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Abstract: One of the daunting features of the brain is its physiology complexity, which arises from
the interaction of numerous neuronal circuits that operate over a wide range of temporal and spatial
scales, enabling the brain to adapt to the constantly changing environment and to perform various
cognitive functions. As a reflection of the complexity of brain physiology, the complexity of brain
blood-oxygen signal has been frequently studied in recent years. This paper reviews previous
literature regarding the following three aspects: (1) whether the complexity of the brain blood-oxygen
signal can serve as a reliable biomarker for distinguishing different patient populations; (2) which
is the best algorithm for complexity measure? And (3) how to select the optimal parameters for
complexity measures. We then discuss future directions for blood-oxygen signal complexity analysis,
including improving complexity measurement based on the characteristics of both spatial patterns of
brain blood-oxygen signal and latency of complexity itself. In conclusion, the current review helps
to better understand complexity analysis in brain blood-oxygen signal analysis and provide useful
information for future studies.

Keywords: complexity analysis; blood-oxygen signal; biomarker; entropy

1. Introduction

One of the distinct features of the brain is its daunting complexity, which remains a
popular research topic [1]. Dating back to the 1930s, Sigmund Freud proposed to investi-
gate the relation between mental illness and brain complexity but eventually failed due to
the lack of reliable analysis methods [2]. After continuous exploration and development,
an academic discipline called complexity science emerged. As the concepts and methodol-
ogy from mathematics, physics, and computer sciences were introduced into the field of
psychology, complexity science also had its contribution in quantifying the behavioral and
emotional problems of patients with mental disorders in the past two decades. For example,
Paulus et al. [3] found that compared with healthy controls, schizophrenic patients showed
more predictable behavior (i.e., less complex) during a consecutive binary choice task.
Similarly, researchers found that self-rated consecutive daily record of mood completed
by patients with bipolar disorder exhibited a more organized pattern (i.e., less complex)
than healthy controls [4]. In many cases, aging and diseases often come along with loss
of physiological complexity [5,6]. With the development of brain imaging techniques in
recent years, brain blood-oxygen signal has been widely used as an objective indicator of
brain activity. Thus, brain signal complexity has been used as an external and objective
indicator of complexity of brain activity. In this paper, we provide a review of recent studies
(since 2010) measuring complexity of blood-oxygen signal and discuss opportunities and
challenges in this field.
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2. Complexity of Brain Blood-Oxygen Signal
2.1. Physiological Complexity of Brain

Complexity is a characteristic of a system and is inherently inseparable from it. Intu-
itively, a complex system can be described as a system that consists of many interacting
parts, for example, the metro systems of New York City. The human brain, which is
composed of innumerable neurons and synapses, undoubtedly exhibits its astonishing
complexity. Although there is an ongoing debate on how to define and measure complexity
mathematically, two basic views proposed by Herbert Simon [7] have been widely adopted.
First, most of the complex systems are hierarchically organized and can be decomposed
into subsystems and interactions among them. Second, complexity is not randomness.
In fact, it is a mixture of randomness and regularity. As illustrated in Figure 1, either highly
ordered (e.g., crystal) or highly random (e.g., gas) systems are of low complexity. A system,
however, when showing coexistence of both order and randomness (e.g., the human brain),
exhibits high complexity. As Simon suggested [7], the physiological complexity of the brain
does not only arise from the interaction of numerous neuronal circuits that operate over
a wide range of temporal and spatial scales, but is also inextricably bound to its unique
physiological structure for the coexistence of randomness and regularity [8,9].
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Figure 1. The relationship between randomness and complexity. Reprinted with permission from
ref. [10]. Copyright 2015 John Wiley and Sons.

2.2. Measuring Brain Complexity through Brain Blood-Oxygen Signals

Despite the definition of complexity by Simon, quantifying brain complexity directly
is still difficult. This is because deducting the whole brain into a myriad of subsystems is
extremely resource and time consuming, and it appears to be unpractical in application.
Therefore, researchers use the complexity of brain neurophysiological outputs as an indirect
measure of brain complexity.

