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Abstract: In recent years, applications of the network science to electrophysiological data have
increased as electrophysiological techniques are not only relatively low cost, largely available on
the territory and non-invasive, but also potential tools for large population screening. One of the
emergent methods for the study of functional connectivity in electrophysiological recordings is graph
theory: it allows to describe the brain through a mathematic model, the graph, and provides a simple
representation of a complex system. As Alzheimer’s and Parkinson’s disease are associated with
synaptic disruptions and changes in the strength of functional connectivity, they can be well described
by functional connectivity analysis computed via graph theory. The aim of the present review is to
provide an overview of the most recent applications of the graph theory to electrophysiological data
in the two by far most frequent neurodegenerative disorders, Alzheimer’s and Parkinson’s diseases.

Keywords: EEG; MEG; graph theory; Alzheimer; Parkinson

1. Introduction

The brain is one of the most complex and less explored systems of the human body.
It consists of 100 billions of neurons that reciprocally communicate through networks of
connections. In order to explain the mechanisms of brain networks, the “brain connectivity
analysis” was created recently. Theoretically speaking, the analysis consists of three main
types of connectivity: structural, functional and effective connectivity. Structural connec-
tivity is based on anatomical constraints, that is, the set of physical (fibers) and structural
(synaptic) connections linking neuronal units at a given time. Anatomical connectivity
refers to a network of synaptic connections linking sets of neurons or neuronal elements, as
well as their associated structural biophysical attributes condensed in parameters, such as
synaptic strength or effectiveness [1,2]. The “functional connectivity space” is defined as
the physical substrate in which all neural information processes happen, thus providing
plausible biological boundaries for theories and inferences about neural interactions when
analyzing functional neuroimaging data and developing computer simulations. In fact,
because the structural/anatomical input/output connections of a given brain region are
the main constraints for its functional properties, structural brain connectivity does not
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rigidly determine neural interactions, but acts instead as a dynamic support that reduces
the dimensionality of the neural network state space. Meanwhile, functional interactions
contribute to modify the underlying structural substrate by modifying the synaptic connec-
tions (i.e., enlarging/reducing the synaptic knob area, forming new synapses, and pruning
preexisting synapses) [3].

In fact, functional connectivity is time dependent and captures the patterns of de-
viations between distributed and often spatially remote neuronal units, measuring the
statistical correlation or their time-dependent activity. Effective connectivity describes the
set of causal/modulating effects of one neural assembly activity over another and defines
their inner hierarchy. Structural connectivity has been usually assessed by high spatial
resolution technologies, such as magnetic resonance imaging (MRI-tractography); func-
tional and effective connectivity are largely dependent on calculating the correspondence
of neural signals over time, using electrophysiological techniques, such as EEG, TMS-EEG
and MEG, that have an excellent temporal resolution and are optimal for calculating such
connectivity [4,5]. Moreover, EEG recordings can be carried out in more ecological con-
ditions since they do not need any specific environment, in opposition to the need of a
shielded room for the fMRI and MEG recordings.

In the human brain, the connectome concept strongly relies on the evidence that
neuronal populations interact with each other by means of their connections as well as
of their temporally related dynamics. This is particularly evident when considering the
innumerable brain dynamic states, which vary instantly and continuously because of
changing sensory inputs from internal and external environments [2]. According to the
principles of segregation and integration [6] in the human nervous systems, brain anatomi-
cal connections are both specific and variable. Specificity depends on the arrangement of
individual synaptic connections between morphologically and physiologically different
neuronal types, in the organization of axonal arborizations and long-range connectivity
between separate cell nuclei or brain regions [1,2].

Recently, the study of brain connectivity was investigated in two of the main neu-
rodegenerative diseases, in particular Alzheimer’s (AD) and Parkinson’s (PD) disease. In
fact, AD is histopathologically defined by the presence of amyloid-beta plaques and tau-
related neurofibrillary tangles, which have been associated with local synaptic disruptions,
loss of fibers and neuronal death: this evidence suggests that AD is a dysconnectivity
disease [7–12] whose early stages are due to synaptic failure. In addition, previous studies
on PD have shown changes in the strength of functional connectivity between distributed
brain regions associated with clinical symptoms, such as motor features [13–15], as well as
a variety of non-motor disturbances, including cognitive impairment [16].

