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Abstract: In recent years, interest has been growing in dynamic characteristic of brain signals from
resting-state functional magnetic resonance imaging (rs-fMRI). Synchrony and metastability, as
neurodynamic indexes, are considered as one of methods for analyzing dynamic characteristics.
Although much research has studied the analysis of neurodynamic indices, few have investigated its
reliability. In this paper, the datasets from the Human Connectome Project have been used to explore
the test–retest reliabilities of synchrony and metastability from multiple angles through intra-class
correlation (ICC). The results showed that both of these indexes had fair test–retest reliability, but
they are strongly affected by the field strength, the spatial resolution, and scanning interval, less
affected by the temporal resolution. Denoising processing can help improve their ICC values. In
addition, the reliability of neurodynamic indexes was affected by the node definition strategy, but
these effects were not apparent. In particular, by comparing the test–retest reliability of different
resting-state networks, we found that synchrony of different networks was basically stable, but the
metastability varied considerably. Among these, DMN and LIM had a relatively higher test–retest
reliability of metastability than other networks. This paper provides a methodological reference for
exploring the brain dynamic neural activity by using synchrony and metastability in fMRI signals.

Keywords: synchrony; metastability; test–retest reliability; resting-state network; resting state fMRI

1. Introduction

The brain is a complex nonlinear dynamic system, and the neural oscillations gener-
ated by individual neurons or the interaction between neurons define different cognitive
and behavioral states [1–5]. Nonlinear system has two important dynamic characteristics–
synchronization and metastability [6,7], which play very important roles [8–12]. Neuronal
synchrony plays a role in well-timed coordination and communication between neural
populations simultaneously engaged in a cognitive process [13], and metastability reflects
flexible dynamic interactions between neural populations [14]. Specific to the brain net-
work, synchrony in the oscillatory activity of network regions is considered to underpin
information exchange [15], whereas metastability represents the variability in the synchro-
nization of network regions over time that is considered important for adaptive information
processing [16–18], and can be estimated by calculating the well-defined order parame-
ter [19–23]. Existent theories suggest that synchrony is considered as the core mechanism
for sculpting communication and plasticity of the entire brain network that underpins hu-
man cognition [24], and metastability can reconcile the competing demands of integration
and segregation of brain regions interact [17,25,26].

In recent years, there has been increasing research on the measurement of synchrony
and metastability in functional magnetic resonance imaging (fMRI) signals [25,27–30].
Additionally, it is well-verified by a variety of studies that these indexes not only provide a
mechanistic explanation of the origin of functional organization of the brain [28,31–34], but
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also help us understand the mechanistic causes of diseases [18,25,35], and as a significant
predictor of diseases. For example, a study conducted by Alderson et al. examined the
causal link between damage in high participation nodes, reduced metastability of neural
dynamics, and decline in global cognitive performance [25]. Moreover, there is also a
published study that describes that some of these changes in metastability are associated
with the suppression of a given network during task completion [26]. Moreover, a recent
study by Naik et al. assesses the changes in metastability to characterize age-effects on
the dynamic repertoire of the functional networks at rest [29]. In a word, these two
neurodynamic indexes facilitate the exploration of a larger dynamical repertoire of the
brain and allow for the all-around visitation of functional states and dynamic responses to
the external world [36].