Blood-oxygen signal is a common brain neurophysiological output, which reflects
changes in cerebral blood flow and oxygen consumption resulted from brain activities.
One of the most widely used signals is the blood oxygen level-dependent (BOLD) signal
obtained by functional magnetic resonance imaging (fMRI). Besides, there are other kinds
of blood-oxygen signals such as oxyhemoglobin (O2Hb) and deoxyhemoglobin (HHb)
signals obtained by functional near-infrared spectroscopy (fNIRS). The complexity of
brain blood-oxygen signal can be used as a valid estimate of physiological complexity
of the brain. The majority of brain blood-oxygen complexity measurements are entropy-
based algorithms [11] such as approximate entropy (ApEn), sample entropy (SampEn) and
permutation entropy (PE). For different types of complexity measurements, the algorithms
vary. However, in general, they can be evaluated with Equation (1):

Complexitycategory(pos) = Cal_Complexiycatetory[position, parmeters, siganl] (1)



Brain Sci. 2021, 11, 1415 3 of 14

Category defines the type of algorithm. Parameters specify the required parameters
for a specific complexity algorithm. Position denotes the location information: for BOLD
signal obtained with fMRI, position represents a certain voxel location; for O2Hb and HHb
signals, position represents the corresponding location of a certain channel. When the
necessary information (category, position, parameters, and signal) is given, the complexity
value can then be calculated. Specifically, if the complexity algorithm is a certain type of
entropy, the whole brain complexity pattern, or in other words, brain entropy map (BEM)
can be obtained by calculating entropy value at each spatial location.

3. Current Studies in Complexity of Brain Blood-Oxygen Signals

Table 1 summarizes studies on complexity of blood oxygen signals since 2010. These studies
can be divided into two categories: one is biomarker-oriented studies aiming to apply
complexity measures of brain blood-oxygen signals as a biomarker to characterize patient
populations. The other is methodology-oriented studies aiming to develop measurements
of brain blood-oxygen signal complexity. Based on aims of the studies from these two
categories, this chapter aims to review current literatures in the following three aspects.

3.1. Brain Blood-Oxygen Signal Complexity as a Biomarker

Complexity is a nature of a system and inherently inseparable from it. According to
the loss of physiological complexity theory, brain physiological complexity is reduced in
many disease states and aging, reflected in the reduction of blood-oxygen signal complex-
ity [6,12–14]. Findings from many studies on resting-state brain blood-oxygen activities are
consistent with this theory as shown in Table 1. For example, Sokunbi et al. [15] found that
ADHD patients showed lower mean whole brain SampEn than healthy controls in resting
state. In another similar study, Sokunbi [16] found the mean whole brain SampEn of young
adults is significantly higher than older adults in resting state. In most cases, however, sig-
nificant whole brain BOLD SampEn differences were not observed. Therefore, researchers
usually take advantage of the high spatial resolution BOLD signals obtained with fMRI
to search for the specific regions that exhibit significant differences. Yang et al. [17] found
that MSE of BOLD signals in posterior cingulate gyrus and hippocampal cortex in older
adults were significantly lower than that of younger adults. Liu et al. [18] found Alzheimer
patients showed a significant reduction in ApEn of BOLD signals in anterior cingulate
cortex and left precuneus.

However, some task-state studies indicated that aging or illness does not necessarily
reduce the brain blood oxygen complexity. For example, Sokunbi et al. [19] found when
performing Cyberball social exclusion task, the whole brain SampEn in schizophrenic
patients was significantly higher than that of normal participants. Gu et al. [20] found
that compared with normal controls, the permutation entropies (PEs) of BOLD signal in
dorsolateral prefrontal cortex were significantly higher in patients with ADHD during a
working memory task.