As already mentioned, one of the emergent tools for the study of functional connectiv-
ity is graph theory, which allows describing the brain through a mathematic model, the
graph, which provides a simple representation of a complex system. The origins of graph
theory and network science are to be found in the distant past, but their application in
neuroscience is definitely more recent [17]. With the graph model, the brain is shaped as a
network composed by nodes linked by directed or undirected, weighted or unweighted
edges [18,19]. The characteristics of the graph are measurable through several parameters;
the most explored ones are reported in Table 1.

Within this theoretical framework, the current review provides an overview of the
most recent applications of graph theory analysis to electrophysiological data for the study
of brain functional connectivity in two of the main neurodegenerative diseases, that is, AD
and PD.
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Table 1. Description of the main graph theory parameters.

Parameters Description

Clustering Coefficient, C

The number of connections that exist between the nearest
neighbors of a node as a proportion of maximum number of
possible connections. It reflects the tendency of a network to

form topologically organized circuits and it is often interpreted
as a metric of information segregation in networks [20].

Path Length, PL
The minimum number of edges that must be traversed to go
from one node to another. It is used as a measure of global

integration of the network [20].

Small-world, SW

The ratio of the normalized clustering coefficient and
normalized path length. It describes a balance between

segregation and integration network properties integrating the
information of global and local network characteristics [21].

Divergence
Measure of the broadness of the weighted degree distribution,

where weighted degree is the summed weights of all edges
connected to a node [22].

Modularity

Ratio of the intra- and intermodular connectivity strength
where modules are subgraphs containing nodes that are more

strongly connected to themselves than to other nodes.
Modularity is a measure of the strength of the modules [22].

Efficiency The ability of information exchange within the network [23].

Global efficiency
Measure of network integration and its overall performance for
information transferring. This measure is inversely related to

the average shortest path length [24].

Local efficiency Local efficiency, which has a similar interpretation as clustering
coefficient, measures the compactness of the subnetwork [25].

Centrality The importance of a node and its direct impact on adjacent
brain areas [23].

Betweenness

Used to investigate the contribution of each node to all other
node pairs on the shortest path. It measures not only the

importance of the nodes, but also the amount of information
flowing through the node [25].

Strength
The sum of weights of connections (edges) of node. The

strength can be averaged over the whole network to obtain a
global measure of connection weights [26].

Degree The degree of a node is the sum of its incoming (afferent) and
outgoing (efferent) edges [27].

In-degree Number of afferent connections to the node [27].
Out-degree Number of efferent connections to the node [27].

Assortativity coefficient
The assortativity coefficient represents a measure of a network’s
resilience. It is a correlation coefficient between the degrees of

all vertices on two opposite ends of an edge [27].

2. Alzheimer’s Disease and Graph Theory

AD is the most common progressive and multifactorial, neurodegenerative disease in
the elderly population and the main cause of cognitive impairment. The histopathological
hallmarks of AD are the accumulation of the protein fragment beta-amyloid (plaques)
outside neurons and of the protein tau (tangles) inside neurons. These changes are accom-
panied by the death of neurons and consequently by the damage of brain tissue [28].Over
the years, as AD has been increasingly considered as a synaptic disconnection syndrome in
its early stages—the pre-symptomatic stage of the disease can last many years and does
not manifest due to the “neural reserve” that vicariate the lost functions—its complex brain
dynamics have been studied by network approach. In fact, functional brain abnormal-
ities can be reflected in changes of connectivity and networks architecture: this can be
useful for the characterization of the brain condition in advance of symptom onset and
disease progression.
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Graph theory analysis provides tools to quantify networks properties and to under-
stand the association between various pathological processes at the basis of AD. In recent
years, researchers have advanced the idea of interpreting neurophysiological data (from
EEG/MEG) via graph theory. For the first time, in 2007, Stam and colleagues applied graph
theory methods to the EEG data of AD patients, comparing them to a group of control
subjects and using synchronization likelihood (SL) as a measure to weight the graph. The
authors demonstrated that the PL measure was higher in AD patients, whereas the C
showed no significant alterations between the two groups [29]. The authors concluded that
AD patients showed a loss of SW network characteristics, indicating less complexity and
organization of the brain.

