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Abstract: Background: Recording the calibration data of a brain–computer interface is a laborious
process and is an unpleasant experience for the subjects. Domain adaptation is an effective technology
to remedy the shortage of target data by leveraging rich labeled data from the sources. However,
most prior methods have needed to extract the features of the EEG signal first, which triggers another
challenge in BCI classification, due to small sample sets or a lack of labels for the target. Methods: In
this paper, we propose a novel domain adaptation framework, referred to as kernel-based Riemannian
manifold domain adaptation (KMDA). KMDA circumvents the tedious feature extraction process
by analyzing the covariance matrices of electroencephalogram (EEG) signals. Covariance matrices
define a symmetric positive definite space (SPD) that can be described by Riemannian metrics. In
KMDA, the covariance matrices are aligned in the Riemannian manifold, and then are mapped to
a high dimensional space by a log-Euclidean metric Gaussian kernel, where subspace learning is
performed by minimizing the conditional distribution distance between the sources and the target
while preserving the target discriminative information. We also present an approach to convert
the EEG trials into 2D frames (E-frames) to further lower the dimension of covariance descriptors.
Results: Experiments on three EEG datasets demonstrated that KMDA outperforms several state-of-
the-art domain adaptation methods in classification accuracy, with an average Kappa of 0.56 for BCI
competition IV dataset IIa, 0.75 for BCI competition IV dataset IIIa, and an average accuracy of 81.56%
for BCI competition III dataset IVa. Additionally, the overall accuracy was further improved by 5.28%
with the E-frames. KMDA showed potential in addressing subject dependence and shortening the
calibration time of motor imagery-based brain–computer interfaces.

Keywords: EEG; brain–computer interfaces; domain adaptation; subspace learning; symmetric
positive definite matrices; Riemannian manifolds

1. Introduction

A brain–computer interface (BCI) provides a direct control pathway between the hu-
man brain and external devices, without relying on peripheral nerve and muscle systems [1].
BCIs have demonstrated potential in medical rehabilitation, education, smart homes, and
so on. Most non-invasive BCIs are based on EEG signals, and the neural response patterns
are decoded by well-designed algorithms, which can convert movement intentions into
computer commands to control external devices, such as a wheelchair [2], an artificial
limb [3], a spelling system [4,5], or a quadcopter [6]. Steady-state visual evoked potential
(SSVEP), P300, and motor imagery (MI) are widely studied neural response paradigms for
BCIs. SSVEP and P300 have shown breakthroughs in spelling applications [4–6], while MI
is prized for its simple stimulus paradigm design, and allows subjects to express motor
intention in a natural way [7].
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Motor imagery is accompanied by event-related desynchronization/event-related
synchronization (ERD/ERS) in the functional motor area [8,9], and effective characterization
of the ERD/ERS phenomenon is paramount for a motor imagery-based brain–computer
interface (MI-BCI) system. Due to non-stationary EEG signals, the conventional BCI system
requires users to undergo a long period of training to obtain substantial labeled instances for
a robust model. However, long and monotonous training not only causes a psychological
burden to users, but also jeopardizes the adaptability of the BCI system [10,11]. Domain
adaptation has been developed to deal with limited training data from the target by
employing data from other sources. The objective of domain adaptation is to transfer
useful knowledge from a source group into the target training set, to overcome the problem
of limited calibration data [12]. As a result, a well-performing classifier can be obtained
without a large number of labeled EEG samples from the target subject, thus shortening
the training time.

However, the large inter-subject variability of EEG signals has been an impediment to
domain adaptation learning. Borgwardt et al. [13] proposed a maximum mean discrepancy
(MMD) criterion for comparing cross-domain distributions. MMD is nonparametric and
can estimate the distance between the means of two domains without requiring any labels.
Based on MMD, many effective domain adaptation methods have been derived. Transfer
component analysis (TCA) learns a common subspace across domains in a Reproducing
Kernel Hilbert Space (RKHS) to minimize the distance between the sample means of the
source and target data [13]. The joint distribution adaptation (JDA) method measures
the distributional discrepancy using the unweighted sum of marginal and conditional
MMDs [14], and the balanced distribution adaptation (BDA) method leverages the impor-
tance of the marginal and conditional distribution [15]. Domain transfer multiple kernel
learning (DTMKL) learns a linear combination of multiple kernels by minimizing both
the distribution mismatch between the source and target domains, and the structural
risk [16]. Manifold embedded distribution alignment learns a domain-invariant classier
in the Grassmann manifold with structural risk minimization, while performing dynamic
distribution alignment by considering the differing importance of marginal and conditional
distributions [17].