Some researchers consider that resting-state BOLD signal and task-state BOLD signal
have different natures, so it explains that they may exhibit different temporal brain entropy
(tBEN) patterns [20,21]. Here, however, we argue that the discrepancy in complexity pat-
terns between resting-state and task-state may arise from the fact that many studies falsely
equate complexity to entropy. As mentioned above, the value calculated by entropy algo-
rithms can only be treated as an estimate of complexity, regardless of the type of algorithm.
This is because when signals are of high randomness, the complexity would decrease but
the brain entropy measured by common entropy algorithms shows the opposite trend as
shown in Figure 2a. For example, in the studies of Sokunbi et al. [19] and Gu et al. [20],
patients with mental illness showed lower task-elicited brain activation, leading to a higher
randomness of signals, which in turn led to a higher entropy value.
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Table 1. A summary of literatures on brain blood-oxygen complexity analysis in since 2010.

Measure Signal Type Res. Orientation Participants Main Findings Ref

ApEn Task-BOLD Biomarker Older adults (40)
Cognitive ability was positively
correlated with regional brain
BOLD complexity.

[22]

SampEn Task-BOLD Biomarker ADHD (17);
HC (13)

The mean whole brain BOLD
complexity of ADHD group was
significantly lower than the HC; the
mean regional brain complexity values
have a significant negative correlation
with ADHD score.

[15]

MSE Rest-BOLD Biomarker Older adults (99);
Younger adults (56)

The mean whole brain BOLD
complexity of younger adults was
significantly higher than that of older
adults; the high cognitive ability group
showed significantly higher whole
brain BOLD complexity than the low
cognitive ability group; regional brain
BOLD complexity was significantly
correlated with cognitive function.

[17]

ApEn Rest-BOLD Biomarker
Younger adults (8);

Older adults (8);
fAD (22)

Brain BOLD complexity decreased with
normal aging and cognitive decline. [18]

SampEn Task-BOLD Biomarker SZ (13);
HC (16)

Brain BOLD complexity of SZ patients
was higher than that of HC when
performing Cyberball social
exclusion task.

[19]

MSE Rest-BOLD Biomarker/
Methodology

Older adults (8);
Younger adults (8)

Brain BOLD complexity was used to
discriminate younger from older
participants as well as grey matter from
white matter.

[23]

SampEn Rest-BOLD Biomarker/
Methodology

Older adults (53);
Younger adults (53)

SampEn was used to discriminate the
younger from the elderly adults with
short length data; the suggested value
of m was 2.

[16]
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Table 1. Cont.

Measure Signal Type Res. Orientation Participants Main Findings Ref

SampEn Rest-BOLD Methodology 1049

Using a data-driven clustering method,
the entire brain was organized into
seven regional brain entropy networks
that are consistent with known
brain parcellation.

[24]

MSE Rest-BOLD Biomarker/
Methodology 20

Complexity of the BOLD signal
showed different patterns from white,
pink, and red noises; neural complexity
across all networks was negative.

[25]

MSE Rest-BOLD Biomarker SZ (105);
HC (210)

Complexity of BOLD signals in SZ
patients showed two patterns (toward
either regularity or randomness),
which were respectively associated
with positive or negative symptoms of
schizophrenia.

[26]

fApEn;
SampEN Rest-BOLD Biomarker/

Methodology 86

Compared to SampEn, fApEn was
better at discriminating different age
groups and have shown to be a more
sensitive method.

[27]

SampEn Rest-BOLD Biomarker CPI (29);
HC (29)

The BEN map of CPI patients
demonstrated significant differences
from HC, and altered functional
connectivity patterns were associated
with abnormal BEN regions.

[28]

SampEn Rest-BOLD Biomarker RRMS (34);
HC (34)

BOLD complexity of RRMS patients
was significantly increased in some
regions and was positively correlated
with disease severity.