Since then, numerous scientists have explored the modulation of both local and global
connectivity as computed main indexes, such as PL, C and SW, in the M/EEG frequency
bands and over the years, and various reviews have been produced [30–32]. More recently,
the distinctive features of physiological and pathological brain aging [33] were explored in
order to describe the modulation of graph theory parameters in AD compared to healthy
elderly people as well as to mild cognitive impairment (MCI) subjects. Indeed, MCI subjects
do not yet meet the diagnosis of dementia, but carry a remarkably high risk, since about
half of them become demented during a 3 to 5 years follow-up. Furthermore, studies of
the graph derived from EEGs of AD patients were increasingly published, thanks to the
low cost, large diffusion on the territory and non-invasiveness of the technique. Because
of such characteristics, the EEG advanced analysis with graph theory might become a
tool for large population screening in the near future [34,35]. In recent reviews, Rossini
and collaborators [36] and Hallett and collaborators [37] summarized the results obtained
from measures of brain connectivity (including graph theory) and their application in
neurological diseases, such as AD, across MRI, EEG and MEG techniques.

However, some consistent results are available. In general, a decrease in PL was found
in the lower alpha [38,39] and gamma bands [38], whereas an increase was found in the
theta band [40] and in both the delta and theta bands [41].

Moreover, the C coefficient in AD patients have shown consistently a lower value in
the alpha1 and beta bands [38], while a higher value of C was found in the theta and alpha1
bands [40,41], and in the alpha and beta bands [24,41].

Regarding the SW, the results seem less solid; however, some conclusions can be
drawn. Several studies have reported a disruptive reorganization in the brain networks of
AD patients in some of the frequency bands analyzed; in particular, the SW values seem to
decrease in the delta, theta and in beta bands [33,38,42] and increase in the alpha one [43].
Further studies reported a significant reduction in the SW brain architecture in all the EEG
frequency bands computed in mild AD patients compared to healthy controls [25,44]. Other
researchers have adopted the SW index as a biomarker of the pathologic conversion of the
MCI subject to AD patients, showing a high level of accuracy in combination with other
biomarkers, such as Apo-E allele testing [45], as shown in Figure 1.

A pivotal aspect of graph measures is their potential as a prognostic tool in the
conversion to AD status. In this regard, Miraglia and collaborators [46] deepened the
analysis of SW in the Default Mode Network in a cohort of MCI subjects, discovering that
SW index decreased in the gamma band in converted MCI subjects compared to stable MCI
subjects. Moreover, in converted MCI subjects with impairment in linguistic domain, the
SW index significantly decreased in the delta band, while in those converted MCI subjects
with impairment in the executive domain, the SW index decreased in the delta and gamma
bands and increased in the alpha 1 band (Table 1).

The most recent studies have intensified the research of the changes of the graph
theory’s measures, by analyzing new parameters and correlating them with neuropsy-
chological tests [27,47] (Figure 2) and other biomarkers of AD, such as the hippocampal
volume [43].
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Several research groups are working on this. In a recent study, the number of edges
(degree), of inward edges (in-degree), and of outgoing edges (out-degree) were compared
among healthy controls, MCI and AD patients with mild dementia by Franciotti and
colleagues [27] to evaluate if degree anomaly could involve the measure of degree vertices,
called hubs, in both prodromal and over AD stage. Degree, in-degree and out-degree
values were smaller in MCI and mild AD than the control group for all hubs, confirming
the hypothesis of an affected pattern of information flow in the brain networks. In the
same study, the assortative coefficient, a correlation between the degrees of vertices on
two opposite ends of an edge, was computed; however, not significant results emerged.
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Networks with a positive assortative coefficient are resilient high-degree hubs. To the
contrary, networks with a negative assortative coefficient are more vulnerable hubs.

Majd Abazid and colleagues [49] used a further innovative approach analyzing a
dataset of EEGs of subjective cognitive impairment patients, MCI and AD patients. They
quantified the graph links by weighing them by an entropy measure and comparing the
accuracy of disease classification to other more used weight measures (i.e., phase lag index
and coherence). They demonstrated the higher effectiveness of the entropy measure to
analyze the brain network in patients with different stages of cognitive dysfunction.

Furthermore, Kocagoncu and colleagues [50] demonstrated the presence of a correla-
tion between the SW index in the beta and gamma bands and the deposition of the protein
tau, meaning that the higher tau burden in early AD’s disease was associated with a shift
away from the optimal SW organization and a more fragmented network, especially in the
beta and gamma bands. Additionally, several studies have described a link of correlation
of the graph parameters with the participant’s generic cognitive status, evaluated by the
mini-mental state examination (MMSE) test and memory assessment [27,42,51]. In par-
ticular, Franciotti and colleagues [27] found a positive correlation between the clustering
coefficient and MMSE inpatients’ groups, namely a higher clustering and higher MMSE,
suggesting that high clustering is associated with the robustness of a network and resilience
against damage.

