of data. This could lead to the following issues: (1) the effect of overfitting
is likely strong; (2) outliers might have much more adverse effect on prediction; (3) noise
becomes more of an issue. However, clinical neuroimaging data often have limited number
of participants, often in the magnitude of several tens [45]. In the future, multicenter
studies might be leveraged so that the potential of machine learning techniques can be
largely realized.

Secondly, the focus of the current study was a cohort of stroke survivors, in which
lesions are distributed across the brain. It remains an open question as to how to deal with
those lesioned brain regions. In this study, lesion masks were applied when normalizing
the brain using the Clinical Toolbox in SPM (https://github.com/neurolabusc/Clinical),
which accounted for the lesions during the preprocessing. We did not apply a lesion mask
when constructing connectomes. This is because we preferred not to exclude the potential
disrupted connections, which would otherwise be removed completely by applying a
lesion mask. We reasoned that while structural damage is likely to impact functional
connectivity, the relationship between structure and function is not necessarily 1:1, and
functional connectivity may spread over multiple anatomical paths [46]. To our best
knowledge, there is no consensus on how to address this issue optimally. Future studies
may be required to investigate the optimal way of dealing with the lesions.

While our results show that the accuracy of predicting TDT scores from brain connec-
tomes using regression analysis is significantly better than by chance, the best predictive
model with selected features can explain only ~30% variance, which likely indicates that
there might still be large room for improvement. Practically, given that only functional con-
nectivity has been used as a tool to investigate the relationship among brain networks and
stroke impairment, structural connectivity (or connectomes from other imaging modalities)
could be included to further improve the predictive outcome, especially as it is comple-
mentary to functional connectivity. Alternatively, as proposed in a previous study [47],
functional connectivity and structural connectivity could be combined into a single image,
which could provide predictive modelling with features that contain complementary in-
formation from both modalities. Our work in the future will focus on how to improve the
prediction outcomes via multi-modal connectomes.

5. Conclusions

This preliminary study provides a multivariate approach for investigating the relation-
ship between stroke impairment and functional brain networks. Our findings demonstrate
the feasibility of predicting post-stroke residual somatosensory function using resting-state
functional connectivity and predictive modelling. Specifically, by employing a robust
feature selection approach, i.e., randomized LASSO based on stability selection, a small
number of the most important features (brain network edges) are selected. Using this
approach, stroke impairment may be more directly related to brain networks when employ-
ing machine learning techniques. The role of interconnected brain regions involved with
basic somatosensory and/or motor functions, multisensory information integration, and
multisensory information processing were revealed in association with clinical somatosen-
sory impairment. While our study focuses on somatosensory impairment, this approach
could be generalized to other stroke impairments as well. Thus, this study develops a
possible avenue for linking stroke impairment to functional brain networks. However, the
validity of the proposed approach needs to be evaluated with so-called ‘big data’, which is

https://github.com/neurolabusc/Clinical
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likely to facilitate the extraction of neuroimaging biomarkers, providing clinically useful
information when planning the personalized rehabilitation of a patient.

Author Contributions: Formal analysis, X.L., C.-L.K. and C.-H.Y.; funding acquisition, L.M.C.;
investigation, X.L., C.-L.K., C.-H.Y., A.C. and L.M.C.; methodology, X.L., L.M.C., C.-L.K. and C.-H.Y.;
project administration, X.L. and L.M.C.; resources, X.L., C.-L.K., C.-H.Y., P.G., G.L., A.C. and L.M.C.;
software, X.L.; supervision, X.L. and L.M.C.; Validation, X.L.; visualization, X.L.; writing—original
draft, X.L.; writing—review & editing, X.L., C.-L.K., C.-H.Y., A.C. and L.M.C. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Health and Medical Research Council of Aus-
tralia, grant numbers 307902, 1022694, 1077898, 1113352, 1134495, and 2004443.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Human Ethics Committees of Austin Health (protocol
code H2013/04915, approved 14 March 2013), La Trobe University and Northern Health.

Informed Consent Statement: Informed consent was obtained from all participants involved in
the study.

Data Availability Statement: Data are available upon reasonable request from the senior author LMC.

Acknowledgments: We acknowledge support for conduct of the research from the National Health
and Medical Research Council of Australia and thank the people with stroke who participated in
the study.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Names and corresponding abbreviations of the brain regions involved in the selected
features.

Abbr. Brain Region Abbr. Brain Region

CUN Cuneus PreCG Precentral gyrus
FFG Fusiform gyrus PoCG Postcentral gyrus
IFGoperc Inferior frontal gyrus-opercular PUT Putamen
INS Insula ROL Rolandic operculum
IOG Inferior occipital gyrus SFGdor Superior frontal gyrus-dorsal part
IPL Inferior parietal lobule SFGmed Superior frontal gyrus-medial part
ITG Inferior temporal gyrus SMG SupraMarginal gyrus
PAL Pallidum TPOmid Temporal pole-middle
PCUN Precuneus
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