Although the abovementioned domain adaptation methods have performed well
in computer vision and image sets’ classification, they cannot be directly applied to the
EEG signal classification. Since each column (row) of an EEG record is a non-stationary
time series signal, it requires a relatively stable descriptor, such as the mean, variance,
entropy, or power spectrum. The description of the MI-EEG characteristics has a great
impact on the domain adaptation. The common spatial pattern (CSP) is a widespread
feature extractor. In order to improve CSP’s ability to handle the interference of noise
and non-stationarities in the EEG signals, many improved CSPs have been proposed.
Regularization CSP (RCSP) improves the generalization ability of CSP by adding a priori
information into the estimation of the inter-class covariance matrix [18–20]. The filter bank-
based CSP subdivides EEG signals into several sub-bands to find the most discriminative
features [21,22]. A temporally constrained sparse group spatial pattern (TSGSP) [23] jointly
extracted the significant features from both the filter bank and multiple time windows.
In [24], Dempster–Shafer theory (DST) was employed for the feature selection rules for
internal selection. Additionally, combining CSP with domain adaptation approaches
provides an effective means for feature extraction in a cross-subject scenario. The complex
common spatial pattern (CCSP) linearly combines the inter-class covariance matrices
according to the Kullback–Leibler (KL) divergence between the target and sources [25]. The
sparse group representation model (SGRM) constructs a composite dictionary matrix with
CSP features from both the target and other subjects [11]. However, CSP is a supervised
feature extractor, and CSP will fail when the sample set is small or there is no label in
the target domain. The covariance matrix descriptor of the EEG signal provides a way to
circumvent feature extraction.
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Barachant et al. pioneered the use of the geometric structure of the EEG signal co-
variance matrix, and proposed the minimum distance to the Riemannian mean algorithm
(MDRM) [26] and linear classification algorithms in tangent space (TSVM) [27]. The results
outperformed complex and highly parametrized CSP classifiers. Additionally, covariance
matrices as features yielded competitive results on the classification of evoked potentials,
such as SSVEP [28], and event-related potentials, such as P300 [29]. By capitalizing on
the geometric properties of the symmetric positive definite (SPD) matrices, many domain
alignment techniques have been proposed to make the time-series data from different ses-
sions/subjects comparable. The parallel transport (PT) [30] projected the SPD matrices from
different subsets to a common tangent space, and the Riemannian Procrustes analysis [31]
aligned the statistical distributions of two datasets using simple geometric transformations,
and after the alignment in the Riemannian manifold, all cross-subject covariance matrices
were mapped into a shared tangent space to train a classifier. The manifold embedded
transfer learning (METL) [32] aligned the covariance matrices of the EEG trials on the SPD
manifold, and then learned a domain-invariant classifier of the tangent vectors’ features
by combining the structural risk minimization of the source domain and joint distribution
alignment of source and target domains. Similarly, the manifold embedded knowledge
transfer (MEKT) framework [33] first whitened the SPD matrices of cross-subjects to an
identity matrix, and then performed domain adaptation using tangent vectors to minimize
the joint probability distribution shift between the source and the target domains, while
preserving their geometric structures.

Assuming that the number of recording electrodes is C, then the dimension of the
corresponding tangent vector is C(C + 1)/2. With the increase of C, the dimension of the
vector will expand rapidly, and may even exceed the number of training samples, resulting
in over-fitting of the classifier [34,35]. In addition, the reference point has a great influence
on the tangent plane, and the tangent space determined by different reference points varies
greatly [36].

The SPD matrices have been proven to be a powerful data representation approach
for images or image sets via covariance [37], region covariance descriptors [38], or sparse
coding of the covariance matrices [39,40]. In MI-BCI, the second-order statistics of the
EEG signal contain discernible information about the subject’s mental state, and the most
widespread problem-solving idea is to decompose the covariance matrix and extract the
projection vectors with large inter-class variance. CSP is a typical algorithm derived from
this concept. Moreover, many studies have demonstrated that the Riemannian metric is
more effective than Euclidean distance in describing the discrepancy between covariance
matrices [37–41]. For the non-linearity of the Riemannian manifold, three approaches
have been summarized in the literature: (i) Given that a manifold is a topological space
with local Euclidean properties, the Riemannian manifold is locally flattened via tangent
spaces. (ii) Under the assumption that the intrinsic structure of the data is inherently low-
dimensional, several dimensionality reduction algorithms have been designed to discover
the intrinsic low-dimensional manifold, such as Locally Linear Embedding, Isometric
Feature Mapping, and Locality Preserving Projection. (iii) One could embed the manifold
in a high-dimensional Reproducing Kernel Hilbert Space (RKHS), where subspace learning
can be carried out. This concept has been confirmed in image set classification [38,42], but
it has not yet been applied to motor imagery classification.

In light of the above, we proposed a kernel-based Riemannian manifold domain
adaptation (KMDA) method to sidestep the tedious process of feature extraction and take
advantage of Riemannian geometry, while avoiding the dimensional explosion of tangent
vectors. In our framework, we considered the covariance matrices of EEG signals as
features, and aligned the covariance matrices of the source and target in the Riemannian
manifold. Then, the log-Euclidean-based Gaussian kernel permitted us to embed the
manifold in a high-dimensional RKHS, wherein subspace learning was performed by
minimizing the conditional distribution distance between the sources and the target, while
preserving the discriminative information of the target. Additionally, we present a feature
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construction scheme for converting the EEG timing series into 2D frames, which not only
fully exploits the electrode position and frequency band of the signal, but also further
reduces the dimension of the covariance matrix.