Tait and collaborators [51] found a positive correlation between SW calculated in the
temporal lobe and the language sub-score of MMSE, indicating that disruption to temporal
lobe connectivity plays an important role in the language impairments of AD subjects.
In a recent study, the SW measures were used as biomarkers to evaluate the effects of a
repetitive transcranial magnetic stimulation and cognitive rehabilitation therapy for AD
patients, recording the EEG before and after the treatment [52]. This study showed that the
graph parameters can be awarded the role of diagnostic and evaluation biomarkers of AD
stages and treatments (Figure 3).
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Figure 3. SW evaluation for two AD groups of two type of rehabilitation (repetitive Transcranial
Magnetic Stimulation (rTMS) and Cognitive Training (Cog) for Group A and sham rTMS and Cog
for Group B) for the evaluation of the effectiveness of the rTMS treatment before (T0), after the
rehabilitation (T1) and at the 40 week follow up (T2). Adapted from [52].

The study of graph theory was applied to explore brain connectivity differences
between AD and other dementia as well, such as vascular dementia patients compared to
mild cognitive impairment (MCI) and normal elderly (Nold) subjects. It was confirmed
that AD patients presented more ordered delta and theta SW organization (lower values),
and more random alpha SW (higher values) than Nold and MCI subjects [53].

Finally, Li and collaborators [54] proposed a new combined approach based on an
integrative graph analysis, by recording EEG and fNIRS signals in AD and controls subjects
during a cognitive task. In particular, the graph indices were calculated from reconstructed
EEG sources by using fNIRS localization to assess differences due to the disease. The
results revealed lower values of all graph parameters (i.e., degree, C, and centrality) in
the alpha and beta bands to the orbitofrontal and parietal regions and across all frequency
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bands in the frontal pole and medial orbitofrontal frequency, and higher values for the
superior temporal sulcus. These findings suggest that the integration of EEG-fNIRS in the
graph approaches could be useful to understand the spatiotemporal dynamics of brain
activity better.

The main results just described are summarized in Table 2. Clearly, much work has
been performed in the description of AD brain characteristics and network architecture,
but there is still a lot to achieve in the definition of consensus biomarkers able to intercept
the disease at its early stage, as this could provide treatment and rehabilitation strategies to
improve the clinical condition of the patients.

Table 2. Summary of the main results of AD studies reported in the present review.

Authors Recording Type Graph Parameters Main Results (All Results Refer to AD
vs. Healthy)

Stam et al., 2007 [29] EEG PL
C

• Beta PL ↑
• Beta C ↓
Pearson’s correlation:

• Beta PL ↑MMSE ↓

Stam et al., 2009 [39] MEG PL
C

• Alpha 1 PL↓
• Alpha 1 C ↓
Pearson’s correlation:

• Alpha 1 C ↓MMSE ↓

de Haan et al., 2009 [38] EEG PL
C

• Alpha-1 and beta C ↓
• Alpha 1 and gamma PL ↓

Poza et al., 2013 [41] EEG PL
C

• Delta e theta PL ↑
• Alpha 2 and beta PL ↓
• Delta and theta C ↓
• Alpha 2 and beta C ↑

Wang et al., 2014
[25] EEG

PL
C

Global Efficiency
Local Efficiency

SW

• PL↑ in all frequency bands (except delta)
• C ↓ in all frequency bands (except delta)
• Global Efficiency ↓ in all frequency bands
• Local Efficiency ↓ in all frequency bands
• SW ↓ in all frequency bands

Vecchio et al., 2014 [40] EEG PL
C

• Theta PL ↑
• Delta, theta and alpha-1 C ↑

Frantzidis et al., 2014 [44] EEG SW
• SW ↓
Pearson’s correlation:
-SW ↓MMSE ↓; SW ↓MoCA ↓

Vecchio et al., 2016 [42] EEG SW
Pearson’s correlation:

• Gamma SW ↓ Digit Span Test ↓

Miraglia et al., 2017 [33] EEG SW • EO: delta and theta SW Nold>MCI>AD
• EC: delta SW Nold and MCI > AD

Vecchio et al., 2017 [34] EEG SW

Pearson’s correlations:

• Alpha SW ↓ hippocampal volume ↑
• Delta, beta, and gamma SW ↑ hippocampal

volume ↑
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Table 2. Cont.

