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Abstract: Background: The retina and brain share similar neuronal and microvascular features. We
aimed to investigate the retinal thickness and microvasculature in patients with thalamic infarcts
compared with control participants. Material and methods: Swept-source optical coherence tomogra-
phy (SS-OCT) was used to image the macular thickness (retinal nerve fiber layer, RNFL; ganglion
cell-inner plexiform layer, GCIP), while OCT angiography was used to image the microvasculature
(superficial vascular plexus, SVP; intermediate capillary plexus, ICP; deep capillary plexus, DCP).
Inbuilt software was used to measure the macular thickness (µm) and microvascular density (%).
Lesion volumes were quantitively assessed based on structural magnetic resonance images. Results:
A total of 35 patients with unilateral thalamic infarction and 31 age–sex-matched controls were
enrolled. Compared with control participants, thalamic infarction patients showed a significantly
thinner thickness of RNFL (p < 0.01) and GCIP (p = 0.02), and a lower density of SVP (p = 0.001)
and ICP (p = 0.022). In the group of patients, ipsilateral eyes showed significant reductions in SVP
(p = 0.033), RNFL (p = 0.01) and GCIP (p = 0.043). When divided into three groups based on disease
duration (<1 month, 1–6 months, and >6 months), no significant differences were found among these
groups. After adjusting for confounders, SVP, ICP, DCP, RNFL, and GCIP were significantly corre-
lated with lesion volume in patients. Conclusions: Thalamic infarction patients showed significant
macular structure and microvasculature changes. Lesion size was significantly correlated with these
alterations. These findings may be useful for further research into the clinical utility of retinal imaging
in stroke patients, especially those with damage to the visual pathway.

Keywords: ischemic stroke; thalamic infarction; macula; microvasculature; SS-OCT/OCTA

1. Introduction

Strokes are one of the leading causes of mortality and long-term disability worldwide,
and the economic cost of treatment and post-stroke care is substantial [1,2]. Accounting
for 11% of posterior circulation infarcts [3] and 3–4% of cerebral ischemic events, thala-
mic infarction, both in isolation and combination with infarction lesions involving other
structures, represents a frequent clinical entity [4,5].

As a part of the diencephalon and an important upstream and downstream fiber
relaying center, the thalamus plays a vital role in managing sensory function, arousal, level
of awareness, and certain cognitive functions [6–8]; importantly, the thalamus regulates the
flow of visual, auditory and motor information. The thalamus receives blood supply from
both anterior and posterior circulations of the brain, with several known variations [6].
Lesions in the thalamus have a variety of clinical syndromes depending on which vas-
cular territories or thalamic nuclei are involved [9–12]. Numerous reports focusing on
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the variety of clinical syndromes and many comprehensive descriptions associated with
thalamic stroke have been published [9–12]. Additionally, in addition to the typical sensory
and cognitive impairments, thalamic infarction can also cause many vision-related symp-
toms, particularly due to the involvement of fibers or structures in the visual processing
circuits [13–16]. Nonetheless, the underlying causes have been underexplored and the
anatomical distribution of lesions caused by the various infarction mechanisms has been
poorly defined.

Being an extension of the central nervous system (CNS), the retina shares histological,
physiological, and embryological characteristics with the brain [17]. Currently, non-invasive
measurements of the retinal neural tissue and microvasculature can be made in vivo, at
a fast pace, and at a low cost by using optical coherence tomography (OCT) and OCT
angiography (OCTA). Subtle neural and microvascular changes in the retina have been doc-
umented to reflect the pathological degeneration of the CNS during the disease process of
an ischemic stroke [18–20] and other vascular origin diseases [21,22] through OCT/OCTA.
Localized retinal nerve fiber layer defects (RNFLDs) were found to be associated with both
new-onset and previous cerebral strokes [23]. Furthermore, significantly greater reductions
in RNFL thickness were reported in cerebral posterior infarction patients [24]. By using mag-
netic resonance imaging (MRI) techniques, previous studies have focused on designated
brain regions or lesion locations, and have found structural changes within the optic tracts
after visual pathway insults (including optic tracts, thalamus, and occipital lobe) [25,26].
Particularly, a population-based study showed significant relationships between altered
retinal thickness and changes in the visual pathway, especially the thalamus [27]. The
main mechanisms were concentrated on trans-neuronal retrograde degeneration (TRD),
hypoperfusion and hypoxia of small vessel networks. Based on the hypothesis of TRD,
therapy of visual restoration training was explored in cortical blindness subjects with
subtle therapeutic effects [28–30], but these studies were conducted on occipital stroke
patients, and data of retinal changes were lacking. Additionally, potential bio- or imaging-
markers are needed to assist better evaluation and guide treatments for visual deficit in
stroke patients. The inner retina contains the neural integrity which forms direct synaptic
connections between the thalamus and the microvasculature which reflect the cerebral
microcirculations [17,31]. However, little is known about the specific macular structure and
microvasculature changes in patients with thalamic infarction. Hence, our current study
aimed to characterize the structural and micro-vascular changes in the macular of patients
with thalamic infarction compared with age–sex-matched control participants using the
swept-source OCT (SS-OCT)/SS-OCTA.