Although particular attention is paid to synchrony and metastability, only a few
studies have systematically analyzed the test–retest reliability of them when applied to
fMRI signals. At present, there is evidence that any variable or factor with significant
intra- or inter-individual variability can influence test–retest reliability [37]. According
to studies of data acquisition, different field strengths have different blood oxygenation
level-dependent (BOLD) contrast [38–43]. Theoretically, 3T fMRI offers twice the signal of
1.5T fMRI, and the greater sensitivity in the detection of signal changes, increased signal-
to-noise ratio (SNR), BOLD signal change, and BOLD contrast-to-noise ratio (CNR) [44].
Therefore, questions have been raised regarding whether different field strengths affect
the test–retest reliability of synchrony and metastability in the fMRI signal. Additionally,
previous studies have argued that the shorter repetition times (TR), the higher temporal
resolution, and the more time points, which has a higher statistical power. Moreover, high
temporal resolution increases BOLD sensitivity [45,46], so will the temporal resolution affect
the test–retest reliability of synchrony and metastability? The high spatial resolution would
yield a marked increase in functional contrast relative to low resolution [47], so how about
the effect of reliability of synchrony and metastability? Meanwhile, measures of fMRI are
dynamic, and may be subject to modulations related to an individual’s current state. Further
analysis revealed that test–retest reliabilities of network metrics were sensitive to scanning
intervals, repeated measurements taken over shorter intervals are more reliable than those
taken over longer intervals [48–53], is this also true for neurodynamic indexes? In addition,
apart from these different parameter settings during data collection, various types of noise
and artifacts in the fMRI data collection process would pollute data [54–57]. Therefore, will
the reliability of these two indexes be improved after denoising? In particular, what about
the stability of neurodynamic indexes in different resting-state networks? Therefore, factors
that may affect the dynamic changes in the functional connection also raise concerns about
the test–retest reliabilities of these two indexes.

In this study, the test–retest performance of synchrony and metastability was analyzed.
We used the resting-state functional magnetic resonance imaging (rs-fMRI) datasets from
healthy young people to calculate and analyze the mentioned factors to determine whether
they have an impact on neurodynamic indexes. On this basis, we also measure the test–
retest reliabilities of synchrony and metastability in the resting-state network, to discover
more networks characteristic. Our research aims to provide a reference for researchers who
would use synchrony and metastability in fMRI signals.

2. Materials and Methods

An overview of the workflow is shown in Figure 1. To examine the stability of
synchrony and metastability in the fMRI signals, and to analyze the influences of different
factors on test–retest reliability (the green boxes in Figure 1), we extracted the mean time
series for each node from the preprocessed data of all subjects, subsequently calculated
synchrony and metastability in the global network and different resting-state networks,
and their stabilities were measured.
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Figure 1. Overview of the workflow. Green boxes represent different factors. The orange box and
blue box represent ICC index calculation and neurodynamic indexes calculation, respectively. ∆T1
can be used to evaluate short-term reliability and ∆T2 evaluates long-term reliability. See the methods
for details.

2.1. Datasets

Given the multi-parameter conditions required for studies, more diverse fMRI datasets
from the Human Connectome Project (HCP) 1200 Subjects Release (S1200) were used [58],
including 3T rs-fMRI data (3T), 3T rs-fMRI ICA-FIX cleaned data (3T-FIX), 7T rs-fMRI
ICA-FIX cleaned data (7T-FIX) and 3T rs-fMRI retest data (HCP_Retest).

Both 3T and 3T-FIX data were scanned with a Siemens Prisma 3 Tesla scanner. Their
fMRI data were acquired using a gradient-echo EPI sequence with the following parame-
ters: TR = 720 ms, TE = 33.1 ms, flip angle = 52◦, field of view = 208 × 180 mm2, spatial
resolution = 2 × 2 × 2 mm3. 7T-FIX data were scanned with a Siemens Prisma 7 Tesla scan-
ner. The fMRI data were acquired using a gradient-echo EPI sequence with the following
parameters: TR = 1000 ms, TE = 22.2 ms, flip angle = 45◦, field of view = 208 × 208 mm2,
spatial resolution = 1 × 1 × 1 mm3.