Authors Recording Type Graph Parameters Main Results (All Results Refer to AD
vs. Healthy)

Saeedeh Afshari and Mahdi
Jalili, 2017 [24] EEG Global efficiency

Local efficiency
• Beta global efficiency ↓
• Alpha local efficiency↑

Vecchio et al., 2018 [45] EEG SW • ROC curve accuracy 97%

Franciotti et al., 2019 [27] EEG

Degree
In-degree

Out-degree
Assortative Coefficient

• Degree, in-degree, out-degree ↓

Li et al., 2019 [54] EEG
Degree

C
Centrality

• Alpha 2 and beta degree, C, centrality ↓ in
orbitofrontal and parietal regions

• All frequency degree, C, centrality ↓ in
frontal pole and medial orbitofrontal
regions

• All frequency degree, C, centrality ↑ in the
temporal sulcus

Vecchio et al., 2020 [55] EEG SW • ROC curve accuracy 95%

Miraglia et al., 2020 [46] EEG SW

• Gamma SW ↓ in converted MCI vs. stable
MCI

• Delta SW ↓ in converted MCI in linguistic
domain

• Delta and gamma SW ↓ and alpha 1 SW ↑
in converted MCI in executive domain

Cecchetti et al., 2021 [47] EEG PL
C

• Theta PL ↓
• Alpha 2 PL ↑
• Theta C ↑
• Alpha 2 C ↓

Majd Abazid et al., 2021 [49] EEG

PL
C

Degree Efficiency
Betweenness

• Higher accuracy of classification of AD for
the graph parameters

Kocagoncu 2020 [50] E/MEG SW
Pearson’s correlation:

• Beta and gamma SW ↑protein Tau ↑

Tait et al., 2019 [51] EEG SW
Pearson’s correlation:

• Temporal lobe SW ↑ language sub-score ↑

Vecchio et al., 2021 [52] EEG SW

Pearson’s correlations:

• Delta SW ↓ ADAS-Cog ↑
• Alpha 1 ↑ ADAS-Cog ↑

Vecchio et al., 2021 [53] EEG SW • Delta and theta SW ↓
• Alpha 2 SW↑

The arrows refer to an increase (↑) or a decrease (↓) of the indicated parameters in AD patients. All results in the table
refer to AD patients compared to elderly healthy controls, except when differently indicated. Abbreviations: EEG:
electroencephalography; MEG: magnetoencephalography; PL: path length; C: clustering coefficient; SW: small-world
index; MMSE: mini-mental state examination; MoCA: Montreal Cognitive Assessment; EO: eyes open; EC: eyes
closed; NOLD: NOrmal eLDerly; MCI: Mild Cognitive Impairment; ROC: received operating characteristics.

3. Parkinson’s Disease and Graph Theory

PD is a neurodegenerative disease mainly characterized by movement impairment.
Non-motor disturbances, including cognitive impairment, mood changes and dementia,
are commonly present during the progression of PD [16]. The mechanisms underlying
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the development of motor and cognitive disorders are not completely understood. PD
disorders were largely studied by functional imaging methods that have shown changes
in brain functional connectivity. In spite of the promising findings of some studies [56],
there are still few applications of graph theory to the M/EEG data of PD patients, probably
because it is still assumed that PD is mainly due to subcortical relays degeneration (namely
basal ganglia) that could be not captured by scalp recordings, which are dominated by the
cortical EEG activity. However, it should be noted that such subcortical relays are heavily
and mutually connected to cortical areas and that the clinical symptoms that characterize
the disease mainly stem from the disruption of these connections. Therefore, M/EEG data
recordings are suitable tools for PD connectivity studies. Figure 4 shows a representation
of these relays, that is, the dopaminergic pathways linking the basal ganglia and the cortex.
This picture illustrates the link between the cited subcortical structures and the activity of
neurons in the cortex, justifying the use of scalp EEG recordings for the evaluation of brain
network modulations due to subcortical network deregulations in PD.
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Figure 4. Dopaminergic pathways linking the basal ganglia and the cortex. Connectivity diagram
showing excitatory glutamatergic pathways as red, inhibitory GABAergic pathways as blue, and
modulatory dopaminergic as green. Their final functional output is the modulation of the cortical
activity, mainly for motor-related circuits. Abbreviations: STN: subthalamic nucleus; SNr: substantia
nigra pars reticulata; SNc: substantia nigra pars compacta; GPe: external segment of the globus
pallidus; GPi: internal segment of the globus pallidus.

Notably, most of the relatively few studies in this disease have used the C and the
PL as network measures, and of those selected, only one adds to them modularity and
divergence [22] parameters study, whereas another study considers the SW index [21].