2. Materials and Methods
2.1. Study Participants and Clinical Data Collection

Ischemic stroke patients who were admitted to the Neurology Department of West
China Hospital, China, were prospectively recruited. Patients were included in the study
if they (1) had a clinical diagnosis of unilateral thalamic infarction confirmed by MRI
(Figure 1); (2) could sit adequately and tolerate retinal imaging using the OCTA; (3) were
classified as small-artery occlusion (SAA) stroke patients according to a modified TOAST
classification [32]; and (4) provided written informed consent. The exclusion criteria were
as follows: (1) diagnosed with diabetic retinopathy or other retinal diseases; (2) glaucoma;
(3) a pacemaker or other contraindications for MRI examinations; (4) history of stroke or
any other pathological conditions of CNS; or (5) poor MR or OCT/OCTA imaging quality.
Age–sex-matched voluntary participants were recruited from the native communities in
Chengdu as the control group. Control participants were included if they met the following
criteria: (1) age 18 years or older; (2) can undergo and cooperate with retinal and MR
imaging; (3) no history of cerebrovascular diseases, neurodegenerative diseases, or any
other kind of central nervous system illness; and (4) no history of retinal diseases or
ophthalmic abnormalities which could affect the retinal structure/microvasculature, such
as severe glaucoma, severe cataract, age-macular degeneration, optic neuritis, or myopia.
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cluding gender, age, risk factors of cerebrovascular disease (history of hypertension, dia-
betes, and dyslipidemia), and current treatments (antiplatelets, anticoagulants, antihyper-
tension, lipid-lowering, and antidiabetic drugs). Standard neurological examinations in-
cluding eye movement and visual field were conducted by experienced neurologists or 
senior neurology residents. National Institute of Health Stroke Scale (NIHSS) scores were 
also documented. 

2.2. MRI Acquisition and Procession 
All patients underwent brain MRI scanning using a 3.0 T MR scanner (SIGNATM 

Premier, GE Medical Systems) with a 48-channel head coil. Head motion and scanner 
noise was reduced by using comfortable foam padding and earplugs. Structural MR im-
aging of high-resolution T1-weighted images was acquired using a brain volume 
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MRIcron [33]. Then, lesion volumes were obtained by the volume of interests (VOI). Ex-
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Figure 1. Representative MR imaging of thalamic infarction patient and control participant. The right
image shows a fluid-attenuated inversion recovery (FLAIR) MR image of a patient with an ischemic
stroke lesion beside the right thalamus, while the left image shows a FLAIR image of control.

Written informed consent was obtained from each participant or their legal guardians
and approval of our project was obtained from the Ethics Committee of West China Hospital
of Sichuan University [No. 2020 (922)].

Demographic and clinical information was collected in a standardized format, includ-
ing gender, age, risk factors of cerebrovascular disease (history of hypertension, diabetes,
and dyslipidemia), and current treatments (antiplatelets, anticoagulants, antihypertension,
lipid-lowering, and antidiabetic drugs). Standard neurological examinations including eye
movement and visual field were conducted by experienced neurologists or senior neurology
residents. National Institute of Health Stroke Scale (NIHSS) scores were also documented.

