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Abstract: Brand equity is an important intangible for enterprises. As one advantage, products with
brand equity can increase revenue, compared with those without such equity. However, unlike
tangibles, it is difficult for enterprises to manage brand equity because it exists within consumers’
minds. Although, over the past two decades, numerous consumer neuroscience studies have revealed
the brain regions related to brand equity, the identification of unique brain regions related to such
equity is still controversial. Therefore, this study identifies the unique brain regions related to brand
equity and assesses the mental processes derived from these regions. For this purpose, three analysis
methods (i.e., the quantitative meta-analysis, chi-square tests, and machine learning) were conducted.
The data were collected in accordance with the general procedures of a qualitative meta-analysis.
In total, 65 studies (1412 foci) investigating branded objects with brand equity and unbranded objects
without brand equity were examined, whereas the neural systems involved for these two brain
regions were contrasted. According to the results, the parahippocampal gyrus and the lingual gyrus
were unique brand equity-related brain regions, whereas automatic mental processes based on
emotional associative memories derived from these regions were characteristic mental processes that
discriminate branded from unbranded objects.

Keywords: consumer neuroscience; ALE; AutoML; brand management; episodic memory; brand
association

1. Introduction

Generally, branded products with brand equity are traded at premium prices, com-
pared with unbranded products [1]. As for brand equity, it is one of the crucial profitable
sources for enterprises and one of their greatest assets. Aaker [2] segregated the elements
of brand equity into five factors: brand name awareness, brand associations, brand loyalty,
perceived brand quality, and other proprietary brand assets, such as patents, trademarks,
and channel relationships. Thus, unlike factories and office buildings, brand equity is an
asset attributed to consumers’ minds.

Numerous brand equity studies have been conducted over the past two decades in
order to clarify how to build brand equity in consumers’ minds. Such research included
empirical studies, theoretical studies, and practical cases. Meanwhile, the number of neuro-
science studies to understand brand equity-related mental processes has been increasing.
For example, McClure et al. [3] showed that brain activations on beverage products with
brand equity were observed in the hippocampus (HP) and dorsolateral prefrontal cortex
(DLPFC), whereas both the ventral medial prefrontal cortex (VMPFC) and ventral striatum
(VS) were activated in low-brand equity products. However, the activations of both the
VMPFC and VS were observed in several brand equity studies [4–8]. These regions are
known as the “neural currency network” [9]. The activations in these regions were also
reported in several studies on unbranded objects [10–12].

Barring these regions, the activations in the medial prefrontal cortex (MPFC) were
observed in both branded and unbranded research. For example, in a comparison between
familiar automobile brands and unfamiliar ones, the MPFC was activated [13]. In related
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studies, Schaefer and Rotte [14] confirmed the activations in the MPFC when comparing
luxury automobile brands and unfamiliar brands, whereas Chen et al. [15] investigated
the brain activations associated with brand personality, which is an element of brand
association composed of brand equity. In the latter study, they reported the activations
in the MPFC, the cingulate cortex, and the caudate. Meanwhile, the activations in the
MPFC were reported in numerous studies on unbranded objects [16–27]. Besides these
brain regions, other brain activated regions have been found in studies on branded objects
with brand equity, e.g., the insula [28], the inferior frontal gyrus [29], and the superior
frontal gyrus [30,31]. It has also been reported that these brain regions are solely or multi-
regionally activated.

Based on the aforementioned findings, brand equity-related brain regions are highly
diversified. Even though brand equity has an influence on consumers’ decision-making,
such as purchases, preferences, and attitudes, the watershed brain regions between brand
equity and unbranded-related brain regions remain unknown. Therefore, the purpose of
this study is to assess the unique characteristics of the mental processes associated with
brand equity by identifying the watershed brain regions through a comparison between
the brain regions related to brand equity and such regions related to unbranded objects
without brand equity.

2. Materials and Methods

In order to achieve our research objective, the analyses were conducted in two steps.
First, an activation likelihood estimation (ALE) was conducted to statistically clarify the
distinct brain regions between branded objects with brand equity and unbranded objects
without brand equity. Second, although a statistical conjunction analysis was attempted
(based on the ALE method) to identify any overlapped or distinct brain regions between
the brand equity-related brain regions and the unbranded objects-related brain regions,
it could not be executed. Thus, a chi-square test was adopted to characterize the brand
equity-related brain regions and the unbranded ones. When conducting the chi-square test,
all the reported foci were categorized into the optimal number of clusters using the k-means
algorithm. To assess the brain regions that can discriminate between brain equity-related
brain regions and unbranded objects-related brain regions, supervised machine learning
was applied. The details regarding these procedures are presented in the following sections.

2.1. Procedures of the ALE Method

A systematic literature review was conducted to select the neuroimaging studies
on consumers’ decision-making of branded and unbranded objects. The selections were
performed using PubMed (https://pubmed.ncbi.nlm.nih.gov) as the primary database.
Specifically, the search focused on studies using functional magnetic resonance imaging
(fMRI), with specific terms such as “brand”, “consumer”, “fMRI”, “neural”, “choice”,
“purchase”, “decision-making”, and “preference”. This search process yielded the follow-
ing: 10 studies for “brand, fMRI, neural, and choice”; 0 for “brand, fMRI, neural, and
purchase”; 11 for “brand, fMRI, neural, and decision-making”; 12 for “brand, fMRI, neural,
and preference”; 38 for “consumer, fMRI, neural, and choice”; 12 for “consumer, fMRI,
neural, and purchase”; 48 for “consumer, fMRI, neural, and decision-making”; and 26 for
“consumer, fMRI, neural, and preference”.

Next, the branding studies in Plassmann’s [32] references list were added. Based on
the information in the titles and abstracts, the studies were selected according to the fol-
lowing criteria: (1) studies in peer-reviewed English language journals published between
January 2000 and March 2021; (2) studies that conducted fMRI scans of healthy participants;
(3) studies in which branded objects were used as experimental stimuli, e.g., products,
logos, and advertising with brand logos or the equivalent; (4) studies in which unbranded
objects were used as experimental stimuli, e.g., products, product packages, and adver-
tisements without brand logos or the equivalent; and (5) studies that reported activations
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as three-dimensional coordinates in the stereotactic space of Talairach or the Montreal
Neurological Institute (MNI).