To sum up, the main contributions of this paper include:

(1) The KMDA classifies the motor imagery tasks without any target labels.
(2) The KMDA defines a subspace learning framework in a RKHS space defined by a

kernel on the SPD manifold.
(3) The KMDA not only minimizes the marginal and conditional distributions, but also

considers intra/inter-class discriminative information of sources and the principal
components of the target.

(4) A feature construction scheme is presented to reduce the dimension of the SPD matrix
and the computational cost.

The rest of the paper proceeds as follows: Section 2 introduces the Riemannian metric
theory of the SPD manifold, and the definition of Gaussian kernel applicable for Rieman-
nian manifolds. Section 3 details our proposed framework, Section 4 provides a detailed
description of the experiment design and results on three datasets, Section 5 presents a
series of discussions, and a conclusion is drawn in Section 6.

2. Preliminaries

This section provides an overview on the geometry of the symmetric positive definite
(SPD) manifold and some Riemannian metrics for the kernel method. Sym+

d denotes the
space spanned by the d× d SPD matrices, and Tp is the tangent space on the point of P ∈
Sym+

d . Xi ∈ Rc×t represents the single trail of recorded EEG signal with c electrodes and t
time samples. Ci represents a covariance matrix in Euclidean space, and Pi is the point in the
Riemannian manifold. ‖X‖F =

√
Tr(XTX) designates the Frobenius norm, (.)T denotes the

transpose operator, and Tr(.) is the sum of the diagonal elements. The principal matrix ex-
ponential, exp(.) : Sym+

d → Symd , is defined as exp(X) = Udiag(exp(λ1, λ2, . . . , λn))UT ;
similarly, the matrix logarithmic operator log(.) : Symd → Sym+

d is defined as log(X) =

Udiag(log(λ1, λ2, . . . , λn))UT , with X = Udiag(λ1, λ2, . . . , λn)UT . ExpP(.) and LogP(.) de-
note the exponential and logarithmic maps at the reference point P, respectively.

2.1. Riemannian Metrics

The covariance matrix of a single trial, Xi, was normalized with the total variance,
as follows:

Pi =
Xi·(Xi)

T

Tr(Xi·(Xi)
T)

(1)

A covariance matrix is a typical symmetric positive definite (SPD) matrix, Pi ∈ Sym+
d ,

and the value of its determinant is a direct measure of the dispersion of the associated
multivariate Gaussian [43]. However, Euclidean geometry forms a non-complete space [35],
which often leads to a swelling effect in regression or average operations [44] that for the de-
terminant of the Euclidean mean can be strictly larger than the original determinants [35,43],
giving spurious variation to the data. To fully circumvent these issues, Riemannian metrics
are proposed for the SPD manifold.

Tangent Space: The covariance matrices of multi-channel EEG signals define an SPD
space, which is locally homeomorphic to the Euclidean space, i.e., the topological manifold
is a locally differential manifold [43,45]. The curvatures of the curves that pass through each
point on the smooth differential manifold define a linear approximation space, also known
as the tangent space. For the SPD manifold, there exists a pair of mappings transporting
points from the manifold to its corresponding tangent space, and vice versa. Specifically,
the logarithmic map is used to embed the neighbors of a given point into the tangent space
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with the point as a reference, and the exponential map reverses a tangent vector back to
the manifold: {

Sym+
d → TP : Si = LogP(Pi) = P

1
2 log(P−

1
2 PiP−

1
2 )P

1
2

TP → Sym+
d : Pi = ExpP(Si) = P

1
2 exp(P−

1
2 SiP−

1
2 )P

1
2

(2)

As depicted in Figure 1, any vector in TP is identified as a geodesic starting at point
P on the manifold; conversely, any bipoint (P, Pi) can be mapped into a vector of TP. It
is worth noting that the tangent space of a manifold is not unique and depends on the
reference point. Conventionally, the reference point is either an identity matrix or the
Riemannian mean.
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Riemannian mean: The Riemannian mean is defined as the point minimizing the
following metric dispersion:

MR = argmin
P∗∈Sd

+

N

∑
i=1

δR
2(P∗, Pi) (3)

where δR(P∗, Pi) denotes a distance suitable for the SPD manifold. Formula (3) does not
define a closed-form solution [41], but it can be solved through an iterative algorithm [30].

Affine-Invariant Riemannian Metric: The affine-invariant Riemannian metric (AIRM)
is a powerful and pervasive metric endowed to the SPD manifold, with the properties of
uniquely defining the geodesic between two metrices and the mean of a set of metrices.

An arbitrary invariant distance on Sym+
d satisfies δR(Pi, Pj) = δR(APi AT , APj AT),

where A is a real invertible d × d matrix. Choosing A = Pi
−1/2, this distance is trans-

formed to be a distance to the identity: δR(Pi, Pj) = δR(In, Pi
−1/2PjPi

−1/2), where the
affine-invariant Riemannian distance between two points, Pi and Pj, is transformed to
be the Riemannian distance between Pi

−1/2PjPi
−1/2 and In. Based on this, the distance

δR(Pi, Pj) can be solved by calculating the geodesic distance of Pi
−1/2PjPi

−1/2 starting at the
identity matrix, which amounts to calculating the vector of Pi

−1/2PjPi
−1/2 in the tangent
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space of In. Hence, the Affine-Invariant Riemannian Metric (AIRM) distance, δair, between
Pi and Pj is defined as:

δair(Pi, Pj) =
∥∥∥log(Pi

−1/2PjPi
−1/2)

∥∥∥
F

(4)

Equivalently, we can write (4) as:

δair(Pi, Pj) = (
n

∑
i=1

log2λi)
1/2

(5)

where λi is the eigenvalues of Pi
−1Pj.