2.2. MRI Acquisition and Procession

All patients underwent brain MRI scanning using a 3.0 T MR scanner (SIGNATM

Premier, GE Medical Systems) with a 48-channel head coil. Head motion and scanner noise
was reduced by using comfortable foam padding and earplugs. Structural MR imaging of
high-resolution T1-weighted images was acquired using a brain volume (BRAVO) sequence
with parameters as follows: repetition time (TR)/echo time (TE) = 7.2/3.0 ms; field of view
= 256 × 256 mm; matrix = 256 × 256; slice thickness = 1.0 mm, no gap; flip angle = 12◦;
152 slices. A diffusion-weighted image (DWI), T2-weighted image, fluid-attenuated in-
version recovery (FLAIR) image, and non-contrast-enhanced 3D time of flight magnetic
resonance angiography (3D TOF MRA) image were also acquired. The infarction lesion
masks were drawn manually, based on the structural MR images (high-resolution 3D-T1)
combined with DWI and FLAIR images by trained researchers using MRIcron [33]. Then,
lesion volumes were obtained by the volume of interests (VOI). Experienced neurologists
were consulted when disagreement occurred.

2.3. SS-OCT/OCTA Examination and Analysis

SS-OCT (VG 200; SVision Imaging Limited, Luoyang, China) was used to scan and
image the macula of all participants. The imaging tool used a scan rate of 200,000 A-scans
per second, and a central wavelength of 1050 nm (full width of 990–1100 nm). The OCT(A)
tool had an axial resolution of 5 µm in the macula tissue. Using a three-dimensional protocol,
high-resolution images (384 × 384 B-scans) of the macula (3 × 3 mm) were imaged; the
in-built eye-tracking software was used to reduce projection artifacts while preserving the
true layout [34,35]. An inbuilt algorithm in the SS-OCT was used to segment and measure
the thickness of the retinal nerve fiber layer (RNFL) and ganglion cell–inner plexiform
(GCIP) thicknesses (Figure 2A). The average RNFL and GCIP thicknesses measured in
micrometers (µm) were used for our data analysis.
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An examiner observed the segmentation of each image. The quality of the macular 
images was assessed objectively and subjectively, rejecting images with a signal quality 
less than 7 on a scale that goes up 10 [36]. En face angiograms with artifacts, blurry images, 
and images that revealed the presence of retinal diseases such as age-related macular de-
generation (AMD) and macula edema were also excluded. 

Microvascular density, which is defined as the percentage area (%) that was occupied 
by the microvasculature in the annulus region of measurement (3 × 3 mm around the fo-
vea), was used to assess the microvasculature of the three macula plexuses. Measurement 
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Figure 2. Segmentation of macular structure and microvasculature. (A) shows the macular structural
segmentation. (B) shows the segmentation of the macular microvasculature. The SVP was defined as
the microvasculature between the base of the retinal nerve fiber layer (RNFL) to the junction between
the inner plexiform layer (IPL) and inner nuclear layer (INL). ICP was defined as the microvasculature
between IPL/INL junction to the junction between INL and outer plexiform layer (OPL). DCP was
defined as the microvasculature between the INL/OPL junction to 25 µm below the OPL. (C) shows
the en face OCTA images between thalamic stroke patients and healthy controls.

SS-OCT equipped with angiography (SS-OCTA) was also used to image and seg-
ment the macula into its three macular plexuses: the superficial vascular plexus, SVP;
intermediate capillary plexus, ICP; and deep capillary plexus, DCP (Figure 2B).

The SVP was defined as the microvasculature between the base of the retinal nerve
fiber layer (RNFL) to the junction between the inner plexiform layer (IPL) and inner nuclear
layer (INL) as shown in Figure 2; ICP was defined as the microvasculature between the
IPL/INL junction to the junction between INL and outer plexiform layer (OPL); DCP
was defined as the microvasculature between the INL/OPL junction to 25 µm below it
(Figure 2).

An examiner observed the segmentation of each image. The quality of the macular
images was assessed objectively and subjectively, rejecting images with a signal quality
less than 7 on a scale that goes up 10 [36]. En face angiograms with artifacts, blurry images,
and images that revealed the presence of retinal diseases such as age-related macular
degeneration (AMD) and macula edema were also excluded.