It should be noted that two studies [33,34] did not directly use branded objects as
experimental stimuli. However, they were ultimately included in the branded objects group
for quantitative synthesis because the stimuli were regarded as objects similar to branded
ones. These two studies were also included in Plassmann’s references list [32]. In addition,
since Knutson et al. [35] adopted a shop task as an experimental task, it is believed that the
stimuli used in their study included logos and characteristic package designs. However,
their study was included in the unbranded objects group because they controlled the
attractiveness of the stimuli, and their objectives assessed the influences of brand equity on
consumers’ decision-making. In other words, they treated all the experimental stimuli as
equivalents. The preferred items for the systematic review and meta-analyses (PRISMA)
flow diagram (see Figure 1) provide details of this screening process. For the present
meta-analysis (see Supplementary Table S1a,b), 26 studies (679 foci) were included in
the branded objects group, while 39 studies (733 foci) were included in the unbranded
objects group. In addition, similar to other meta-analytical neuroimaging studies, the
entire activation foci of the included studies that were originally reported in the Talairach
space were converted to the MNI space using a transformation algorithm [36], owing to
disparities between the Talairach space and MNI space [37]. The MNI coordinates were
adopted in the current study as an ALE map was created on the MNI space by using the
GingerALE software (http://www.brainmap.org/, accessed on 1 April 2021) [38,39]. The
details of the ALE method are described in Figure 1.
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Figure 1. Prisma flow diagram.

The ALE method [40], the most popular qualitative meta-analysis method [41], was
also adopted. First, the modeled activation map was created by applying the three-
dimensional Gaussian probability density function to each focus. Similar procedures
were conducted on all the foci in the selected studies. With the increased convergence
of the reported foci across studies, there was a gradual minimization in the variance of
the Gaussian probability distribution. This indicated that the contingency of the reported
foci in each study was expected to be eliminated. Second, an ALE map was obtained
by calculating the union of the modeled activation maps. Finally, to create a more accu-
rate ALE map, it was compared with the randomness map created by null distribution.
Concretely, the ALE map with thresholds was obtained by conducting a permutation test,
which assessed the differentiations between these maps at each voxel [40,42].

Overall, the ALE method was conducted using the GingerALE (Version 3.02) tool
(http://www.brainmap.org/, accessed on 1 April 2021), while the thresholding analyses
were performed using a cluster-level correction for multiple comparisons at p = 0.05, with
a cluster-forming threshold of p = 0.0001. Meanwhile, the permutation size was set to 1000.
Although Eickhoff et al. [43] recommended a cluster-forming threshold at p = 0.001, more
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conservative criteria were adopted. In the present study, all the coordinates were reported
in the MNI space. Moreover, all the activated brain images were exported as NIfTI files
and as output into the canonical anatomical T1 brain template in the MNI space via Mango
software (Version 4.1; http://ric.uthscsa.edu/mango/, accessed on 1 April 2021).

2.2. Procedures of the Chi-Square Test

The procedures of the chi-square test are as follows: First, the foci of both the branded
studies and the unbranded studies were merged. Second, each focus was flagged, depend-
ing on each study’s database. Specifically, the foci in the branded studies’ databases were
flagged as “1” (hereafter called the branded flag), since these foci were collected to measure
the objects with brand equity. Meanwhile, the foci in the unbranded studies’ databases
were flagged as “0” (hereafter called the unbranded flag), since these foci were collected
to measure the unbranded objects. These data were also constructed from 1412 rows and
four columns (excluding the index column). Each row represented each focus, while the
first three columns (excluding the index column) represented the brain coordinates. The
final column was expressed as the database source flags that indicated whether the foci
corresponded to the branded or unbranded objects. These foci plotted on the Colin27 tem-
plate are displayed in Figure 2, the details of the data structure are presented in Figure 3A,
and the descriptive statistics are shown in Table 1. Third, in order to categorize each focus,
the spatially closer brain coordinates were organized into appropriate clusters by using
the k-means algorithm (see Figure 3B). In this case, the optimal number of clusters was
determined though the elbow method, while the k-means algorithm was performed by
using scikit-learn in Python. After the optimal number of clusters was determined and a
cluster ID was provided to each focus, a chi-square test was conducted with both the cluster
ID and the flag in order to determine whether each cluster included such tendencies as
brand equity-related brain regions, unbranded-related brain regions, and overlapped brain
regions across brand equity-related brain regions and unbranded-related brain regions
(hereafter called overlapped brain regions).
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Table 1. Descriptive statistics.

Database Variables Variable Type N Mean SD Median Min Max

ALL x Numerical 1412 0.43 32.42 −2 −69.17 70.58
y Numerical 1412 −10.88 41.99 −6 −105.07 72.9
z Numerical 1412 11.39 24.5 8 −52 75.36

Flag Categorical 1412 - - - - -

Branded x Numerical 679 1.74 32.04 0 −69.17 70.58
y Numerical 679 −13.18 43.3 −8 −105.07 72.56
z Numerical 679 9.57 23.7 6 −48 75.36

Flag Categorical 679 - - - - -

Unbranded x Numerical 733 −0.78 32.74 −3 −66 69
y Numerical 733 −8.74 40.66 −3 −105 72.9
z Numerical 733 13.08 25.12 11 −52 74

Flag Categorical 733 - - - - -

2.3. Procedures of Machine Learning

The cluster ID, calculated in previous procedures, was used as a feature value, while
the last column was used as a dependent variable. The data structure for machine learning
is shown in Figure 3C. First, feature engineering was conducted to determine the values
that have high relevance to the dependent variables. In this regard, if the cluster ID
did not significantly differ via the results of the chi-square test, then the foci with the
cluster ID were judged as overlapped brain regions, flagged as “2” (see Figure 3D), and
eliminated. Second, supervised learning algorithms were performed to identify the brain
regions. The calculations were performed using H2O-AutoML (H2O Version 3.32.1.2, https:
//www.h2o.ai, accessed on 15 July 2021), which is an open-source framework for machine
learning [44]. Several major machine learning algorithms were covered in this framework
such as XGBoost, the Distributed Random Forest (DRF), the Gradient Boosting Machine
(GBM), Generalized Linear Models, the Deep Neural Network, and StackedEnsemble. In
this study, the DRF, XGBoost, the GBM, and Generalized Linear Models were adopted.
The Deep Neural Network and StackedEnsemble algorithms were excluded in this study
because the effectiveness of the feature values could not be calculated in these algorithms.