Each subject underwent four rs-fMRI runs of approximately 14.4 min each (1200 im-
ages): two in the first session (Day 1) and two in the second session (Day 2). After 140 days,
four other rs-fMRI runs of data for 45 subjects were collected in the same way. Since
there were 44 subjects who were the same in the two collections, and three of them lacked
information for rs-fMRI scans, we chose 41 subjects for our test–retest study. However,
only 22 subjects were the same in the two collected data of 7T-FIX, so when analyzing the
effect of magnetic flux strength strategies, 169 common subjects of all 3T-FIX and 7T-FIX
were used for short-term retest analysis. This study includes four rs-fMRI runs of data
for 169 subjects and eight rs-fMRI runs of data for 41 subjects. Among them, the mean
interval between scan 1 and 3, scan 2 and 4, scan 5 and 7, scan 6 and 8 was 1 day, and the
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mean interval between scan 1 and 5, scan 2 and 6, scan 3 and 7, scan 4 and 8 was 140 days
(Figure 1).

In order to explore the effect of spatial resolution on reliabilities of synchrony and
metastability, we also used the Institute of Psychology, Chinese Academy of Sciences dataset
(IPCAS) here. During the rest scan, a fixation cross was presented to the first group of
29 subjects, and the subjects were instructed to rest while focusing on the fixation cross. Four
resting-state scans were obtained for each subject using a Siemens 3T scanner. Researchers
acquired the echo-planar imaging (EPI) functional volumes of each scan (time repetition
(TR) = 2000 ms; time echo (TE) = 30 ms; flip angle (FA) = 90 µ, number of slices = 32,
matrix = 64 × 64; field of view (FOV) = 256 mm, spatial resolution = 4 × 4 × 4 mm3) and
structural MRI data using sagittal T1-weighted magnetization prepared rapid gradient
echo (MPRAGE) sequences (TR = 2530 ms; TE = 2.51 ms; inversion time = 1100 ms;
FA = 7 µ; number of slices = 128; FOV = 256 mm). The mean interval between scan 1 and
2, and scan 3 and 4 was 29 min, and the mean interval between scan 1 and 3, and scan
2 and 4 was one week. The preprocessing method we use is consistent with that of the
HCP dataset.

2.2. Data Preprocessing

Data preprocessing and quality control (including head motion) were implemented
through the HCP pipeline [59]. The fMRI pipelines include following steps: distortion cor-
rection, motion correction, registration in structural data, and conversion to gray-ordinates
standard space [60]. Meanwhile, the “ICA-FIX” denoised fMRI data of the HCP subjects
were used, which were processed by using an automatic denoising approach based on
independent component analysis (ICA) followed by FMRIB’s ICA-based X-noiseifier to
minimize head motion by removing structured artifacts [61,62]. Each subject’s preprocessed
fMRI data were resampled to a common standard cortical surface mesh representation
(fs_LR 32 k mesh) [63]. Then, the average value of the vertex strength within each region
based on the brain atlas was extracted to obtain the time series. At the same time, we also
downsampled the datasets to different repetition times (TR) settings from TR 0.72 s to 1.44 s
and 2.88 s, respectively, by taking every n-th [n = 2,4] sample from every time series.

2.3. Dynamical Metrics

We used the extracted time series of each participant, and applied them with the
Hilbert transform to calculate the associated analytical signals. In order to assess measure-
ments of network dynamics within the brain, we evaluated the Kuramoto order parameters
R(t), which was estimated for (1), the set of a region comprising whole-brain network (2),
the set of regions comprising single resting-state network, and (3), when evaluating their
interactions, the set of regions comprising two resting-state networks, defined by:

R(t) =
1
N

∣∣∣∑ N
n=1eiϕn(t)

∣∣∣, (1)

where N is the number of brain regions and ϕn(t) is the instantaneous phase of regional
mean BOLD time series in region n. We considered the mean of the order parameter R(t)
across time, as an index of synchrony and the standard deviation of the R(t), as an index of
metastability [28]. After calculation, we got the global measurement value of synchrony
and metastability, the measurement value of resting-state networks, and the interaction
matrix between resting-state networks.