Microvascular density, which is defined as the percentage area (%) that was occupied
by the microvasculature in the annulus region of measurement (3 × 3 mm around the
fovea), was used to assess the microvasculature of the three macula plexuses. Measurement
of the microvascular density was made by an inbuilt software in the OCTA tool.

The data acquisition and report from the SS-OCT(A) followed the Advised Protocol
for OCT Study Terminology and Elements (APOSTEL) recommendations [37]. All the
OCT/OCTA examinations and analyses were performed by an experienced researcher with
a neuro-ophthalmology background.
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2.4. Statistical Analysis

Continuous variables with normal distribution were expressed as mean ± standard
deviation (SD), while skewed distribution was expressed medians and interquartile ranges.
Categorical variables are presented as frequencies and percentages. Participants’ demo-
graphic variables were assessed using a chi-square test for categorical variables and an
unpaired t-test or analysis of variance (ANOVA) test for continuous variables. Differences
in SS-OCT/SS-OCTA parameters between each group were assessed using a generalized
estimating equation (GEE) while adjusting for hypertension, diabetes, dyslipidemia, age,
and gender. Correlations between these parameters and radiological and clinical features
were also found with multivariable linear regression while adjusting for risk factors. All
data were analyzed with SPSS (version 23; SPSS, Inc., Chicago, IL, USA), and p < 0.05 was
considered statistically significant.

3. Results
3.1. Baseline Characteristics

From September 2020 to October 2021, a total of 71 participants (40 thalamic infarction
patients and 31 controls) were enrolled in our study; however, five thalamic infarction
patients were excluded due to poor MR image quality or diagnosis of another kind of
pathological CNS disease. Our final data analysis included 35 thalamic infarction patients
(24 males, mean age = 60.26 ± 9.37 years) and 31 age-sex matched control participants
(20 males, mean age = 60.03 ± 6.71 years). The demographic and clinical characteristics
are shown in Table 1. All our thalamic infarction patients were classified as having ex-
perienced a SAA ischemic stroke without evidence of large artery stenosis-occlusion or
cardioembolism; 21 had a history of hypertension, 12 had type 2 diabetes mellitus, and
10 had dyslipidemia. All the thalamic infarction patients received antiplatelet and lipid-
lowering treatments, 21 received antihypertension treatments, and 12 received treatments
of antidiabetic drugs (9 for metformin, 2 for acarbose, 2 for dapagliflozin, 1 for linagliptin,
1 for miglitol, 1 for glyburide, and 4 for insulin). Of the control participants, 14 had a history
of hypertension, 2 had type 2 diabetes mellitus, and 6 had dyslipidemia. One of them
received antiplatelets, 14 received antihypertension treatments, 6 received lipid-lowering
drugs, and 2 received antidiabetic drugs (all for metformin; no sulfonylurea, insulin, or
any other kind of hypoglycemic agents were administered). The median NIHSS score
of thalamic infarction patients was 1 (IQR = 0–4) point and lesion volume was 0.32 cm3

(IQR = 0.11–0.58).

Table 1. Demographics and clinical information.

Thalamic Infarction (n = 35) Control Participants (n = 31)
Age, years 60.26 ± 9.37 60.03 ± 6.71
Gender (male), n 24/11 20/11
SBP, mmHg 135.40 ± 22.51 134.96 ± 3.94
DBP, mmHg 84.11 ± 16.03 72.90 ± 8.46
Hypertension, n 21 14
Type 2 Diabetes, n 12 2
Dyslipidemia, n 10 6

Current treatments, n
Antiplatelets 35 1

Anticoagulants 0 0
Antihypertension 21 14

Lipid-lowering 35 6
Antidiabetic drugs 12 2

Duration, months 0.5 (0.1–8.5) -
NIHSS score 1 (0–4) -
Lesion volume, cm3 0.32 (0.11–0.58) -

Data are presented as means ± standard deviation or median with 25–75% quartiles. SBP, systolic blood pressure;
DBP, diastolic blood pressure; NIHSS, National Institute of Health Stroke Scale scores.