Third, a random grid search algorithm with H2O AutoML was conducted to tune
the hyperparameters in each algorithm, excluding the Random Forest and Extremely
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Randomized Trees, since the current version of this search algorithm was not supported by
these algorithms. In this regard, since each algorithm included several hyperparameters
that could not be calculated based on the provided data, inputting appropriate values was
required to calculate the algorithms. In this algorithm, combinations of potential values
were randomly chosen and inputted in each hyperparameter until a model converged at
an optimal value in the performance index, e.g., the mean error rate, the area under the
curve (AUC), and F-measures. In this framework, the AUC was set as the performance
index, while the maximized value of the AUC was the optimal value. Moreover, the
hyperparameters were automatedly tuned, while 5-fold cross validation was conducted for
each model.

Finally, the effectiveness of the feature value was calculated. In the tree family algo-
rithm (i.e., the DRF, XGBoost, and the GBM), similar to Gini importance, the magnitude
of the values calculated by this framework’s approach represents the contributions to the
reduction in squared error for each tree node during the process of dividing trees. In the
non-tree-family algorithms, the regression coefficients were calculated. The performance
of the algorithms was evaluated with major indices such as the AUC, the area under the
precision-recall curve (AUC-PR), and the logarithmic loss metric (logloss). Both the AUC
and AUC-PR are performance indices for binary classification problems. Specifically, the
AUC ranges from 0 to 1, in which an AUC of “1” means perfect classification, an AUC
of “0.5” means chance level, and an AUC of “0” means too-poor performance. As for
the AUC-PR, it is appropriate for highly imbalanced data. Unlike the AUC, the AUC-PR
focuses on evaluating the true positive, the false positive, and the false negative. Similar
to the AUC, an ACU-PR of “1” means perfect classification, an AUC-PR of “0.5” means
chance level, and an AUC-PR of “0” means too-poor performance. Moreover, the logloss
can be used for both binary and multiclass classification problems. In this regard, the
logloss value represents the closeness to the targeted values in the dependent variables.
For example, a logloss of “0” means a perfect classifier. In other words, the smaller the
logloss, the better the performance classifiers.

3. Results
3.1. Results of the ALE

In this study, the activation foci associated with the branded- and unbranded-related
regions were revealed. For the branded objects, the activations in the five clusters signifi-
cantly converged (see Figure 4A and Table 2a). Additionally, the rostral anterior cingulate
cortex (rACC, BA32, ventral MPFC [VMPFC]), the medial frontal gyrus (BA10), the parahip-
pocampal gyrus (the entorhinal cortex <BA28>, HP), the caudate head (the anterior part of
VS), the posterior cingulate cortex <PCC> (the retrosplenial cortex <RSC>; BA29, BA30),
and the lingual gyrus (LG) were observed.

Table 2. Results of ALE.

(a) Brand Equity−Related Brain Regions

Cluster # Side Brain Region BA
Peak Voxel Coordinates (MNI) ALE

Values
Cluster

Size (mm3)x y z

1

L ACC (rostral
region/VMPFC) 32 −4 42 −16 0.046

6368
L ACC (MPFC) 32 −4 44 8 0.030
R ACC (rostral region/MPFC) 32 10 50 −6 0.027

L Medial Frontal Gyrus
(MPFC) 10 −10 52 10 0.023

L Medial Frontal Gyrus
(MPFC) 10 0 58 6 0.021

2
R PHG (entorhinal cortex) 28 18 −4 −16 0.036

2216R PHG (hippocampus) − 30 −18 −18 0.020
3 L Caudate Head (VS) − −6 12 −4 0.034 1936
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Table 2. Cont.

(a) Brand Equity−Related Brain Regions

Cluster # Side Brain Region BA
Peak Voxel Coordinates (MNI) ALE

Values
Cluster

Size (mm3)x y z

4
R PCC (retosplenial region) 30 6 −52 16 0.026

1064L PCC (retosplenial region) 30 −6 −58 12 0.020
L PCC (retosplenial region) 29 −4 −50 14 0.019

5
L Lingual Gyrus 18 −18 −74 −4 0.033

1032L Lingual Gyrus 18 −6 −78 −2 0.019

(b) Unbranded Objects−Related Brain Regions

Cluster # Side Brain Region BA
Peak Voxel Coordinates(MNI) ALE

Values
Cluster

Size (mm3)x y z

1
L ACC (rostral

region/VMPFC) 32 −6 40 −14 0.0392
3912L ACC (MPFC) 24 −2 36 4 0.0299

R ACC (MPFC) 32 4 44 2 0.0205
2 L Caudate Head (VS) − −10 10 0 0.0448 3624
3 R Inferior Parietal Lobule 40 38 −36 38 0.0576 2560

4
R Caudate Head (VS) − 12 14 −8 0.0300

1608R Caudate Body − 10 14 6 0.0254
5 R Insula 13 52 −24 18 0.0286 1024
6 L Medial Frontal Gyrus 6 −4 20 44 0.0258 1000

BA: Brodmann Area; MNI: Montreal Neurological Institute; ALE: activation likelihood estimation; L: left; R: right; ACC: anterior cingulate
cortex; VMPFC: ventromedial prefrontal cortex; MPFC: medial prefrontal cortex; PHG: Parahippocampal Gyrus; VS: ventral striatum; PCC:
posterior cingulate cortex.