[29]

SampEn Rest-BOLD Biomarker seafarers (20);
HC (20)

BOLD complexity pattern of seafarers
was significant different from HC. [30]

PE Rest-BOLD Biomarker
MCI (65);
AD (29);
HC (30)

The BOLD complexity of AD patients
was significantly lower than that of
MCI patients and HC; that of AD
patients and MCI patients was
significantly correlated with ReHo in
several brain regions associated
with AD.

[31]

PE Task-O2Hb Biomarker ADHD (15);
HC (16)

BOLD complexity in the right
dorsolateral prefrontal cortex of ADHD
patients were significantly higher than
that of HC.

[20]

SampEn;
MSE Rest-BOLD Methodology 354

Proposed a generic strategy to
minimize the relative error of SampEn
to determine the appropriate
complexity measurement parameters.

[32]

SampEn Task-BOLD Biomarker CFS (43);
HC (26)

Regional brain complexity in CFS
patients was lower than that in HC
when performing a Stroop task.

[33]
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Table 1. Cont.

Measure Signal Type Res. Orientation Participants Main Findings Ref

SampEn Rest-BOLD
Task-BOLD Biomarker CFS (45);

HC (27)

BOLD complexity of CFS patients was
higher in the default mode network at
resting-state or performing a
Stroop task.

[21]

SampEn Rest-BOLD Biomarker 892 BOLD complexity was positively
associated with intelligence. [34]

SampEn;
MSE Rest-BOLD Biomarker

MCI (65);
AD (29);
HC (30)

BOLD complexity of AD and MCI were
lower than HC; AD patients showed
lower BOLD complexity than MCI.

[35]

MSE Rest-O2Hb Biomarker
MCI (65);
AD (29);
HC (30)

O2Hb complexity in AD patients was
lower than HC and positive correlated
with cognitive ability.

[36]

SampEn
MSE

Task-O2Hb
Task-HHb Biomarker AD (11);

HC (11)

When performing memory-related
tasks, O2Hb complexity of AD was
higher than that of HC.

[37]

SampEn Rest-BOLD Biomarker 107

SampEn-CBF and SampEn-fALFF
correlations were only observed in a
few brain regions, demonstrating that
complexity, CBF, and fALFF are
independent brain activity measures.

[38]

SampEn Rest-BOLD Biomarker ASD (20);
HC (17)

BOLD complexity was negatively
correlated with severity of
ASD behaviors.

[39]

SampEn Rest-BOLD Biomarker SZ (53);
HC (59)

Compared with HC, SZ showed
decreased brain BOLD complexity. [40]

SampEn;
MSE Task-O2Hb Biomarker AD (11);

HC (11)

AD showed significant differences from
HC in O2Hb complexity during VFT
and WM tasks.

[41]

SampEn Rest-BOLD Biomarker Stroke patients (23);
HC (19)

Stroke patients showed reduced BOLD
complexity in the motor area. [42]

MSE Rest-BOLD Biomarker MCI (169);
HC (176)

BOLD complexity in MCI was
significantly lower than that in HC and
correlated with severity of MCI.

[43]

MSE Rest-BOLD Biomarker BP (125); SZ (107);
SAD (98); HC (156)

Significant differences as well as
overlaps of brain BOLD signal
complexity between different psychotic
disorder groups were found.

[12]

MSE Task-O2Hb
Task-HHb Biomarker 15

Brain complexity during performing
intentional memory task was
significantly higher than that during
purposefully forgetting.

[44]

MSE Rest-O2Hb
Rest-HHb Biomarker ASD (25);

HC (22)

Brain complexity could be used to
distinguish ASD from HC. Compared
with HC, altered brain complexity in
ASD is seen more in IFG than in TC
and in left hemisphere than in right
hemisphere.

[45]
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Table 1. Cont.