Brain Sci. 2022, 12, 518 6 of 12

3.2. SS-OCT/SS-OCTA Changes among the Groups

Thalamic infarction patients showed thinner RNFL (17.388 ± 1.759 vs. 19.286 ± 1.162,
p < 0.001; Table 2) and GCIP (63.577 ± 8.298 vs. 71.277 ± 6.156, p = 0.006; Table 2) thick-
nesses compared with the control group. As shown in Table 2, compared with control
participants, thalamic infarction patients showed significantly reduced SVP (0.202 ± 0.025
vs. 0.219 ± 0.019, p = 0.001) and ICP (0.169 ± 0.018 vs. 0.186 ± 0.015, p = 0.022) densities.
No significant difference (p = 0.763, Table 2) was seen in the DCP when the two groups
were compared.

Table 2. Comparison of SS-OCT/SS-OCTA parameters between thalamic infarction and control group.

Thalamic Infarction Control Group p

SVP, mm2 0.202 ± 0.025 0.219 ± 0.019 0.001
ICP, mm2 0.169 ± 0.018 0.186 ± 0.015 0.022
DCP, mm2 0.118 ± 0.020 0.123 ± 0.013 0.763
RNFL, µm 17.388 ± 1.759 19.286 ± 1.162 <0.001
GCIPL, µm 63.577 ± 8.298 71.277 ± 6.156 0.002

SVP, the superficial vascular plexus; ICP, intermediate capillary plexus; DCP, deep capillary plexus; RNFL, retinal
nerve fiber layer; GCIPL, ganglion cell–inner plexiform. Data adjusted for age, gender, and vascular risk factors
(hypertension, diabetes, and dyslipidemia). Values in bold indicate p < 0.05.

Thalamic infarction patients were stratified according to the location of infarction (i.e.,
left or right cerebral hemisphere); the hemisphere with infarction was described as the ipsi-
lateral side while the hemisphere without infarction was described as the contralateral side.
When compared with eyes on the contralateral side, ipsilateral eyes had reduced density of
SVP (0.198 ± 0.023 vs. 0.205 ± 0.026, p = 0.033; Table 3), thinner RNFL (17.194 ± 1.742 vs.
17.552 ± 1.784, p = 0.010; Table 3) and GCIP (62.397 ± 8.102 vs. 64.579 ± 8.454, p = 0.043;
Table 3). There was no significant difference (p > 0.05, Table 3) in ICP and DCP between the
two groups.

Table 3. Comparison of SS-OCT/SS-OCTA parameters between ipsilateral and contralateral eyes.

Ipsilateral Eyes Contralateral Eyes p

SVP, mm2 0.198 ± 0.023 0.205 ± 0.026 0.033
ICP, mm2 0.169 ± 0.015 0.169 ± 0.021 0.650
DCP, mm2 0.119 ± 0.020 0.117 ± 0.020 0.238
RNFL, µm 17.194 ± 1.742 17.552 ± 1.784 0.010
GCIPL, µm 62.397 ± 8.102 64.579 ± 8.454 0.043

SVP, the superficial vascular plexus; ICP, intermediate capillary plexus; DCP, deep capillary plexus; RNFL, retinal
nerve fiber layer; GCIPL, ganglion cell–inner plexiform. Data adjusted for age, gender, and vascular risk factors
(hypertension, diabetes, and dyslipidemia). Values in bold indicate p < 0.05.

Thalamic infarction patients were also sub-grouped according to the duration of
disease (Group 1: <1 month, Group 2: 1–6 months, Group 3: >6 months) as shown in
Table S1 and Figure 3. Group 1 patients showed significantly sparser SVP when compared
with Group 2 (0.198 ± 0.022 vs. 0.203 ± 0.022, p = 0.013) and Group 3 (0.198 ± 0.022 vs.
0.198 ± 0.035, p = 0.042). Group 2 showed a denser ICP when compared with Group 1
(0.167 ± 0.016 vs. 0.163 ± 0.026, p = 0.004) and a sparser ICP when compared with Group 3
(0.016 vs. 0.163 vs. 0.175 ± 0.016, p = 0.004).
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Figure 3. Differences in SS-OCT/OCTA parameters among three groups based on the disease
duration (Group 1: <1 month, Group 2: 1–6 months, and Group 3: >6 months). (A) for SVP, (B) for
ICP, (C) for DCP, (D) for RNFL, and (E) for GCIPL. * p < 0.05.