Brain Sci. 2021, 11, x FOR PEER REVIEW 8 of 21 
 

 
Figure 4. Results of ALE (A)-1 sagittal view of brand equity-related brain regions, crosshair = (−4, 
42, −16); (A)-2 coronal view of brand equity-related brain regions, crosshair = (18, −4, 16); (A)-3 axial 
view of brand equity-related brain regions, crosshair = (−18, −74, −4)/ (B)-1 sagittal view of 
unbranded object-related brain regions, crosshair =(−6, 40, −14) ; (B)-2 coronal view of unbranded 
object-related brain regions, crosshair = (38, −36, 38); (B)-3 axial view of unbranded object-related 
brain regions, crosshair = (52, −24, 18). Abbreviations: ALE: activation likelihood estimation; ACC: 
anterior cingulate cortex; VMPFC: ventromedial prefrontal cortex; CDH: caudate head; PHG: 
parahippocampal gyrus; LG: lingual gyrus; MFG: middle frontal gyrus; IPL: inferior parietal lobule; 
INS: insula. 

3.2. Results of the Chi-Square Test 
In order to categorize the foci, the k-means algorithm was performed on the initial 

dataset (see Fig. 1 and Table 1). Overall, 26 clusters were determined as the optimal 
number of clusters by the elbow method. The results of this method are shown in Figure 
5 and Supplementary Table S2. Interestingly, the skew of the elbow plot seemed to flatten 
beyond 20 clusters. As the index of the sum of squared error reached 1/10 in the 24th 
cluster, The 24th to 26th clusters were chosen as the optimal range (see Supplemental 
Table S2). Additionally, 26 clusters were adopted as the optimal number of clusters 
because it was the upper threshold value in the range. The centroid of each cluster is 
shown in Table 3 and Figure 6. Using the 26 clusters, a chi-square test was conducted. 
Moreover, the following hypotheses are presented, with H1 representing the null 
hypothesis and H2 representing the alternative hypothesis: 

H1: The cluster ID and the flag are independent; 
H2: The cluster ID and the flag are not independent. 
The results revealed significant differences between the branded flag and unbranded 

flag (X2 (25) = 45.277, p = 0.008). Since H1 was discarded, a residual analysis was conducted 
to determine the characters of each cluster. Based on the results of the residual analysis 
shown in Table 4, a significant difference was observed in Clusters 8, 9, 15, 20, and 22. The 
branded flag also included dominant proportions in Clusters 9, 15, and 20. The findings 
also indicated that the brain regions belonging to Clusters 9, 15, and 20 can be associated 
with brand equity-related mental processes. Moreover, the centroid of each cluster 
corresponded to the PHG (Cluster 9) and the LG (Cluster 15, 20). Conversely, the 
unbranded flag included dominant proportions in Clusters 8 and 22. The findings also 

Figure 4. Results of ALE (A)-1 sagittal view of brand equity-related brain regions, crosshair = (−4, 42, −16); (A)-2 coronal
view of brand equity-related brain regions, crosshair = (18, −4, 16); (A)-3 axial view of brand equity-related brain regions,
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brain regions, crosshair = (52, −24, 18). Abbreviations: ALE: activation likelihood estimation; ACC: anterior cingulate
cortex; VMPFC: ventromedial prefrontal cortex; CDH: caudate head; PHG: parahippocampal gyrus; LG: lingual gyrus;
MFG: middle frontal gyrus; IPL: inferior parietal lobule; INS: insula.
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For the unbranded objects, the activations in the six clusters were significantly con-
verged (see Figure 4B and Table 2b). Moreover, the rostral anterior cingulate cortex (rACC,
BA32, ventral MPFC [VMPFC]), the medial frontal gyrus (BA24, BA32), the caudate head
(the anterior part of the ventral striatum [VS]), the caudate body, the insula (BA13), the IFG
(BA40), and the medial frontal gyrus (BA6) were observed.

Based on the results, the anterior part of the MPFC (BA10), the parahippocampal
gyrus (PHG) regions (including the hippocampus), the LG, and the PCC were characteristic
brain regions, compared with the unbranded-related brain regions. Conversely, both
the insula (BA13) and the IFG (BA40) were unique brain regions, compared with the
brand equity-related brain regions. Furthermore, both the VMPFC and VS were seemingly
overlapped between the brand equity-related brain regions and the unbranded objects-
related brain regions.

3.2. Results of the Chi-Square Test

In order to categorize the foci, the k-means algorithm was performed on the initial
dataset (see Figure 1 and Table 1). Overall, 26 clusters were determined as the optimal
number of clusters by the elbow method. The results of this method are shown in Figure 5
and Supplementary Table S2. Interestingly, the skew of the elbow plot seemed to flatten
beyond 20 clusters. As the index of the sum of squared error reached 1/10 in the 24th
cluster, The 24th to 26th clusters were chosen as the optimal range (see Supplemental
Table S2). Additionally, 26 clusters were adopted as the optimal number of clusters because
it was the upper threshold value in the range. The centroid of each cluster is shown in
Table 3 and Figure 6. Using the 26 clusters, a chi-square test was conducted. Moreover,
the following hypotheses are presented, with H1 representing the null hypothesis and H2
representing the alternative hypothesis:

H1: The cluster ID and the flag are independent;
H2: The cluster ID and the flag are not independent.
The results revealed significant differences between the branded flag and unbranded

flag (X2 (25) = 45.277, p = 0.008). Since H1 was discarded, a residual analysis was conducted
to determine the characters of each cluster. Based on the results of the residual analysis
shown in Table 4, a significant difference was observed in Clusters 8, 9, 15, 20, and 22. The
branded flag also included dominant proportions in Clusters 9, 15, and 20. The findings also
indicated that the brain regions belonging to Clusters 9, 15, and 20 can be associated with
brand equity-related mental processes. Moreover, the centroid of each cluster corresponded
to the PHG (Cluster 9) and the LG (Cluster 15, 20). Conversely, the unbranded flag included
dominant proportions in Clusters 8 and 22. The findings also showed that the brain regions
belonging to Clusters 8 and 22 were significantly involved in the unbranded objects-related
mental processes. As for the centroid of each cluster, it corresponded to the inferior parietal
lobule (<IPL>, Cluster 8) and the angular gyrus (Cluster 22), respectively. The other clusters
(i.e., Clusters 0–7, 10–16, 17–19, 21, 23–25) were not significantly different.