Log-Euclidean Metric: The log-Euclidean metric (LEM) can also define the real
geodesic distance of two SPD matrices [46], by computing the distance between their
corresponding tangent vectors at the identity matrix, and we have:

δlem(Pi, Pj) =
∥∥log(Pi)− log(Pj)

∥∥
F (6)

Let P = UΣUT be the eigen-decomposition of SPD matrix P, and Σ is the diagonal ma-
trix of the eigenvalue. Its logarithmic map can be computed easily by: log(P) = U log(Σ)UT .
Compared with the AIRM, the log-Euclidean consumes less computation, while conserving
excellent theoretical properties.

In addition to LEM and AIRM, another two metrics derived from Bergman divergences,
namely Stein and Jeffrey divergence, are extensively used in manifold analysis. Stein and
Jeffrey divergence are symmetric and affine invariants [41], which prompts the choice of
these metrics in the Riemannian mean. Algorithm 1 illustrates the iterative process of
estimating a Riemannian mean by AIRM.

Algorithm 1. Riemannian mean by AIRM.

Input: Training set {Xi}N
i=1, iteration Num, and termination criteria ε

Output: The Riemannian mean MR ∈ Sn
+

1. Initialize the reference matrix C with an identity matrix.
2. Calculate the covariance matrices of training samples Pi ∈ Sn

+ by (1)
3. for i = 1: Num
4. Map each matrix Pi to the tangent space at C by (2).
5. Obtain their Arithmetic mean Si in the tangent space.
6. Embed the Arithmetic mean Si to Riemannian space by (2), obtaining corresponding

matrix Ci
7. if ||C− Ci||< ε break for; end if
8. C←Ci
9. end for
10. MR←C

2.2. Positive Definite Kernel on Manifold

Embedding into RKHS through kernel methods is a well-established and prevalent
approach in machine learning [14]. However, embedding SPD manifolds into RKHS re-
quires the kernel functions to be positive definite. The Gaussian kernel has worked well
in mapping the data from Euclidean space into an infinite dimensional Hilbert space. In
Euclidean, the Gaussian kernel is expressed as κ(xi, xj) := exp(−

∥∥xi − xj
∥∥2/2δ2), which

relies heavily on the Euclidean distance of two points. To define a Gaussian kernel applica-
ble to the Riemannian manifold, a naive means is to replace the Euclidean distance with
the geodesic distance on the premise that the generated kernel is positive definite.
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Therefore, we defined the kernel: κ : (Sym+
d × Sym+

d )→ R by κ(Pi, Pj) :
= exp(−δ2(Pi, Pj)/2σ2) for all points, P1, . . . , PN ∈ Sym+

d . κ is a positive definite ker-
nel for all σ > 0 only if the Riemannian geodesic metric, δ2(Pi, Pj), is negative definite [42].
Herein, we consider the log-Euclidean metric as the geodesic distance, and we need to
prove ∑m

i,j aiajδ
2(Pi, Pj) ≤ 0 for all m ∈ N with ∑m

i ci = 0. It is easy to prove that κ is a
symmetric function: κ(Pi, Pj) = κ(Pj, Pi), for all matrixes in the SPD manifold.

We analyzed the positive definiteness of the log-Euclidean metric as follows:

∑i,j aiajδ
2(Pi, Pj) = ∑i,j aiaj

∣∣∣∣∣∣log(Pi)− log(Pj)
∣∣∣|2F

⇒ ∑i,j aiaj < log(Pi)− log(Pj), log(Pi)− log(Pj) >

⇒ ∑
j

aj∑
i

ai < log(Pi), log(Pi) > −2∑i,j aiaj < log(Pi), log(Pj) >

+ ∑
i

ai∑
j

aj < log(Pi), log(Pi) >

⇒ −2∑i,j aiaj < log(Pi), log(Pj) >

⇒ −2
∣∣∣∣∑i ai log(Pi)

∣∣|2F ≤ 0

, (7)

The Equation (7) provides the proof that the log-Euclidean kernel guarantees the
positive definite of the Riemannian kernel, and satisfies the Mercer theorem.

3. Proposed Framework

We assume that the sources have Ns labeled instances
{
(Xs

i , yi)
}Ns

i=1, where Xs
i ∈ Rc×t

denotes a single recorded EEG signal in the source domain, and yi ∈ {1, . . . , l} is the
corresponding label.

{
Xs

i
}

may be collected from one subject or from multiple subjects.{
Xt

i
}Nt

1 is a collection of unlabeled records from the target. We assume that there is the
same feature space and label space between domains, but, due to dataset shift, the marginal
and conditional probability distribution are different. We use φ(x), x ∈ Sym+

d to map the
feature vector to the RKHS space.