3.3. Correlations of SS-OCT/OCTA Parameters with Lesion Size and Disease Duration in
Thalamic Infarction Group

Correlations between SS-OCT/OCTA parameters and radiological and clinical features
(lesion size and disease duration) were further explored in thalamic infarction patients.
After adjusting for confounders (age, gender, and vascular risk factors, i.e., hypertension,
diabetes, and dyslipidemia)), SS-OCT/SS-OCTA parameters significantly correlated with
lesion volume (all p < 0.05; Table 4), while there was no significant correlation found with
disease duration (p > 0.05; Table 4).

Table 4. Correlation of lesion volume and duration with SS-OCT/SS-OCTA parameters in patients.

Lesion Volume Duration, Months

B (95% CI) p B (95% CI) p

SVP, mm2 0.019
(0.010–0.028) <0.001 −0.001

(−0.003–0.001) 0.321

ICP, mm2 0.004
(0.001–0.008) 0.026 0.0004

(−0.0005–0.001) 0.372

DCP, mm2 −0.011
(−0.015–−0.007) <0.001 0.0003

(−0.001–0.0003) 0.278

RNFL, µm 1.321
(0.422–2.219) 0.004 −0.022

(−0.123–0.08) 0.678

GCIPL, µm 7.226
(2.641–11.811) 0.002 −0.285

(−0.877–0.307) 0.346

SVP, the superficial vascular plexus; ICP, intermediate capillary plexus; DCP, deep capillary plexus; RNFL, retinal
nerve fiber layer; GCIPL, ganglion cell–inner plexiform. Data adjusted for age, gender, and vascular risk factors
(hypertension, diabetes, and dyslipidemia). Values in bold indicate p < 0.05.
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4. Discussion

In the present study, we found that thalamic infarction patients showed sparser
macular microvasculature and thinner macular thicknesses when compared with our
control group. The results also showed that eyes on the ipsilateral side displayed sparser
SVP and thinner RNFL and GCIP when compared with contralateral eyes. Importantly,
thalamic infarction lesion size significantly correlated with macular microvasculature and
structural changes.

RNFL and GCIP as assessed by OCT macular scanning reflect the in vivo condition
of the axons, dendrites and cell bodies of the retina [38]; RNFL and GCIP, which form
the retinal ganglion cell (RGC), play a vital role in visual processing in the retina [39].
Interestingly, in our study, we found the RNFL and GCIP to be significantly thinner
in thalamic infarct patients when compared with stroke-free control participants; thus,
thalamic infarction may lead to retinal neuro-axonal damage. Damage to the thalamus,
the principal region involved in visual processing, may result in damage to connections
within the visual tract, thereby causing regressive neuro-axonal damage of the optic nerve,
ultimately ending in the thinning of the RGCs because of its connection to the optic
nerve. Undeniably, patients who have experienced a thalamic stroke frequently experience
visual complaints [6,18,40], implicating that structural changes in the retinal thickness
may contribute to the neuro-axonal damage along the visual pathways. Generally, we
suggest that thalamic abnormalities may be reflected in the retina as thinner RNFL and
GCIP because of its relationship with the thalamus. Contrarily, it may be plausible that
ganglion cell death may cause anterograde degeneration, resulting in RNFL and GCIP
thinning and ultimately resulting in changes in the thalamus [41]. However, further studies
are needed to validate our hypothesis.

The pathophysiological process underlying the significantly altered macular microvas-
culature in thalamic infarction patients compared with control patients is uncertain. Neu-
roimaging reports showed that thalamic stroke patients have microvascular emboli [40,42]
and increased cerebral small vessel disease [4]. Additionally, atherosclerosis, a pathophysio-
logical cause of thalamic stroke, has been reported to cause neurodegeneration, which may
lead to decreased retinal microvascular densities and reduced retinal fractals compared
with healthy controls [4]. Therefore, we speculate that sparser macular microvasculature
and reduced microvascular densities in thalamic stroke patients may reflect neurodegen-
eration with associated microvascular impairment. Importantly, our results showed that
microvasculature impairment was more sensitive in the SVP (superficial microvasculature)
than the ICP and DCP (deeper microvasculature). Retinal microvascular reflects damage
of cerebral microcirculation [43] and during the ischemic injury, the superficial plexus has
been suggested to be more severely impaired than the deeper plexuses because it is the
entry point of blood flow into the retina [44,45]; of note, it has been suggested that the
superficial retinal vasculature is a risk indicator of ischemic stroke [46] and is associated
with the incidence of lacunar stroke [47]. This may explain why microvascular impair-
ment was more sensitive in the SVP than in the ICP and DCP in our study. Additionally,
atherosclerosis, the key factor of thalamic infarction, has been detected in blood vessels and
more prominently in the retinal arteries [48]. Since SVP reflects the arterial circulation of
the retina [49], while the deeper microvascular plexuses reflect the venular circulation [50],
this may also explain why SVP impairment was more sensitive than the deeper plexuses.