The results reported in this review include the most interesting studies concerning
the investigation of graph theory application on the electrophysiological data of cogni-
tively normal PD patients, PD subjects with Mild Cognitive Impairments and PD patients
with dementia.

In a MEG study [57], cognitively normal PD subjects were compared to the control
group and showed a decreased in the C in the delta band, whereas no differences in the PL
compared to healthy subjects were reported, indicating the reduced local integration with
preserved global efficiency of the brain network.
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In a more recent EEG study, Suarez and colleagues [58] reported a decrease in the C in
different bands from a previous work, theta and beta, and in addition, in the same bands,
they also found a decrease in PL, highlighting a reduction in functional segregation and an
increase in functional integration in both bands.

Moreover, in a more recent study on resting state EEG [21], it was found that SW index
decreased in the theta and increased in the alpha band, describing a more ordered structure
for the lower frequencies and a more random organization for the higher alpha frequencies
for PD compared to healthy subjects, as described in Figure 5.
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Other studies have followed the temporal development of PD through a follow up or
through the assessment of various cognitive impairment stages (MCI and dementia). Over
a 4 year period analysis, Olde Dubbelink and colleagues [57] reported, within the same
Parkinsonian group, a reduction in the PL in the alpha frequency range and in the C in the
theta and alpha bands, showing a progressive impairment in the local integration and an
additional loss of global efficiency as reflected in the alpha frequency band along the time.

Regarding Parkinsonian MCI subjects compared to healthy subjects, Suarez and col-
leagues [58] reported a reduction in the C in the alpha band and a decrement in the PL
in the delta and theta bands. Furthermore, a similar reduction in the C was found in the
alpha band in the work of Utianski and colleagues [22], who compared MCI PD subjects to
PD subjects without cognitive impairment. In a recent study [26], through a dense-EEG
source connectivity analysis, it was observed a decreasing tendency of global topological
graph features (PL, C, modularity and strength) in the alpha frequency band, from PD
patients with normal cognitive profile to PD subjects with dementia. Among functional
connectivity studies in PD, the decrease in the patterns in the alpha band seems to be
associated with cognitive impairment development. Moreover, the study of Mehraram and
colleagues [59] of PD demented subjects showed a decreased C and node degree in the
alpha band, an increase in the PL in the alpha band, and of modularity in the theta and
alpha bands, compared to healthy subjects, demonstrating that the network measures in
the alpha band were significantly affected in demented subjects.

Changes in brain networks in the alpha band can be found even in PD subjects with
dementia compared to the ones with a normal cognitive profile. More specifically, a
reduction in the C, the PL and of the divergence parameter in the alpha band, and an
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increase in the modularity index in the alpha and bands were reported [22], demonstrating
an impairment of functional connectivity in the background frequency band (alpha).

Other studies have evaluated graph theory coefficients during the execution of a task.
One of them has analyzed the performance of a local contextual processing paradigm [60] in
order to demonstrate that functional disconnection is involved with contextual processing
deficits in PD subjects. In particular, PD subjects showed a larger C and a longer PL
compared to control subjects for predicted targets in the alpha and theta frequency bands,
underlining a more structured functional connection in the detection of the predicted target
and suggesting that the deficits observed in the process of context in PD may be due to
ineffective interactions across cortical regions.

In another study [23], the pre-stimulus network abnormalities of PD patients experi-
encing pareidolias were investigated during a visual task. A higher global C and parietal
efficiency and a decreased frontal degree centrality were found compared to normal PD
and healthy subjects in the low-alpha band, suggesting an efficient information transfer
within the parietal network and a reduced disengagement of the posterior cortex.

Finally, the latest evidence suggested that graph theory parameters are able to show dif-
ferent modulation of brain rhythms in deep brain stimulation (DBS). Li and colleagues [20]
demonstrated that PD subjects with DBS-ON and DBS-OFF reported a lower C and lo-
cal efficiency in the alpha and beta bands, compared to healthy subjects. Moreover, no
evidence was found within patients with PD in DBS-ON and DBS-OFF in any frequency
bands. Although significant changes in PL and global efficiency were not found between
PD and healthy subjects, the study results indicated decreased brain network segregation
in PD subjects and the moving forward to their more random organization, as highlighted
in Vecchio and colleagues’ study [21].