Finally, the overlapped brain regions were determined by investigating the clusters
that did not significantly differ. Since there was almost the same rate between the branded
flag and unbranded flag within each cluster (see Table 4), the clusters with a p-value higher
than 0.45 were determined to be overlapped brain regions. In this regard, Clusters 1, 2, 6, 7,
10, 11, 13, 14, and 21 met this criterion. In Table 4, the corresponding brain regions to the
centroid of each cluster are shown. Based on the results, the brain regions in these clusters
were more involved in the mental processes of the brand equity-related brain regions and
the unbranded objects-related brain regions, compared with the other clusters. Although
significant differences were not observed in the other clusters (i.e., Clusters 0, 3–5, 12, 16–19,
23–25), it was presumed that these clusters may have such tendencies such as either brand
equity-related brain regions or unbranded-related brain regions, based on the rate between
the branded flag and unbranded flag within each cluster.
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Table 3. Centroids in each cluster.

Cluster_ID
Coordinates (MNI)

L/R Brain Regions
x y z

cl_0 15 −59 −36 R Pyramis
cl_1 −1 44 −10 L Medial Frontal Gyrus (VMPFC)
cl_2 −40 9 35 L Middle Frontal Gyrus (BA6)
cl_3 0 −54 11 I Posterior Cingulate
cl_4 48 8 24 R Inferior Frontal Gyrus
cl_5 −2 10 3 L Lateral Ventricle
cl_6 −38 −57 −12 L Fusiform Gyrus (BA37)
cl_7 −47 −4 −4 L Superior Temporal Gyrus (BA22)
cl_8 48 −32 32 R Inferior Parietal Lobule (BA40)
cl_9 30 −5 −11 R PHG
cl_10 24 37 36 R Superior Frontal Gyrus
cl_11 −43 −60 29 L Middle Temporal Gyrus
cl_12 −39 31 2 L Inferior Frontal Gyrus
cl_13 41 −48 −8 R Sub−Gyral
cl_14 −25 6 −16 L Subcallosal Gyrus
cl_15 −15 −87 0 L Lingual Gyrus (BA17)
cl_16 4 −57 47 R Precuneus (BA7)
cl_17 41 34 0 R Inferior Frontal Gyrus
cl_18 −54 −25 27 L Inferior Parietal Lobule
cl_19 −12 −23 −9 L Midbrain
cl_20 20 −85 5 R Lingual Gyrus (BA17)
cl_21 5 −8 40 R Middle Cingulate Gyrus (BA24)
cl_22 40 −64 30 R Angular Gyrus
cl_23 −5 53 16 L Medial Frontal Gyrus (BA9)
cl_24 −31 −33 57 L Postcentral Gyrus
cl_25 −13 26 46 L Superior Frontal Gyrus (BA8)

BA: Brodmann Area; MNI: Montreal Neurological Institute; L: left; R: right; VMPFC: ventromedial prefrontal cortex; PHG: parahippocampal gyrus.
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= axial view.

Table 4. Results of chi-square test.

Cluster_ID
Contingency Table Adjusted Residual p-Value

Branded Unbranded Branded Unbranded Branded Unbranded

cl_0 17 25 −1.0023 1.0023 0.3162 0.3162
cl_1 37 46 −0.6596 0.6596 0.5095 0.5095
cl_2 19 25 −0.6617 0.6617 0.5081 0.5081
cl_3 29 23 1.1296 −1.1296 0.2586 0.2586
cl_4 29 22 1.2775 −1.2775 0.2014 0.2014
cl_5 36 52 −1.3919 1.3919 0.164 0.164
cl_6 29 31 0.0389 −0.0389 0.969 0.969
cl_7 23 26 −0.1639 0.1639 0.8698 0.8698
cl_8 29 50 −2.0834 2.0834 0.0372 ** 0.0372 **
cl_9 54 29 3.1900 −3.1900 0.0014 *** 0.0014 ***
cl_10 20 25 −0.4972 0.4972 0.6191 0.6191
cl_11 21 22 0.0999 −0.0999 0.9204 0.9204
cl_12 26 37 −1.1081 1.1081 0.2678 0.2678
cl_13 28 25 0.7044 −0.7044 0.4812 0.4812
cl_14 19 23 −0.3753 0.3753 0.7075 0.7075
cl_15 34 15 3.0373 −3.0373 0.0024 *** 0.0024 ***
cl_16 19 30 −1.3279 1.3279 0.1842 0.1842
cl_17 28 39 −1.0570 1.0570 0.2905 0.2905
cl_18 14 24 −1.4065 1.4065 0.1596 0.1596
cl_19 24 16 1.5297 −1.5297 0.1261 0.1261
cl_20 29 7 3.9497 −3.9497 0.0001 *** 0.0001 ***
cl_21 21 27 −0.6120 0.6120 0.5405 0.5405
cl_22 12 24 −1.7949 1.7949 0.0727 * 0.0727 *
cl_23 43 34 1.4010 −1.4010 0.1612 0.1612
cl_24 10 18 −1.3236 1.3236 0.1856 0.1856
cl_25 29 38 −0.8064 0.8064 0.42 0.42

* p < 0.1, ** p < 0.05, *** p < 0.005. Gray-shaded areas are statistically significant.
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3.3. Results of Machine Learning

The descriptive statistics of feature engineering are shown in Table 5. The data, in
which the foci included in the clusters of the overlapped brain regions were eliminated,
was used for machine learning. In this case, the XRT algorithm had the best performance.
However, the XGBoost algorithm was adopted for analysis because the importance of each
feature value could not be calculated in the XRT algorithm. The tuned hyperparameters
are listed in Supplementary Table S3, while the performance indices are shown in Table
6. Both the AUC and AUC-PR indicated the chance level. Although the logloss was over
0.5, the results demonstrated that the model can be used to evaluate the predictability
of chance level. Additionally, feature importance is shown in Table 7. In this regard,
Cluster 9 (the brain regions of the cluster centroid; the right PHG), Cluster 15 (the brain
regions of the cluster centroid; the left LG), and Cluster 20 (the brain regions of the cluster
centroid; the right LG) had stronger influences on the dependent variables, compared
with the other clusters. Considering the proportions of the flags in each cluster, Clusters
9, 15, and 20 had influences on the branded flags because of the dominant proportion in
such flags. Meanwhile, Cluster 25 had an influence on the unbranded flags because of the
dominant proportion in such flags. In particular, Cluster 9 had the strongest influence on
the dependent variables and the highest effectiveness for identifying the branded flags.
Thus, the brain regions around the PHG had the strongest influences determining whether
objects have brand equity.