Measure Signal Type Res. Orientation Participants Main Findings Ref

MSE Rest-BOLD Biomarker LLD (35);
HC (22)

LLD patients showed decreased
complexity only in the right posterior
cingulate gyrus but increased
complexity in affective processing,
sensory, motor, and temporal nodes.
Complexity in the left frontoparietal
network partially mediated the relation
between depression severity and the
mental components of quality of life.

[46]

Note: ADHD: Attention deficit hyperactivity disorder; HC: healthy control; fAD: familial Alzheimer’s Disease; CPI: chronic primary
insomnia; AD: Alzheimer’s Disease; CFS: chronic fatigue syndrome; ASD: Autism Spectrum Disorder; BP: psychotic bipolar disorder; SZ:
schizophrenia; RRMS; relapsing-remitting multiple sclerosis; LLD: depression in later life; Task-BOLD: task blood oxygen level dependent
signal; Rest-BOLD: rest blood oxygen level dependent signal; Task-O2Hb: task oxyhemoglobin signal; Rest-O2Hb: rest oxyhemoglobin
signal; Task-HHb: deoxyhemoglobin; fALFF: fractional amplitude of low frequency fluctuation (refering to the ratio of power spectrum of
low-frequency (0.01–0.08 Hz) to that of the entire frequency range [47]); ReHo: regional homogeneity (refering to Kendall’s coefficient
concordance of BOLD signals in neighboring voxels [48]); BEN: brain entropy; tBEN: temporal brain entropy.

Thus, the increase of complexity observed by the above-mentioned task-state studies
may be as a result of a higher randomness rather than true complexity.

Based on a comprehensive consideration of physiological complexity and psychopathol-
ogy, Yang et al. [49] proposed a revised theory of complexity, which can effectively explain
the abnormally elevated complexity found in some studies. This theory suggests aging or
neurophysiological disease may degrade mental function (Yang et al. [49] believe that indi-
vidual mental function manifested in patterns of cognition, speech, behavior, and thought.
For example, compared with normal people, the patterns of speech, behavior, and thought
in AD patients show higher regularity, leading to a lower complexity of mental function
in AD patients.) while reducing physiological complexity. The decrease of complexity
can be manifested in two ways, one is toward regular pattern (reduced BOLD complexity
due to the increased regularity), and the other is toward random pattern (reduced BOLD
complexity due to the increased randomness). From this perspective, it is very likely that
the abnormal high entropy values may actually reflect the decreased BOLD complexity
toward random pattern. This theory, to some extent, can be tested through simulation.
Sokunbi et al. [19] and Gu et al. [20] found that compared with healthy controls, patients
with mental illness exhibited lower task-elicited brain activation but higher brain entropy.
Based on these findings, we simulated brain activation for two groups (high activation
signals simulated for healthy controls; low activation signals simulated for patients; the
activation intensity of high activation group was set 10 times higher than that of low
activation group) using neuRosim (NeuRosim is a R-based fMRI data simulator developed
by Welvaert et al. [50] from Ghent University in Belgium. In addition, to simulate the
brain activation under different tasks, it can also simulate system noises, temporal noises,
low-frequency drifts, physiological noise, and task-related noise that exist in real task fMRI
data.) and calculated the temporal multiscale entropy (MSE) value over a range of scales.
As demonstrated in Figure 3d, when the scale factor was set to 1, the MSE (According
to Yang et al. [26], the parameters of MSE were set as m = 1; r = 0.35; l = [1–5].) of the
patient group was significantly higher than that of the control group, which was the same
as reported in previous studies that the BOLD complexity was higher in patients. How-
ever, as the scale factor increased, the MSE of the control group gradually increased and
became higher than that of the patient group. We also found a significant higher slope of
entropy decay across time scales in the patient group than in the control group (Figure 3e).
With the MSE measure, we could conclude that compared to high task-related activation
group, the complexity of low task-related activation group showed a decreased complexity
toward randomness. If previous research applied the MSE measure, it is likely that they
may have found decreased complexity in brain activity of the patients. In a subsequent
study, researchers found that different types of schizophrenia are associated with different
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patterns of BOLD complexity. Specifically, positive symptoms of schizophrenia were asso-
ciated with a reduction in BOLD complexity toward regularity, while negative symptoms
of schizophrenia were associated with a reduction in BOLD complexity toward random-
ness [26]. Then a third study adopting this method explored the altered complexity patterns
among multiple groups; researchers found significant differences as well as overlaps of
brain BOLD signal complexity between different psychotic disorder groups, suggesting
the potential of categorizing psychosis based on such a complexity theory [11]. In sum,
the theory proposed by Yang et al. [49] has well explained the abnormally high BOLD
complexity and shown potentials for the future multiple group classification analysis. Yet,
it has not been wildly applied in recent years due to the limitation of multiscale entropy
algorithm, which will be introduced in Section 3.2.
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In addition to the association between BOLD complexity and group traits, some
researches explored the relation between BOLD complexity and other potential biomarkers.
Song et al. [24] examined the relation between SampEn of BOLD signals and the fractional
amplitude of low-frequency fluctuations (fALFF) in healthy adults and found no significant
correlation in most brain regions, indicating that brain entropy and fALFF can provide
independent information of brain activity. Wang et al. [31] investigated the relation between
regional homogeneity (ReHo) and permutation entropy (PE) of BOLD signals in patients
Alzheimer’s disease; they found no significant correlation in most areas except in disease-
related regions, indicating that although brain entropy and ReHo are independent to each
other, they are both able to provide effective information regarding the abnormality of
the brain.
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To sum up, brain BOLD signal complexity does have the potential to be an effective
biomarker for different neurophysiological diseases. However, there also remain several
challenges, which will be discussed in the next section.