Eyes on the ipsilateral side of thalamic infarction showed sparser SVP and thinner mac-
ular thickness compared with eyes on the contralateral side. Regarding the pathophysiology
of our findings, the location of cerebral infarction may lead to severe retinal microvascular
impairment and neurodegeneration. For example, damage to the brain may result in
damage to the retinal structure and microvasculature, as shown in previous reports [51–53].
Altogether, findings from previous studies suggest that certain abnormalities in the brain
may be reflected in the retina as microvascular impairment and neurodegeneration.

Patients with thalamic infarction of less than a month showed significantly sparser SVP
when compared with patients with infarction of more than a month. Contrarily, patients
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with thalamic infarction for more than a month but less than 6 months showed denser ICP
when compared with patients with a duration of less than a month and showed a sparser
ICP when compared with patients with a duration of more than 6 months. Infarction
leads to deprivation of oxygen in the brain; thus, duration is critical in the management
of cerebral infarction [54]. Our report suggests that microvascular changes occur over
different durations; nonetheless, we did not observe a significant correlation between the
SS-OCT/SS-OCTA parameters and disease duration. Future studies with larger sample
sizes of homogenous thalamic infarction patients are needed to validate our hypothesis.

Interestingly, we showed that microvascular impairment (sparser microvasculature)
and neurodegeneration (thinner macular structure) significantly correlated with thalamic
lesion volume. Clinically, infarct lesion volume reflects neurological damage. Since thalamic
infarction leads to microvascular and neurological damage, the correlation between lesion
volume and retinal microvascular impairment and neurodegeneration may indicate that
the retina may have a role as a screening biomarker of thalamic infarction.

Currently, although some visual restoration training and compensatory therapy strate-
gies were conducted in patients with issues with their visual circuits [55,56], individual
heterogeneity and variability exist in the efficacy of such treatments [28]. It is important
to accurately identify groups who may benefit from these treatments. In addition, apart
from the routine secondary prevention treatments of cerebrovascular disease, there is
still a lack of individualized treatment and evaluation indicators for cerebral infarction
patients with different clinical syndromes. The present study illustrates some significant
alterations of retina structure and microvasculature after thalamic infarction and explored
their correlations with damage to the brain and time effects. These findings highlight the
potential of SS-OCT/OCTA indices as markers for disease assessment and response to
the therapy in these patients, and suggest the need for research on related interventions.
However, this study has several limitations. Firstly, a major limitation of our current study
is the small sample size and inclusion of only Chinese participants from a single center.
Second, no symptoms of the visual field or oculomotor deficits occurred in these patients,
which reduced the clinical interest and significance to some extent; however, as a type
of ischemic stroke with a lower proportion, only 11.7% of thalamic infarction patients
developed neuro-ophthalmologic manifestations in a long-time cohort [5]. Further studies
with a larger sample size are needed. Thirdly, previous studies have shown that the degree
of TRD was time dependent [23–25,57]. In our study, there were no significant changes
among groups who underwent different durations of treatment. The lack of a comparison
at different time-points for the same person and the small number of participants may
be the reasons for this negative result. Long-term follow-up cohort studies are needed in
the future.

5. Conclusions

In conclusion, our study showed that patients with thalamic infarction have signifi-
cantly thinner sub-retinal layers, and impaired macular microvasculature compared with
controls. We also showed that an altered macular structure and microvasculature signif-
icantly correlated with infarction lesion volumes. The findings of our study emphasize
the importance of further research into retinal imaging as a potential indicator for thala-
mic infarction. Longitudinal studies with a greater sample size are needed to validate
our hypotheses.

Supplementary Materials: The following supporting information can be downloaded at: https://
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