Table 5. Descriptive statistics (after feature engineering).

Database Variables Variable Type N Mean SD Median Min Max

ALL x Numerical 945 6.85 30.89 4 −68.67 70.58
y Numerical 945 −12.9 42.89 −12 −105.07 72.56
z Numerical 945 13.28 24.15 12 −52 75.36

Flag Categorical 945 - - - - -

Branded x Numerical 462 7.89 29.7 6 −68.67 70.58
y Numerical 462 −15.05 44.53 −13 −105.07 72.56
z Numerical 462 10.84 22.96 8.26 −48 75.36

Flag Categorical 462 - - - - -

Unbranded x Numerical 483 5.85 31.99 2 −66 69
y Numerical 483 −10.84 41.2 −10 −105 66
z Numerical 483 15.61 25.04 15 −52 74

Flag Categorical 483 - - - - -

Table 6. Performance indices.

Rank Model_ID AUC Logloss AUC-PR

1 XRT_1_AutoML_20210907_131623 0.5841 0.6804 0.5426
2 XGBoost_1_AutoML_20210907_131623 0.5826 0.6794 0.5449
3 GBM_2_AutoML_20210907_131623 0.5810 0.6813 0.5390
4 XGBoost_3_AutoML_20210907_131623 0.5796 0.6833 0.5375
5 GBM_4_AutoML_20210907_131623 0.5782 0.6814 0.5361
6 DRF_1_AutoML_20210907_131623 0.5774 0.6827 0.5378
7 XGBoost_grid__1_AutoML_20210907_131623_model_1 0.5770 0.6829 0.5383
8 XGBoost_grid__1_AutoML_20210907_131623_model_6 0.5759 0.6810 0.5333
9 GBM_grid__1_AutoML_20210907_131623_model_6 0.5757 0.6809 0.5359

10 GBM_5_AutoML_20210907_131623 0.5757 0.6803 0.5343

AUC: area under the curve; logloss: logarithmic loss metric; AUC-PR: area under the precision-recall.
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Table 7. Feature importance.

Feature Values Cluster Centered Brain Regions Relative_Importance Scaled_Importance

Cluster_id.cl_9 PHG 29.023 1.000
Cluster_id.cl_15 Lingual Gyrus (BA17) 20.785 0.716
Cluster_id.cl_20 Lingual Gyrus (BA17) 19.454 0.670
Cluster_id.cl_25 Superior Frontal Gyrus (BA8) 15.762 0.543
Cluster_id.cl_16 Precuneus (BA7) 13.721 0.473
Cluster_id.cl_19 Midbrain 12.747 0.439
Cluster_id.cl_5 Lateral Ventricle 11.915 0.411

Cluster_id.cl_17 Inferior Frontal Gyrus 11.477 0.396
Cluster_id.cl_4 Inferior Frontal Gyrus 11.266 0.388
Cluster_id.cl_3 PCC 10.938 0.377

Feature values were sorted by importance values; BA: Brodmann Area; PHG: parahippocampal gyrus; PCC: posterior cingulate cortex.

4. Discussion

Although the characteristic brain regions were not observed regarding the unbranded-
related brain regions through the three assessments (i.e., the ALE method, the statistical
hypothesis test, and machine learning), this study revealed that the brain regions around
both the PHG and the left LG were characteristic brain regions to brand equity and
anatomically close to one another. In the right LG, two assessment methods (the statistical
hypothesis test and machine learning) were passed. Accordingly, the PHG and LG can be
thought of as watershed brain regions for distinguishing mental processes of branded and
unbranded objects. Therefore, when metabolic alternations in these regions are observed in
a magnetic resonance spectroscopy (MRS) research hereafter, it will imply that the clustered
brain regions around both the PHG and LG can be biomarkers for whether brand equity
has been established in consumers’ minds. Specifically, the PHG, which corresponds to
the centroid of Cluster 9, is associated with recognition [45], episodic memory [46–48], and
visual and spatial scene processing and navigation [49,50]. In the function of recognition,
the anterior part of the PHG is engaged in familiarity-based recognition [51,52]. Meanwhile,
the posterior part of the PHG is engaged in recollection-based recognition [53,54]. During
recollection, the activations of both the PHG and the posterior parts of the PHG (or single
activations of hippocampus) were observed in many cases [45]. In addition, the PHG
has a tendency to activate in association with various elements, such as memory sources,
and remembering targets when engaging functions of episodic memory [46–48]. Thus,
episodic memory engaged with the PHG can be thought of as “associative memory” or
what Aminoff et al. [55] described as “contextual association”. As for the LG, it is associated
with mental imagery [56], visual and spatial scene processing and navigation [49], episodic
memory [57], divergent thinking [58], predictive inferences [59], and recognition [60].
These functions, in which the LG is associated in elements of visual processing are required.
For example, when generating predictive inferences or performing divergent thinking,
visual images must be internally generated. Moreover, the LG also plays a crucial role in
language processing, such as in visual recognition of words [61,62] and semantic processing
of words [63–65]. According to Zhang et al. [65], the LG is involved in language processing
and supramodal organization in patients who are not congenitally blind but lost their
sight in their early teens. Musz and Thompson [66] demonstrated that the LG plays a role
in the semantic hub across the modalities of words. Thus, considering that consumers
may recognize a brand as a type of word, the LG is believed to serve as a link connecting
modalities and meanings of a brand. Interestingly, these regions are associated with the
default mode network (DMN) [67,68]. The PHG is the core region of the DMN [69], and
the LG has functional connection with brain regions constituting the DMN [68]. Given that
the DMN is engaged in self-referential processing (e.g., episodic memory, autobiographical
memory) [67] and associative memory-based autopilot behavior [70], mental processing
of branded objects can be thought of as automated mental processes based on associative
memories and effortless decision-making based on these mental processes.
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Meanwhile, as described earlier, consistent results from the three assessments (i.e.,
the ALE method, statistical hypothesis test, and machine learning) were not observed
in unbranded objects relative to that in branded ones. However, the IPL (BA40) was
commonly observed as characteristic brain regions via two assessments (the ALE method
and statistical hypothesis test). The IPL associates with calculation [71,72] and decision-
making under uncertainty [73–75]. Interestingly, connections between the IPL and insula
were recorded in metacognition under uncertainty [75]. The insula plays a crucial role in
monitoring situations when decision-making under uncertainty. The IPL is involved in
controlling and managing mental resources for problem solving under uncertainty. The
insula was the brain region revealed in the assessment by the ALE method. In the consumer
contexts, the insula detects and evaluates the social risks in purchase decision-making [23].
Besides these regions, the medial frontal gyrus was revealed by the ALE method. The
machine learning approach demonstrated that the superior frontal gyrus (Cluster 25) has
an influence on unbranded flags. These brain regions are so close that they are placed in
a dorsal and medial part of the prefrontal cortex (hereafter, the dorsomedial prefrontal
cortex). The dorsomedial prefrontal cortex (DMPFC) is associated with action control,
conflict monitoring [76,77], and decision uncertainty [78]. The DMPFC performs these
cognitive control-related functions by connecting with the executive control network [78,79].
Additionally, the DMPFC associates with the DMN and is involved in social cognition
through a connection with brain regions of the DMN [69]. The DMPFC plays a role in
inferring others’ thoughts in complex social relationships [80]. In this way, this region is
engaged in organizing and adjusting information to solve problems in complex situations,
such as a preference on options with equal values, and unstable situations [81]. Thus, in
mental processes of unbranded objects, cognitive control and deliberative aspects may
be dominated to handle unknown objects, such as unbranded products and services.
In other words, it can be presumed that consumers carefully behave while purchasing
unbranded objects.