Bočkovà and collaborators [61] analyzed graph theory coefficients between normal
cognitive PD groups treated by subthalamic brain stimulation (STN-DBS) in OFF and
ON stimulation states during a visual task. They found that, in the 1–8 Hz band, subjects
responding faster with DBS-OFF demonstrated a decrease in the C and node strength, while
the PL was increased in the DBS-ON state compared to DBS-OFF after target stimuli. This
network analysis highlights a dysfunction of the large-scale cerebral networks in subjects
responding faster with DBS-OFF rather than DBS-ON, reporting global connectivity and
slower communication within the frontal network in low frequencies bands (1–8 Hz). These
findings suggest that the subjects with such reductions in low frequencies are more likely
to develop cognitive deterioration.

The main evidence highlighted in the current review are reported in Table 3. Although
only few studies are available on the application of graph theory to the electrophysiological
data of PD patients, their results are encouraging for the characterization of the disease
and for the response to treatments, suggesting network analysis as a promising tool and
interesting field of research to explore.

Table 3. Summary of the main results of PD studies reported in the present review.

Authors Recording Type Graph Parameters Main Results

Fogelson et al., 2013 [60] EEG C
PL

• C ↑ in theta and alpha bands
• PL ↑ in theta band for PD vs.

Healthy subjects.

Olde Dubbelink et al., 2014 [57] MEG C
PL

• C↓ in delta band for PD vs.
Healthy subjects

• C ↓ in theta and alpha 2 bands, PL ↓ in
alpha 2 band for PD subjects
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Table 3. Cont.

Authors Recording Type Graph Parameters Main Results

Utianski et al., 2016 [22] EEG

C
PL

Divergence
Modularity

• C and PL ↑ in all frequency bands,
Divergence ↑ in theta and beta bands and ↓
in delta and alpha bands, Modularity ↑ in
all frequency bands, for normally cognitive
PD vs. Healthy subjects.

• C ↓ in alpha 1 band for PD-MCI vs.
normally cognitive PD subjects.

• C, PL and Divergence ↓ in alpha 1,
Modularity ↑ in alpha 1 and 2 frequency
bands, for demented PD vs. normally
cognitive PD subjects.

Hassan et al., 2017 [26] EEG

C
PL

Modularity
Strength

• PL, C, Modularity and Strength ↓ in alpha
frequency band for demented PD vs.
normally cognitive PD subjects.

Mehraram et al., 2020 [59] EEG

Node degree
C
PL
SW

Modularity

• C and Node degree↓ in alpha band, PL ↑ in
alpha band and Modularity↑ in theta and
alpha bands, for PD demented vs.
Healthy subjects.

• PL ↑ in alpha band, Modularity↑ in theta
and alpha bands and SW ↑in theta band,
for PD demented vs. AD subjects.

Bočková et al., 2021 [61] EEG

Node strength
C
PL

Modularity

• Node strength ↓, C ↓ and PL ↑ in 1–8 Hz
frequencies band for DBS-ON compared to
DBS-OFF for subjects responding faster
with DBS-OFF rather than DBS-ON.

Suárez et al., 2021 [58] EEG

C
PL

Local efficiency
Global connectivity

• C and PL ↓ in theta and beta bands for
normally cognitive PD vs. Healthy subjects.

• C ↓ in alpha band, PL ↓ in delta and theta
bands in PD-MCI vs. Healthy subjects.

Vecchio et al., 2021 [21] EEG SW • SW ↓ in theta band and ↑ in alpha 2 band.

Li et al., 2021 [20] EEG

C
PL

Global efficiency
Local efficiency

• C and Local efficiency ↓ in alpha, beta 1
and beta 2 bands for PD subjects in
DBS-OFF and DBS-ON vs. healthy subjects.

Revankar et al., 2021 [23] EEG

C
PL

Efficiency
Centrality

• C and parietal Efficiency ↑ in alpha 1 band,
frontal Centrality ↓ for PD with pareidolias
vs. normal PD and Healthy subjects.

The arrows refer to an increase (↑) or a decrease (↓) of the indicated parameters. Abbreviations: EEG: electroen-
cephalography; MEG: magnetoencephalography; PL: path length; C: clustering coefficient; SW: small-world index;
PD-MCI: Parkinson disease with mild cognitive impairments.

4. Conclusions

The aim of the present review was to provide an overview of the most recent applica-
tions of the graph theory to electrophysiological data over two of the main neurodegenera-
tive disorders, that is, AD and PD.