In this section, we elaborate on the proposed KMDA framework. KMDA aims to
classify the unlabeled target data by exploiting the labeled data from multiple source
domains. For the sake of simplicity, only one source domain is considered.

In KMDA, we take the covariance matrix of each EEG record as the feature. Covariance
matrices define a symmetric positive definite space (SPD) that can be described by the
Riemannian metrics. Due to individual differences in response patterns, and the deviation
of the electrode installation position, there is a domain shift between the source and target
covariance matrices. Hence, we first performed an alignment in the Riemannian manifold
(RA). Subsequently, we embedded the manifold space into a high-dimensional Euclidean
space through the log-Euclidean Gaussian kernel, where a discriminative subspace was
learned. Alternatively, the SPD matrices can be defined by a set of 2D frames converted
from a set of EEG records. Figure 2 shows the overall workflow of KMDA.
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Figure 2. The illustration of proposed kernel-based Riemannian manifold domain adaptation. (a) The
framework of converting the chain-like EEG signal into 2D frames. (b) The flow chart of KMDA with
two types of covariance descriptor.

3.1. Alignment of the SPD Matrices

The correlation alignment (CORAL) has proven that aligning the second-order statis-
tics can effectively mitigate the distribution differences across domains [47]. Referring to
CORAL, we proposed an alignment in the Riemannian manifold, referred to as Riemannian
alignment (RA), to align the symmetric positive definite matrices on the Riemannian mani-
fold, which skillfully skips the tedious process of feature extraction from the EEG signal.

In RA, we whitened the source domain first to remove the correlations of the source
domain, by:

Ps′
i = (ξs

R)
−1/2Ps

i (ξ
s
R)
−1/2 (8)

Then, we recolored the source with correlations of the target domain.

Pst
i = (ξt

R)
1/2Ps′

i (ξt
R)

1/2 (9)

where Pst
i denotes the source matrix after recollection, and ξt

R is the Riemannian mean
of the target obtained through Algorithm 1. Equation (9) was used to reconstruct the
source matrices using the target Riemannian mean, and after that, the source and tar-
get distributions differed little, so they can be considered to have an identical marginal
probability distribution.

3.2. Kernel on Riemannian Manifold

Due to the non-Euclidean geometry of Riemannian manifolds, Euclidean algorithms
yield inferior results on SPD matrices. We defined a Gaussian radial basis function-based
positive definite kernel on the Riemannian manifold to embed the SPD manifold in a
high-dimensional Reproducing Kernel Hilbert Space. The kernel makes it possible to utilize
algorithms developed for linear spaces on nonlinear manifold data.

We employed the log-Euclidean distance as the Riemannian metric. One reason for
this is that the log-Euclidean distance defines the real geodesic distance between two
symmetric positive definite matrices, and more importantly, the Gaussian kernel with the
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log-Euclidean metric yields a positive definite kernel, satisfying the conditions of Mercer’s
theorem, as proven by (7).

The SPD matrices can be transformed into the RKHS with:

κ(Pi, Pj) := exp(−
∥∥log(Pi)− log(Pj)

∥∥2
F/2σ2), (10)

3.3. Learning Mapping Matrix

Since the RA reconstructs the source using the eigenvectors and eigenvalues of the
target, we assumed that the marginal distribution of the source and target remains identical
in RKHS. The purpose of KMDA is to learn a transformation matrix, W, in RKHS, so as
to minimize the conditional divergence of the source and target while maximizing the
variance of the target domain and preserving the discriminative information of the source
domain as much as possible.

(1) Target Variance

For an effective subspace, it should maximize the preservation of the principal compo-
nents of the target and avoid projecting the features into irrelevant dimensions. Since the
target labels are unknown, variance is used to measure the distinguishable information of
target features. Hence, the objective function is defined as:

max
W

Tr(WTStW) (11)

(2) Source Discriminative Information

The discriminative information of the source domain should be preserved in the
new subspace. To this end, we exploited the labels to define the discernibility of the
source; that is, we maximized the distance between classes while minimizing the distance
within classes:  max

W
Tr(WTSbW)

min
W

Tr(WTS(c)
w W)

(12)

where S(c)
w is the within-class scatter matrix of the source data, Sb =

l
∑

c=1
Nt(c)(m(c)

s −ms)

(m(c)
s −ms)

T
is the between-class scatter matrix, in which Nt(c) is the number of source data

of c-class, m(c)
s is the mean of samples from class c, and ms is the mean of all source data.