Cognitive decoding in Neurosynth (https://neurosynth.org/, accessed on 7 Septem-
ber 2021) was also conducted to more rigorously decode the functions of these clustered
brain regions. The decoding analysis was performed for the results of branded objects
and unbranded objects. Additionally, the region of interest (ROI) was determined via the
Mango software (Version 4.1; http://ric.uthscsa.edu/mango/, accessed on 1 April 2021).
In this regard, three ROIs (Cluster 9, 15, and 20) were established, and the shape of each
ROI was set as a cube in branded objects. In unbranded objects, two ROIs (Cluster 8,
and 25) were established. The length, width, and height in each cube were determined in
accordance with the standard deviations of the coordinates in each cluster. Concretely, each
measurement of the cube was set at 18 mm. The calculation procedures are as follows. First,
the standard deviations (1 sigma) of each coordinate (x, y and z) in each cluster (Clusters
8, 9, 15, 20, and 25) were calculated. Second, the maximum and minimum values of the
coordinates in each cluster were determined. For example, in Cluster 9, the maximum
value of the x coordinate was determined by calculating 30 (x; centroid of Cluster 9) plus 13
(1 sigma of the x coordinate), while the minimum value of the x coordinate was determined
by calculating 30 (x; centroid of Cluster 9) minus 13 (1 sigma of the x coordinate). As for
the ranges of the ROI of Cluster 9, the x coordinate ranged from 17 to 43, the y coordinate
ranged from −16 to 6, and the z coordinate ranged from −22 to −1. Regarding the ranges
of the ROI of Cluster 15, the x coordinate ranged from −24 to −6, the y coordinate ranged
from −96 to −77, and the z coordinate ranged from −11 to 11. Regarding the ranges of
the ROI of Cluster 20, the x coordinate ranged from 10 to 31, the y coordinate ranged
from −94 to −77, and the z coordinate ranged from −4 to 15. Third, each measurement
of the cube was adjusted in accordance with these ranges calculated in the second step
using the Colin27-T1 template in the Mango software. It was determined that 18 mm
was appropriate for the measurement of the cube. Finally, these three ROIs were united
into a single ROI (see Figure 7A) in branded objects. Similarly, the two ROIs were united
into a single ROI (see Figure 7C) in unbranded objects. After determining the ROI, they

https://neurosynth.org/
http://ric.uthscsa.edu/mango/
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were registered in the Neurovault database (https://neurovault.org, accessed on 1 April
2021) for decoding. Subsequently, cognitive decoding was performed for the ROI through
the Neurovault database, which is internally connected with Neurosynth. The results
of the decoding are shown in Table 8 and Figure 7B,D. In this case, we adopted the top
40 terms, excluding both anatomical terms, disease and experimental task-related terms.
The word cloud was created using Python. The higher the correlation values a term had,
the larger the font size was set, and vice versa. Accordingly, the font size in the word cloud
of branded objects is larger than that of unbranded objects as correlation values in decoded
results of branded objects are relatively larger than those in decoded results of unbranded
objects. The colors were randomly allocated to each term. In branded objects, the results
show that both memory- and emotion-related terms are primarily dominant. Especially,
emotion-related terms were ranked as the top 10 terms. This indicates that the emotional
episodic memories of objects in consumers’ minds play a crucial role in differentiating
between branded objects and unbranded objects. In contrast, in unbranded objects, many
executive control-related terms (e.g., “competing”, “judgment”, “reasoning”, “switching”,
“control network”, “conflict”, “executive control”, “cognitively”, and “monitoring”) were
ranked. Besides this term category, language-related terms (“fluency”, “verbal fluency”,
“lexical decision”) and social cognition related terms (“pain”, “default network”, “empa-
thy”) were ranked. Although the decoded terms of unbranded object-related brain regions
were not converged into specific categories as were the results of brain regions related to
branded objects, the executive control-related terms were characteristic in the decoded
results of unbranded objects’ related brain regions.

Overall, the findings of this study are consistent with previous theoretical and empiri-
cal brand equity studies. Specifically, the emotional and positive experiences of consumers
influence their attitudes toward brands [82], and vice versa. Similarly, it has been revealed
that emotional aspects influence value-based decision-making in neuroeconomics and
neurofinance studies [83]. These emotional experiences are stored in consumers’ minds
along with multimodal sensory information [84]. In addition, the link between emotional
episodes and brands help form brand associations, which is one of the crucial elements in
brand equity [2]. Hence, a strong brand association is created by episodic memories that are
based on emotional experiences [82,85]. In collaboration, this study indicates that the PHG
may be involved in emotional aspects of brand associations and the LG may function as a
semantic hub connecting various multimodal elements of brand associations. Meanwhile,
given that terms related to the executive control network were decoded in analysis of the
IPL and the DMPFC, it is presumed that making decisions about unbranded objects may
be effortfully executed based on rational mental processes. Therefore, regarding mental
processes of branded objects, emotional aspects may be relatively dominant in decision-
making. In contrast, cognitive and deliberative aspects may be relatively dominant in
mental processes of unbranded objects.