2.4. Node Definition

In this study, we adopted three widely used functional parcellations. The Desikan-
Killiany atlas was an automated labeling system for subdividing the human cerebral cortex
on magnetic resonance imaging (MRI) scans into 68 gyral-based regions of interest [64].
Additionally, the Destrieux atlas has the same principles as the Desikan-Killiany atlas,
producing a cortical parcellation with 148 independent sulcal and gyral regions [25,65].
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Another cortical areal parcellation (HCP-MMP atlas) contains 360 distinct areas, symmet-
rically arranged across the two hemispheres [66]. In addition, we also divided multiple
resting-state networks (RSNs) for the Destrieux atlases. We specifically examined the de-
fault mode network (DMN), the limbic network (LIM), the frontoparietal control network
(FPN), the somatomotor network (SMN), the ventral attention network (VAN), the dorsal
attention network (DAN), and the visual network (VIS).

2.5. Test–Retest Reliability

The test–retest reliability evaluates the statistical stability of the index at different mea-
surement times, and the intraclass correlation coefficient (ICC) is considered a frequently
used reliability coefficient index to measure it [67]. It does not just comprehensively con-
sider the changes within the individual and among different individuals, but also reflects
the stability and consistency of the index over time [68]. The ICC value can be calculated
according to the following formula:

ICC =
MSR − MSE

MSR + (k − 1)MSE
(2)

MSR represents the mean square between subjects, MSE represents the residual mean
square, and k is the number of repeated observations per subject.

In this study, ICC values were usually divided into five common intervals: 0 < ICC ≤
0.25 indicated poor reliability; 0.25 < ICC ≤ 0.4 indicated low reliability; 0.4 < ICC ≤ 0.6
indicated fair reliability; 0.6 < ICC ≤ 0.75 showed that reliability was good; and 0.75 < ICC
≤ 1.0 meant that reliability was very good, close to perfect. In practice, we usually expect
to have a fair to almost perfect reliability index (ICC > 0.4) [52]. In this study, we specified
that scans with short intervals (1 day) were used to calculate short-term reliability, and
scans with long intervals (140 days) were used to calculate long-term reliability.

2.6. Statistical Analysis

We have measured the reliability of synchrony and metastability on both the global
and resting-state networks. As the ICC is already a statistical indicator, our further sta-
tistical analysis could only be performed based on the RSNs. Other statistical analyses
were performed using the statistic toolbox SPSS 19. To further explore significant differ-
ences, we calculated the paired sample t-test in reliability of synchrony and metastability
among different factor analysis on the RSNs. The experimental results are included in the
Supplementary Materials.

3. Results
3.1. Effects of Different Magnetic Flux Strength Strategies on Reliabilities of Synchrony
and Metastability

We validated the influence of different magnetic flux strengths on them by calculating
the test–retest reliability analysis of synchrony and metastability with denoised fMRI data
divided according to the Destrieux atlas. As shown in Figure 2, the retest reliability of
synchrony of 7T-FIX was higher than that of 3T-FIX. Notably, they all showed fair reliability
(mean ICC > 0.4). Due to the small amount of retest data for 7T, all of the follow-up studies
used 3T datasets for analysis.

3.2. Effects of Different Temporal Resolution Strategies on Reliabilities of Synchrony
and Metastability

We downsampled the datasets to obtain time series with TR of 1.44 s and 2.88 s, and
analyzed their synchrony and metastability reliability (Figure 3). The results show that the
ICC values of neurodynamic indexes are fairly reproducible in all temporal resolutions. For
reliability of synchrony, no significant difference was observed between different temporal
resolutions. For the reliability of metastability, the ICC values decreased with TR (For
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example, in the Destrieux atlas, TR = 0.72s: ICC = 0.5464; TR = 1.44 s: ICC = 0.5335;
TR = 2.88 s: ICC = 0.4841).

Figure 2. Reliabilities of synchrony (a) and metastability (b) in different magnetic flux strength
strategies, evaluated by the intraclass correlation coefficient (ICC).