(3) Condition Distribution

In the new subspace, the discrepancy between samples of the same type in the source
and the target domain should be small, i.e., the conditional distribution distance should be
minimized. We used the MMD as the criterion to measure the distribution divergencies.

dist(P(yt
∣∣WTφ(Pt)), P(ys

∣∣WTφ(Ps)))

=
l

∑
c=1

∥∥∥∥∥ 1
Nc

t

Nc
t

∑
i=1

WTφ(Pt)− 1
Nc

s

Nc
s

∑
i=1

WTφ(Ps)

∥∥∥∥∥
2

F

(13)

Then, we obtained the objective function:

min
W

l

∑
c=1

Tr(WTKLW) (14)
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where

K =

[
Kt Kst
Kts Ks

]
(L)ij =



1
/

(Nt(c))
2, Pi, Pj ∈ D(c)

t

1
/

(Ns(c))
2, Pi, Pj ∈ D(c)

s

−1
/

(Ns(c)·Nt(c)),

{
Pi ∈ D(c)

s , Pj ∈ D(c)
t

Pi ∈ D(c)
t , Pj ∈ D(c)

s
0, otherwise

KtKsKts are the kernel matrices defined by (10) on the Riemannian manifold in the
target domain, source domain, and cross-domain, respectively.

(4) Overall Objective Function

Combining all of the above optimization objectives, we formulated the overall objective
function of the proposed KMDA method:

max
W

αTr(WTStW)+βTr(WTSbW)

µ
l

∑
c=1

Tr(WTφ(P)McφT(P)W)+βTr(WTS(c)
w W)

⇒ max
W

Tr(WT [
αSt 0
0 βSb

]W)

l
∑

c=1
Tr(WT [

µKtt µKst

µKts µKss + βS(c)
w

]LW)

(15)

We simplified (15) as:

max
W

Tr(WT [
αSt 0
0 βSb

]W)

s.t.
l

∑
c=1

Tr(WT

[
µKt µKst

µKts µKs + βS(c)
w

]
LW) = I

(16)

where α, β, and µ are the trade-off parameters to balance the importance of each term.
By the Lagrange operator, we deformed the optimization function into:

J = Tr(WT [
αSt 0
0 βSb

]W) + Tr(λWT(
l

∑
c=1

[
µKt µKst

µKts µKs + βS(c)
w

]L)W − I) (17)

By setting ∂J
∂W = 0, we found:[

αSt 0
0 βSb

]
W = λ

l

∑
c=1

[
µKt µKst

µKts µKs + βS(c)
w

]
LW (18)

The optimal W∗ are given by the k leading eigenvectors of the eigen-decomposition
of (18).

Let Kt = φ(Pt)
Tφ(Pt) and Ks = φ(Ps)

Tφ(Ps), then we get St = KHt(Kt)
T ,

S(c)
w = K(c)

s H(c)
s (K(c)

t )
T

, H(c)
s = INs− 1

Ns(c)
1Ns1Nt

T , and Ht = INt − 1
Nt 1Nt1Nt

T , where Ht is
the center matrix, INt is the Nt× Nt identity matrix, and 1Nt is the column vector with all

ones. In Sb, we get m(c)
s = 1

Ns(c)
Ns(c)

∑
i=1

k(c)i and ms =
1

Ns

Ns
∑

i=1
ki, with ki = φ(Ps)

Tφ(Pi), Pi ∈ Ds.

Given a new instance, Pt ∈ Sym+
d , from the target, its projection, zt, in the dis-

criminant subspace was obtained by: zt = W∗Ktt, where Ktt = [k(P1, Pt), . . . , k(PN , Pt)]
and N = Nt + Ns. The classification was performed on the classifier trained with the
source data.

The pseudo-codes of the KMDA algorithm are described in Algorithm 2.
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Algorithm 2. Kernel-Based Manifold Domain Adaptation.

Input: EEG and source labels:
{
(Xs

i , yi)
}Ns

i=1,
{

Xt
i
}Nt

1 ;
Parameters: α = 1, µ = 1, β, k.
Output: Transformation matrix: W∗; Target labels Yt.

1. Calculate covariance matrices
{

Ps
i
}Ns

i=1 and
{

Pt
i
}Nt

i=1.
1′. Or Calculate the covariance matrices of 2D frames.
2. Calculate the Riemannian means of source and target by Algorithm 1.
3. Align the SPD matrices of source and target by (8) and (9)
4. Initialize pseudo labels of target domain Y′t using the minimum distance to Riemannian

mean algorithm [26].

5. Construct StSbS(c)
w L

6. Repeat
7. Solve the generalized eigen-decomposition problem in (18) and select the k leading

eigenvectors as the transformation W∗

8. Obtain the embedding features:
{

zs
i
}Ns

i=1,
{

zt
i
}Nt

i=1 by z = (W∗)T ·K.

9. Train a classifier f on
{

zs
i , yi

}Ns
i=1 to update pseudo labels in target domain

10. Update L.
11. Until convergence
12. Obtain transformation matrix W∗ and target labels Yt

The joint geometrical and statistical alignment (JGSA) [48] algorithm is a similar study
to KMDA. JGSA mainly concentrates on finding two coupled projections that embed the
source and target data into low-dimensional subspaces, where the domain shift is reduced
while preserving the target domain properties and the discriminative information of source
data, simultaneously. KMDA improves in two aspects. One is that, with the help of
Riemannian alignment, KMDA transforms the source and target data into a common space,
and hence it is reducible to solve an embedded subspace. Besides, the features in JGSA
must be in the form of a flattened vector, while KMDA is characterized by the form of an
SPD matrix.