The results of this study also provide useful implications for practitioners. First,
when launching a new brand, managers should prioritize the creation of emotional brand
associations, aside from other marketing practices. In this regard, they should carefully
observe the emotional brand associations and related scores like “familiarity”, in addition to
other indices, for tracking brand equity and managing an established brand. Second, when
conducting qualitative research, such as in-depth interviews and focus groups, researchers
should focus on eliciting emotional episodes on a brand from consumers. In this case,
episodes that are visually vivid, spatially concrete, and positively presented can be core
factors that strengthen brand associations.

https://neurovault.org
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(BA8, DLPFC). (D) The result of the decoding study in unbranded objects via the cognitive decoding function in Neurosynth.
Abbreviations: ROI: region of interest; CL: cluster; PHG: parahippocampal gyrus; LG: lingual gyrus; IPL: inferior parietal
lobule; SFG: superior frontal gyrus; DLPFC: dorsolateral prefrontal cortex.

Although the present study provided useful findings to both academicians and prac-
titioners, there are several limitations that should be noted. First, the analyses were
conducted using data with stimuli from B2C products and services. In other words, the
data in this study included cross product and services data among B2C categories. De-
pending on these categories, it is possible that different results can be obtained when using
data that focus on a specific product/category. In unbranded objects, inconsistent results
among the three assessments may be induced owing to these reasons. Further, research
on a specific product/category is required in near future. In addition, controlling the
attributes and facets in both branded and unbranded objects will be required to overcome
the inconsistencies of results for unbranded objects during analysis. Second, the analyses
were conducted without considering the heterogeneous sample profiles such as sex, age,
occupations, personalities, attitudes toward a brand, and brand usages. In marketing,
segmented groups of consumers play a crucial role in setting a strategy and evaluating an
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outcome. However, in this study, both demographic and psychographic factors were not
considered in the analyses. Consequently, it is possible that different results can be derived
from these factors. Finally, regarding the analysis by machine learning, it is possible that
the performance of the model was improved by conducting the more precise feature engi-
neering. For example, the latter approach added other variables such as raw coordinate
data, a task factor, and product categories. Therefore, the results of this study should be
carefully interpreted before drawing any conclusions. In this way, although the study has
several limitations with this approach, this is the first study in which the watershed brain
regions between the branded and unbranded objects were comprehensively revealed based
on the enormous brain regions that activated imaging data. However, additional work is
required for more precisely identifying a neural mechanism of brand equity and mental
processes in it.

Table 8. Results of decoding study by Neurosynth. Each term was sorted by higher correlation
values order.

Branded Objects Unbranded Objects

Cognitive Terms Correlation Cognitive Terms Correlation

Fearful 0.129 Recognition memory 0.079
Unpleasant 0.124 Belief 0.068

Negative 0.116 Tactile 0.051
Affective 0.109 Pain 0.043

Emotional 0.101 Fluency 0.036
Happy 0.098 Demands 0.035

Aversive 0.098 Verbal fluency 0.033
Emotions 0.093 Competing 0.03

Angry 0.09 Judgment 0.03
Fear 0.088 Reasoning 0.029

Emotionally 0.08 Default network 0.025
Disgust 0.078 Sensations 0.023

Positive negative 0.077 Painful 0.022
Arousal 0.071 Interference 0.02
Anxiety 0.068 Switching 0.02

Expression 0.065 Integrative 0.019
Affect 0.06 Relational 0.019

Pleasant 0.054 Empathy 0.019
Valence 0.052 Risky 0.019

Threatening 0.049 Control network 0.019
Emotional valence 0.049 Conflict 0.017
Emotion regulation 0.047 Multisensory 0.017

Mood 0.045 Speakers 0.017
Emotional information 0.041 Consciousness 0.016

Memories 0.038 Lexical decision 0.016
Sighted 0.036 Semantic 0.016

Learning 0.029 Cognitively 0.015
Negative emotional 0.029 Executive control 0.014

Modality 0.027 Concrete 0.013
Intense 0.024 Referential 0.013

Signaling 0.023 Word 0.013
Salient 0.022 Demand 0.012

Mental imagery 0.021 Retrieval 0.011
Gain 0.021 Words 0.011
Sad 0.019 Imagine 0.011

Episodic memory 0.018 Learned 0.011
Encoding 0.016 Monitoring 0.011
Intensity 0.013 Expectancy 0.011

Arithmetic 0.013 Judgments 0.011
Anger 0.012 Target detection 0.009
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5. Conclusions

This study identified the unique brain regions related to brand equity and assessed
the mental processes derived from these regions. For this purpose, three analysis methods
(i.e., the qualitative meta-analysis approach, chi-square tests, and machine learning) were
conducted. In total, 65 studies (1412 foci) investigating branded objects with brand equity
and unbranded objects without brand equity were examined, while the neural systems
involved for these two brain regions were contrasted. Based on the findings, the brain
regions around the PHG and LG were the watershed nodes for distinguishing branded
objects with brand equity and unbranded objects without brand equity. This study re-
vealed that both the PHG and LG can be involved in a brand association. In particular,
the PHG might be engaged in emotional episodic elements of a brand association. Mean-
while, the LG might play a crucial role in the semantic hub on a brand association via
word processing. This study indicated that mental processes of branded objects may be
automatic information processing based on emotional associative memories derived from
these regions, while unbranded objects’ related mental processes may be deliberative and
cognitive mental processes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/brainsci11121619/s1, Table S1(a): Branded studies included in the meta-analysis, Table S1(b):
Unbranded studies included in the meta-analysis. Table S2: Convergence of sum of squared error
(SSE). Table S3: Results of hyperparameter tuning.
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