Figure 3. Reliabilities of synchrony (a) and metastability (b) in different temporal resolutions, evalu-
ated by the intraclass correlation coefficient (ICC). Blue bars represent short-term reliability and pink
bars represent long-term reliability.

3.3. Effects of Different Spatial Resolution Strategies on Reliabilities of Synchrony
and Metastability

Since the TR of the HCP dataset is different from that of the IPCAS dataset (HCP:
TR = 0.72 s, IPCAS: TR = 2 s), we compare the results after HCP downsampling with IPCAS
to illustrate the effect of spatial resolution. It can be seen from Figure 4 that the ICC values
of synchrony and metastability of IPCAS are lower than the values of the three groups
of HCP. It can be seen from this result that the test–retest reliabilities of synchrony and
metastability were affected by the spatial resolution. The higher the spatial resolution, the
higher the reliability of synchrony and metastability.

3.4. Effects of Denoising Strategies on Reliabilities of Synchrony and Metastability

To investigate the effects of denoising on reliabilities of synchrony and metastabil-
ity, we used two processing methods for a set of data (3T and 3T-FIX) as controls. The
results of the correlational analysis are presented in Figure 5. Among all the brain atlases,
synchrony had fair reliability (mean ICC > 0.4) in 3T-FIX but low reliability in 3T (mean
ICC < 0.4). Likewise, the same trend as synchrony was found in metastability. For exam-
ple, based on the HCP-MMP atlas, both synchrony and metastability showed that 3T-FIX
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was more reliable than 3T (synchrony: ICC3T-FIX = 0.4899, ICC3T = 0.3755; metastability:
mean ICC3T-FIX = 0.5342, mean ICC3T = 0.4575). Notably, long-term and short-term retest
assessments basically had the same trend in reliabilities between 3T-FIX and 3T. For the
long-term reliability of metastability of the Destrieux atlas, although 3T has higher reliabil-
ity than 3T-FIX, they are all fair. Comparing these results, it can be seen that the test–retest
reliabilities of synchrony or metastability were higher based on denoised fMRI analysis
than non-denoised fMRI analysis, thus we used denoised datasets for the following studies.

Figure 4. Reliabilities of synchrony (a) and metastability (b) in different spatial resolutions, evaluated
by the intraclass correlation coefficient (ICC). Blue bars represent short-term reliability and pink bars
represent long-term reliability.

Figure 5. Reliabilities of synchrony (a) and metastability (b) in denoising strategies for the three
brain atlases, evaluated by the intraclass correlation coefficient (ICC). Blue bars represent short-term
reliability and pink bars represent long-term reliability.

3.5. Effects of Different Node Definition Strategies on Reliabilities of Synchrony and Metastability

Two indexes were investigated in three brain atlases and compared in our test–retest
reliability analysis. As summarized in Figure 6, both synchrony and short-term metasta-
bility showed fair reliability (mean ICC > 0.4) based on three brain atlases. Among them,
mean ICCs of long-term metastability increase with the number of brain regions (the
Desikan-Killiany atlas: ICC = 0.3840; the Destrieux atlas: ICC = 0.4225; the HCP-MMP atlas:
ICC = 0.4423).
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Figure 6. Reliabilities of synchrony (a) and metastability (b) in different node definition strategies,
evaluated by the intraclass correlation coefficient (ICC). Blue bars represent short-term reliability and
pink bars represent long-term reliability.

3.6. Reliabilities of Synchrony and Metastability of Different Resting-State Networks

We visualized the values of reliable ICCs for each of those seven networks of the
Destrieux atlas for synchrony and metastability as spider graphs in Figure 7. In the short
term, the synchrony exhibited ICC values ranging from 0.47 to 0.58, and metastability
exhibited ICC values ranging from 0.22 to 0.56; in the long term, the synchrony exhibited
ICC values in the range from 0.36 to 0.49, and the metastability exhibited ICC values in
the range of 0.23 to 0.49. For synchrony, the highest ICC values were seen in the DMN
and FPN, others also had fair reliabilities (mean ICC > 0.4), whereas for metastability, the
higher ICC values were seen in the DMN, LIM, and VAN; ICC values of other networks
were slightly lower.