(5) Converting Multichannel EEG Signals into 2D Frames

We assumed a set of EEG signals can be divided into M segments by a sliding window,
denoted by xi ∈ Rc×m(i = 1, 2, . . . , M).

In each segment, we calculated the power of each channel in the 8~30 Hz frequency
band in sequence. welch (the built-in function package of MATLAB) was used first to
calculate the power spectral density, followed by the pwelch function for the power spectrum
and then the bandpower function to extract the power of the alpha and beta rhythm. As a
result, we flattened a c×m EEG signal into a 1× c vector, with each element corresponding
to the power value xi = [v1, v2, . . . , vc]. For the purpose of maintaining spatial information
among multiple adjacent channels, we further converted the vector xi to a 2D frame
according to the electrode distribution map. Figure 2a illustrates the schematic diagram for
2D EEG frames in the 22-electrode scenario, where the electrodes circled in bold are the
selected ones. The constructed frame, fi, is expressed as:

fi =


v v v1 v v
v2 v3 v4 v5 v6
v8 v9 v10 v11 v12
v14 v15 v16 v17 v18
v v v20 v v


and fi must be a square matrix. We filled the central raw of the matrix fi with electrodes
located in the central functional area (marked with C1, C2, . . . , Cn), partitioning the matrix
into upper and lower parts, and each part was associated with the physical installation
positions. Then, we completed the matrix with task-related electrodes, and the unused
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electrodes and the positions without electrodes were represented by the average power
of all electrodes, v. In this way, the chain-like EEG signals were converted to 2D frame
sequences, [ f1, f2, . . . , fM], and each frame, fi, embodied the task-related power features
and spatial information.

It is obvious that the size of a 2D frame is much smaller than that of an EEG signal,
and is of great significance to improving the computation speed of Riemannian manifolds.
Taking a 22-electrode setup as an example, the covariance matrix of an EEG trial is 22× 22,
whereas the size is 5× 5 for a 2D frame.

4. Experiments and Results
4.1. Dataset Description

BCI Competition IV Dataset IIa (Dataset IIa) consists of 9 subjects, ‘A01’, ‘A02’, . . . ,
‘A09’. The 4-class cued motor imagery data were recorded by 22 EEG channels with a
250 Hz sampling rate. At t = 2 s, an arrow indicated that one of the four classes promoted the
subject to perform the desired mental task until the cue disappeared at t = 6 s. Each subject
recorded two sessions on different days, one for calibration, and the other for evaluation.
Each session is comprised of 6 runs, and one run consists of 48 trials (12 trials per class),
yielding 288 trails per session. In our experiment, we removed the trials containing an
artifact label, marked with 1′ in the h.ArtifactSelection list.

BCI Competition III Dataset IVa (Dataset IVa) contains 2-class EEG signals recorded
at 118 channels with a 1000 Hz sampling rate (down-sampled to 100 Hz in this paper)
from 5 subjects, named as ‘AA’, ‘AY’, ‘AW’, ‘AL’, and ‘AV’. For each subject, a total of
280 cue-based trials are available. In each trial, a cue was indicated for 3.5 s, during which
two MI tasks were performed: right hand and right foot. Then, the cue was intermitted by
periods of random length, 1.75 to 2.25 s, in which the subject could relax.

BCI Competition III Dataset IIIa (Dataset IIIa) is a 4-class EEG dataset (left hand, right
hand, foot, tongue) from 3 subjects (‘K3’, ‘K6’, ‘L1’), recorded by 60 channels, sampled at
250 Hz. The dataset consists of several runs, with 40 trials for each run. After the beginning
of each trial, the subject rested in the first 2 s, then performed the indicated mental task
from t = 3 s to t = 7 s. Each of the 4 cues appeared 10 times per run in a random order.

In our experiments, after the removal of EEG baseline drift, all datasets were filtered
by a 6-order 8~30 Hz bandpass filter. The calibration and evaluation trials of Dataset IIa
were extracted from the 2.5 to 4.5 s time interval recommended by the competition winner,
and Dataset IVa and Dataset IIIa were extracted using a 3 s window after the cue onset at
0.5 s.

4.2. Experiment Design

We verified the merits of the proposed KMDA using three datasets, and compared it
with the state-of-the-art domain adaptation algorithms. Table 1 presents the descriptions of
the concerned methods. Except for MEKT, none of the other control algorithms were originally
designed for EEG analysis, and we adapted them slightly to fit the experimental situation.

Feature Extraction: MEKT maps the covariance matrices into the tangent space at
the identity matrix, yielding a collection of corresponding tangent vectors, and the other
algorithms concatenate the covariance matrices into flattened vectors. For the BCI Com-
petition III Dataset IVa, for instance, the size of each trial was 118 × 300, and the size
of its covariance matrix was 118 × 118, so the corresponding concatenated vector size
was 1 × 13,924, and the vector in the tangent space was 1 × 7021. The high-dimensional
vectors put forward a high demand for the size of the training set, otherwise, the model
would be overfitted. Therefore, we proposed the method of converting multichannel EEG
signals to 2D EEG frames to reduce the dimension. In the follow-up experiments, except
for KMDA, all the control methods took the covariance matrices of 2D frames as input, so
for the Dataset IVa, the dimension of the corresponding tangent vector was 1 × 66, and the
dimension of the concatenated vector was 1 × 121. Both the covariance matrix of the 2D
frames and the EEG signals are discussed in KMDA. For ease of differentiation, KMDA
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refers to the model with the covariance matrices of the 2D frames as input, while e-KMDA
takes the covariance matrices of the EEG signals as input. The matrix dimensions before
and after the conversion of the three datasets are shown in Table 2.