3.2. Main Complexity Measures for Brain Blood-Oxygen Signals

As summarized in Table 1, for brain blood-oxygen signals, the most common com-
plexity measures are approximate entropy (ApEn), sample entropy (SampEn), multiscale
entropy (MSE), and permutation entropy (PE). ApEn originated from a theory that de-
scribes the regularity of a series of signals proposed by Pincus [51], which is closely linked
to Kolmogorov entropy [52], a classical approach for determining the rate of information
production. However, since ApEn lacks relative consistency and is heavily dependent on
data length, Richman and Moorman [53] then developed sample entropy (SampEn) to
reduce the biases of ApEn. Thus, SampEn can be considered as an improved algorithm
based on ApEn. Multiscale sample entropy (MSE), another type of entropy described in
this article, shares nearly the same core algorithm with SampEn. Compared with other
entropy measures, MSE can provide information about complexity over a range of scales.
For MSE, the scale factor determines the coarse-graining (coarse-graining means averaging
a successive number of data points, as the scale factor increases, the number of consecutive
data points increases, making the signals coarser on time scales.) level of signals. Over a
range of scale factors, the profile of MSE has a consistent pattern with the relationship
between regularity and randomness (as illustrated in Figure 4a, as scale factor increases,
the BOLD MSEs of healthy controls gradually increase and eventually became higher than
those of complete random or ordered signals), which can differentiate distinct signals.
In addition, by comparing the profiles of MSE between target group (TG) and healthy
controls (HC), changes in patterns of complexity (i.e., increased complexity; decreased
complexity toward regularity or randomness (statistically, the criterion to determine the
increased complexity (or decreased complexity toward regularity) of the target group is
that, compared to healthy controls, the target group shows significant higher (or lower)
MSE or mean MSE in all scale factors. The criterion to determine the decreased complexity
toward randomness is that, compared to healthy controls, the target group shows signifi-
cantly higher MSE in fine scale or significant lower MSE in coarse scale, and also shows
a significant lower slope of entropy decay) of the target group could then be obtained.
Compared to single-scale entropy measures, MSE can provide more information of brain
complexity. However, from Table 1 we can find MSE was less often applied in previous
studies. This is because in practical applications, an important limitation of MSE statistic
is its requirements of sufficient sampling time points, which is undoubtedly challenging
to fMRI data of low temporal resolution. For example, Yang et al. [26] performed an MSE
analysis with a scale of 1–5 and 195 time points; such a length of time points was usually
difficult to obtain for many fMRI studies due to the limitation of the temporal sampling
rate of MRI. However, with an increasing application of fNIRS to obtain blood-oxygen
signals of high temporal resolution, MSE may become a promising complexity analytical
tool in future studies. As for permutation entropy (PE), in algorithm, it is close to classical
Shannon entropy [31]. In practice, it is close to Lyapunov exponents and is particularly
suitable for observational and dynamical noise [54]. Because of the essential differences
between PE and three other types of entropy, direct comparison cannot be conducted.
However, it is clear that as a type of single-scale entropy, the ability of PE to describe signal
complexity is inferior to MSE. To sum up, the MSE with multiple scale factors is the best
approximation of brain complexity, thus it should be preferred if the data is of enough
sampling time points.
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Figure 4. Schematic illustration of quantifying complexity of resting-state fMRI signal using multi-
scale entropy: (a) differences of MSE patterns across scale factors among the signals of uncorrelated
randomness, HC, and regularity; (b) increased complexity as entropy increased in TG compared to
HC across all scale factors; (c) decreased complexity toward regularity as reduced entropy in TG
compared to HC across all scale factors; (d) decreased complexity toward randomness as entropy
increased in fine time scale in TG compared to HC, and the entropy decayed as the scale factor
increased. Reprinted with permission from ref. [11,26]. Copyright 2021 Elsevier.