Figure 7. Reliabilities of synchrony (a) and metastability (b) in different resting-state networks,
evaluated by the intraclass correlation coefficient (ICC). Blue lines represent short-term reliability
and pink lines represent long-term reliability.

At the same time, we evaluated the synchrony and metastability interactions between
all seven resting-state networks in Figure 8.
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Figure 8. Reliabilities of interaction matrix of synchrony (a) and metastability (b), evaluated by the
intraclass correlation coefficient (ICC). Color bar: 0–0.6.

Figure 8b shows clearly that the reliabilities of the interaction among VIS, SMN, and
DAN had low reliability (ICC < 0.4), and the interaction with other networks had fair
reliability (ICC > 0.4). The relatively high ICC values were seen in the interaction with
DMN, LIM, and FPN.

4. Discussion

One primary goal of this study was to investigate the reliability of neurodynamic
indexes (synchrony and metastability) for various data acquisition parameters and data
processing methods. Overall, we found that synchrony and metastability showed higher
reliability in 7T-FIX data than in 3T-FIX data; and it shows high reliabilities of synchrony
and metastability in high spatial resolution; synchrony and metastability of denoising
data also have better test–retest reliability. In addition, the research also showed that the
reliabilities of synchrony and metastability were less affected by the temporal resolution
strategy and the node definition strategy; the short-term reliability is tended to be more
stable compared with long-term reliability. In the resting-state networks, DMN and LIM
have higher test–retest reliability than others.

4.1. High Field Strength, High Temporal resolution, and High Spatial Resolution Are More Reliable
in Dynamic Measurement

Overall, for reliabilities of synchrony and metastability, images acquired at 7T-FIX had
higher reliability than images acquired at 3T-FIX. These results are in correspondence with
the findings of Tak et al. which showed that 7T data have a high reproducibility of effective
connectivity [69]. In particular, a higher field strength would enhance the signal-to-noise
ratio (SNR), the contrast-to-noise ratio (CNR), and the spatial resolution, as well as it would
increase the blood oxygen level dependent (BOLD) effect, making the signal changes in
brain function imaging more obvious [45,69–71]. Our result suggests that synchrony and
metastability achieve fair levels of consistency in describing spontaneous brain activity,
and that the reliabilities of synchrony and metastability are better at higher field strengths.

Moreover, this study found that the reliability of synchrony is basically not affected
in different temporal resolutions, whereas the reliability of metastability of data of high
temporal resolution is higher. The data of high temporal resolution contain more time
points, resulting in more information about spontaneous brain activity and potentially
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higher reproducibility [72,73]. Similarly, consistent with the previous study by Zuo et al.,
ReHo maps generated from the data of high temporal resolution are substantially more
reproducible than those generated from the data of low temporal resolution [74]. This
suggests that different temporal resolution strategies influence the neurodynamic indexes,
but the effect is not obvious.

Meanwhile, we also found that the reliability of synchrony and metastability of the
data of high spatial resolution is higher. Spatial resolution is primarily determined by
the volume of the smallest imaging unit (i.e., voxel) and affects the ability of BOLD fMRI
data to distinguish activity from distinct functional sub-units such as cortical layers and
columns [75]. Image acquisition with higher spatial resolution has higher functional
contrast-to-noise (fCNR) and spatial fidelity [75]. There have also been some other studies
that found utilizing higher spatial resolution that may allow better quantification of inferior
white matter tracts [76]. This suggests that different spatial resolution strategies influence
the neurodynamic indexes, and the high spatial resolution may be more suitable for
researching them.