In recent years, the applications of the networks science to electrophysiological data
have increased as electrophysiological techniques are low cost, largely available on the
territory and non-invasive with the potential to become a tool for large population screen-
ing [34,35]. Indeed, health systems are actually looking for a combination f biomarkers
characterized by high accuracy, specificity, sensitivity as well as reasonable costs, non-
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invasiveness, and large availability. We can confidently conclude that the neurophysiolog-
ical techniques described in this review embody all the required characteristics and are
promising as optimal candidates for a first level screening. All of the reported evidence con-
firms the role of graph analysis as a promising tool in the characterization of the modulation
of brain mechanisms of local and global integration in AD and PD as computed by main
indexes (such as PL, C and SW in the M/EEG frequency bands) and over the years, and as
demonstrated by new parameters (such as assortative coefficient, degree, modularity and
divergence). Likewise, the optimal approach for quantifying functional connectivity is an
open question [62] still in the absence of methodological convergence. In fact, a graph could
be constructed with weighted or unweighted, directed or undirected edges. Moreover, in
the case of a weighted graph, there are different weights of the edges [15]. Accordingly,
examining the past and more recent studies, the results are sometimes contrasting and
clearly dependent on the methods of analysis and on the frequency bands in which the
EEG rhythms can be subdivided. The result variability can be therefore explained by the
urgent need to share a methodological uniformity in the computation of graph construction
and parameters’ computation.

For AD, several studies have reported a disruptive reorganization of the brain net-
works, suggesting the SW index as biomarker for AD and for the conversion from MCI
to AD. Other evidence has reported significant correlations between graph parameters
and other biomarkers, such as the neuropsychological test, hippocampal volume, and
genetic tests.

Moreover, it is strongly suggested that graph parameters can be awarded the role of
diagnostic and evaluation biomarkers of AD and PD stages and rehabilitation treatments,
and that it is possible to monitor the temporal development of PD through a follow up over
the various cognitive impairment stages.

In conclusion, the graph theory could represent a promising tool for the identification,
diagnosis, prognosis and even the identification of rehabilitation treatment for two of the
main neurodegenerative diseases, such as AD and PD, to define the effects of the disease,
increasing the information provided by traditional topographic mapping.

However, one of the major challenges of the application of graph theory to electro-
physiological data is still to identify the measure that better describes the physiological
mechanism under examination based on the data and the experiment. The aim of the
current review was to describe the results of the application of graph theory analysis of elec-
tromagnetic brain signals in the pathological mechanisms in AD and PD. Several measures
were presented, and each of them is more or less significant in the description of different
aspects of the brain mechanism, and some of them show a significant correlation to each
other. Further studies could be focused on the deeper understanding of the correlations
between one measure and another and between the different brain mechanisms involved
in the processes of neurodegeneration. This could solve the lack of standardization in
methods, thus allowing to successively apply the more significantly measures to specific
data and experiments, and to confirm the more promising results on larger populations.
Finally, further reviews of the literature should explore the contribution of electrophysio-
logical techniques in other neurodegenerative disorders (i.e., amyotrophic lateral sclerosis,
fronto-temporal, vascular, Lewy body types of dementia, etc.).
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56. Bočková, M.; Rektor, I. Impairment of brain functions in Parkinson’s disease reflected by alterations in neural connectivity in EEG
studies: A viewpoint. Clin. Neurophysiol. 2019, 130, 239–247. [CrossRef]

57. Olde Dubbelink, K.T.; Hillebrand, A.; Stoffers, D.; Deijen, J.B.; Twisk, J.W.; Stam, C.J.; Berendse, H.W. Disrupted brain network
topology in Parkinson’s disease: A longitudinal magnetoencephalography study. Brain 2014, 137, 197–207. [CrossRef]

58. Peláez Suárez, A.A.; Berrillo Batista, S.; Pedroso Ibáñez, I.; Casabona Fernández, E.; Fuentes Campos, M.; Chacón, L.M. EEG-
Derived Functional Connectivity Patterns Associated with Mild Cognitive Impairment in Parkinson’s Disease. Behav. Sci. 2021,
11, 40. [CrossRef]

59. Mehraram, R.; Kaiser, M.; Cromarty, R.; Graziadio, S.; O’Brien, J.T.; Killen, A.; Taylor, J.P.; Peraza, L.R. Weighted network measures
reveal differences between dementia types: An EEG study. Hum. Brain Mapp. 2020, 41, 1573–1590. [CrossRef]

60. Fogelson, N.; Li, L.; Li, Y.; Fernandez-Del-Olmo, M.; Santos-Garcia, D.; Peled, A. Functional connectivity abnormalities during
contextual processing in schizophrenia and in Parkinson’s disease. Brain Cogn. 2013, 82, 243–253. [CrossRef]
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