3.3. Optimizing Parameters for Complexity Measures

As summarized in Table 1, in practice, there are three common ways to optimize
parameters for complexity measures. The first and most common approach is the empirical
approach. Based on previous work and data length, the empirical value for parameters
could be roughly selected and the recommended range of parameters listed in Table 2 are
determined by this method. The second approach is ‘maximizing between-group difference’
approach, that is, to find a combination of parameters that maximize the differences of
BOLD complexity between two distinct groups [16,24]. However, as one study pointed
out, being able to show greater differences between groups does not guarantee that those
parameters are less free from error or bias [25]. The third approach is to minimize the
relative error of the entropy of BOLD signal in cerebrospinal fluids (CSFs), which contained
minimal physiologic information but uncorrelated noise [32]. However, this approach
can only be applied to whole brain BOLD data where signals from a large amount of
cerebrospinal fluids are obtained. At present, the empirical approach has been used
most frequently in studies because compared with the other two approaches, it was less
complicated. From a scientific point of view, however, when analyzing whole brain BOLD
signals, the approach of minimizing relative error in CSFs should be preferentially used to
determine the optimal parameters for complexity measures.
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Table 2. Main entropy algorithms applied in the analysis of BOLD complexity.

Category Ref Parameters Recommended Range

ApEn [51] m, pattern length;
r, tolerance value

10m < N < 20m

0.1 ∗ SD < r < 0.6 ∗ SD

SampEn [53] m, pattern length;
r, tolerance value 0.1 ∗ SD < r < 0.6 ∗ SD

MSE [55]
m, pattern length;
r, tolerance value;

l, scale factor

l ∗ 10m < N < l ∗ 20m

0.1 ∗ SD < r < 0.6 ∗ SD

PE [56] m, pattern length (m + 1)! < N

Note: m is a positive integer; N specifies the data length and is a positive integer; l is a positive integer larger than 1; SD is the standard
deviation of signals.

4. Future Directions
4.1. Improving Brain Blood-Oxygen Signal Complexity Measurement

A set of precise and reliable analytical tools and methods are very important for a field
of research. However, at present, studies aiming to improve methodology in complexity
measurement are still lacking. Therefore, it is important to develop analytical techniques
and research methodology for brain blood-oxygen signal complexity. Based on the above
analysis, this paper presents the following suggestions.