4.2. Denoising Processing Helps to Improve the Reliability of Dynamic Measurements

We found that the synchrony and metastability of denoising data generally demon-
strated fair test–retest reliability. The fMRI signal is affected by many sources of fluctuations,
which are collectively referred to as the “noise” components, including effects of motion,
non-neuronal physiology, scanner artifacts, and other nuisance sources. This reduces the
signal-to-noise ratio, and can mislead statistical analyses attempting to investigate neu-
ronally related brain activation [61,62]. At present, denoising will not alter the information
on the neural activity dynamics in the brain [77], suggesting that denoising data may be
more suitable for research using neurodynamic indexes.

4.3. Nodes Definition Strategies Slightly Affect the Reliability of Dynamic Measurement

We observed a comparable test–retest reliability for the examined strategies of node
definition for neurodynamic indexes and found that the reliabilities of the three networks
basically remained fair. Obviously, the long-term reliability of metastability shows an
upward trend with an increasing number of brain regions. There is speculation that the
size of the nodal set may have an influence on the reliability of metastability. There is some
evidence that network properties are sensitive to the strategy used to define nodes based
on parceling strategies and spatial scales [51,78–81]. It is noteworthy that the choice of atlas
must be approached with some caution, as all of them are valid and important approaches
to uncover brain connectivity from different perspectives [82–85]. Therefore, different
strategies used to define nodes will affect the test–retest reliability of neurodynamics
indexes, but the effect is not obvious.

4.4. DMN and LIM Has Higher Reliability Than Other Networks

Our research results showed that the test–retest reliability of synchrony was fair on
almost all resting-state networks. However, across metastability analyses, the reliability
values for DMN, LIM, and VAN were relatively stable and relatively higher than those
in other networks. The default-model network had a role as a stable core of mental pro-
cessing [28,86], which is implicated mostly in internal and goal-directed processing [87,88].
In the resting-state environment, it may not correspond to a large amount of information
transfer, and the connection information that already existed in the networks was rela-
tively simple [52]. Namely, this could result in the presence of default-mode network with
high test–retest reliability. For the visual network and the somatomotor network, low
test–retest reliability was an indication of the high dynamics of metastability across time or
intra-individual [89].
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4.5. Short-Term Scanning Interval Can Result in More Reliable and Accurate Values

In this paper, we observed that short-term analyses showed higher test–retest reliability
than long-term analyses with synchrony and metastability, and both showed fair reliability.
This result agrees with previous findings that the spatial patterns of functional networks
were more reliable in short-term scans [90]. It may be explained by the fact that short-term
scans may have reduced internal noise with improved reliability estimates and that short-
term scanning intervals can result in more stable and accurate values [52,91]. Individual
opposite results may be largely attributed to its own poor stability. Our finding here
suggests that the scanning interval may affect synchrony and metastability, which needs to
be considered in the experimental design of future studies.

5. Conclusions

In summary, we examined the stability of synchrony and metastability in the global
network and the resting-state networks. Specifically, this study revealed overall fair relia-
bility for these two indexes, and the detected reliabilities were influenced by the strategy
used to magnetic flux strengths, temporal resolution, spatial resolution, denoising, define
nodes, and scanning interval. In the research of the resting-state networks, it is found
that the reliability of synchrony of different resting-state networks was higher, but for the
stability of metastability, DMN and LIM were higher than other networks. Our results
demonstrated that this systematic exploration of reliability for synchrony and metastability
can help to instruct appropriate applications of neural dynamics analysis to discover more
information about the brain dynamic neural activity. There are still some limitations in our
research. First, the sample size used in our study is small. Although it has reliable and
significant results, whether the same phenomenon still exists in a large sample size remains
to be studied. Second, in this study, we mainly conducted research on the data of healthy
people, and did not analyze the patient data, which can be further studied later.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/brainsci12010066/s1, Figure S1: Paired sample t-test between 3T-FIX and 7T-FIX data analysis;
Figure S2: Paired sample t-test between different temporal resolution analysis; Figure S3: Paired
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