First, it is critical to develop a novel analytical method that is suitable for brain
complexity. Current complexity algorithms are mostly univariate based; when calculating
brain complexity in a certain location, the influences from adjacent locations have not
been duly considered. The current way does not take full advantage of the high spatial
resolution of the BOLD signals. Besides, some analytical methods that consider BOLD
signals in adjacent location have been successfully applied, such as regional homogeneity
(ReHo) and multi-voxel pattern analysis (MVPA), which is an analytical approach based
on spatial pattern formed by multiple voxels, and has recently been widely used because
it can overcome the limitation of low signal-to-noise ratio and stringent multiple testing
corrections brought by conventional voxel-wise analysis to some extent [57]. Therefore, a
new complexity analytical method that consider multi-voxel blood-oxygen signal patterns
is promising.

Second, the latent variable analysis can be used to describe complexity. On one hand,
in previous studies, brain entropy values were often seen as direct representations of brain
complexity. However, as mentioned in Section 2, the complexity of BOLD signals is more
like a latent trait that cannot be directly measured through certain algorithms. Thus, it
is more appropriate to take brain BOLD complexity as a latent variable and the entropy
value calculated from various algorithms as corresponding manifest variables. On the
other hand, to examine the intricate relation between the brain and individual differences,
more flexible analytical methods are required, and the psychometric quality should be
carefully assessed in the interpretation of brain-traits relationship. With latent variable
analytics, researchers are allowed to incorporate known sources of between-subject variance
(e.g., demographic characteristics, distinct metrics of latent traits, measured behavioral
data, and brain complexity) into simple [58], theoretically-specified models, ultimately
forming a comprehensive understanding of the relation between BOLD complexity and
individual traits.

4.2. Accurate Trait Classification Methods

One of the core objectives of complexity studies is to distinguish patient groups with
different traits based on the patterns of brain complexity. So far, only a limited number
of studies have addressed the issue of prediction and classification. A recent study used
SampEns of brain as features, to build a machine-learning classifier to differentiate patients
with ASD from typical children [40]. This study represents a future development trend
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applying machine-learning techniques to classify complexity patterns of brain blood-
oxygen signals from different patient populations. Moreover, because the human brain is a
highly complex system, no single metric can provide comprehensive information of the
brain. Also, previous studies have shown that brain entropy provides unique information
that has little overlap with other potential biomarkers (e.g., ReHo, fALFF) [31,38]. Therefore,
in future research, various metrics such as brain complexity, ReHo, and fALFF could be
combined to generate a multidimensional feature and make the classification more reliable
and precise.

4.3. The Dynamics of Blood Oxygen Signals Complexity

As mentioned above, the whole-brain distribution patterns of BOLD complexity in rest
and task states are different. However, how the distribution patterns change dynamically
between these two states remains unexplored. Future studies may build upon analytics of
dynamical functional connectivity [59] to investigate the dynamics of BOLD complexity.
In order to give a better description of the dynamic process, the blood-oxygen signal data
should have sufficient time points. Therefore, the blood-oxygen signals of high temporal
resolution, such as signals obtained by fNIRs, could be an ideal choice.

5. Conclusions

For various neurophysiological diseases, a reliable and subjective biomarker is of
great importance. Blood-oxygen signal complexity has the potential to become an ideal
biomarker. However, as there are some misuses of complexity analysis in previous studies,
blood-oxygen signals complexity measurements still need a set of standardized guidelines
for the optimal selection of complexity algorithms as well as corresponding parameters.
With future improvements in the approaches to complexity calculations, we believe such
an issue can be solved and a comprehensive understanding of the relation between brain
blood-oxygen signal complexity and related neurophysiological traits can be gained.
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