Table 1. Compared algorithms and parameters in the experiment.

Method Descriptions Para.

SA A linear transformation on the principal components [49]. none
CORAL Aligning the second-order statistics of the features [47]. none

GFK
The principal components of the source and the target are regarded as two points in the

Grassmann manifold and a geodesic flow kernel (GFK) is obtained by integrating geodesics
between the two points [50].

d < D/2

TCA Minimizing the marginal probability distribution difference in RKHS [13]. none
JDA Minimizing the joint distribution difference of marginal and conditional probability in RKHS [14]. λ = 0.1

JGSA
Seeking two coupled projections that embed the source and target data into low-dimensional

subspaces, where the domain shift is reduced while preserving the target domain properties and
the discriminative information of source data simultaneously [48].

λ = 1
µ = 1

β = 0.01

MEKT Whitening the covariance matrices of source and target in Riemannian manifold, and learning
two subspaces to reduce the domain divergences [33].

α = 0.01
β = 0.1
ρ = 20

KMDA Our algorithm.

Table 2. Input space dimensions in different metrics.

No.
Raw EEG Trial 2D-Frame of Each Trial

CovD 1 TanV 2 ConV 3 CovD 1 TanV 2 ConV 3

Dataset IIa 22 × 22 1 × 253 1 × 484 5 × 5 1 × 15 1 × 25
Dataset IVa 118 × 118 1 × 7021 1 × 13,924 11 × 11 1 × 66 1 × 121
Dataset IIIa 60 × 60 1 × 1830 1 × 3600 9 × 9 1 × 45 1 × 81

1 CovD denotes the covariance matrix descriptor of the input signal. 2 TanV denotes the flattened vector of a
covariance matrix in the tangent space. 3 ConV represents the concatenated vector of a matrix.

Hyper-parameter: Since the target data is assumed to be unlabeled, cross-validation is
not applicable to the parameter determination. We set the parameters of (17) as α = µ = 1
and β = 0.1, the iterations T = 15, and the dimension of subspace k = d, where d is the
dimension of the SPD matrix. The hyper-parameters for the other algorithms were set
according to the recommendations in the corresponding literature.

Classifier: The k-Nearest Neighbor Classifier (KNN) was used for all methods. To
facilitate the calculation, we fixed k = 3 for all the experiments.

Data setting: All our experiments were carried out on the calibration data from three
datasets. Since the feature distributions of ‘A08’, ‘AL’, and ‘K3’ were distinguishable, they
were treated as the source data for the corresponding dataset, and the rest of the subjects
were taken as the target. Therefore, we had 8 + 4 + 2 = 14 transfer scenarios.

Measurement: For the classification evaluation of the four tasks (Dataset IIa and
Dataset IIIa), we opted for the Kappa coefficient recognized by BCI competition, while for
binary classification (Dataset IVa), we used accuracy as the evaluation index.

4.3. Results

Validation of Riemannian Alignment: Among the compared methods (as described in
Table 1), except for JDA and JGSA, all the methods contained unsupervised distribution
alignment of the source and target domains in Euclidean space or manifold space. Figure 3
visualizes the distributions after unsupervised alignment by the investigated methods in
transferring subject ‘AL’ to subject ‘AA’ from DIVa by t-SNE [51]. The results indicated
that the proposed RA not only aligns the marginal distributions of the source and target
domain well, but also minimizes the distance between features of the two domains while
preserving the characteristic of target distribution. Specifically, (a) to rectify the mismatch
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in distribution, TCA capitalizes on subspace learning [13], while GFK resorts to a shared
space [50] to match the data distributions of different domains; however, both methods
ignore the distribution characteristics of the target. (b) Both CORAL and SA align source
data in the direction of the target domain. SA reconstructs the source data with the
principal components of the target [49], and CORAL restructures the source data with
all the eigenvectors of the target covariance matrix [47]. However, they fail to take into
account the particularity of the covariance matrix as a feature, and the geometry of the SPD
manifold. (c) The alignment approaches of MEKT and KMDA perform a parallel transport
on the cone manifold of the SPD matrices to align the source with the target domain.
However, MEKT whitens the covariance matrices of the source and target, resulting in
an identical and uniform distribution [33], which completely destroys the characteristics
of the target. By contrast, KMDA aligns the source covariance matrices with the target,
yielding a set of covariance matrices formally similar to those of the target and consistent
with the principal axis of the target, thus minimizing the domain shift while preserving the
distribution characteristics of the target.
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Figure 3. t-SNE visualization of the distributions with different unsupervised domain adaptation
approaches.

Validation of Subspace Learning: JDA, JGSA, MEKT, and KMDA aim to learn a
discriminative subspace by leveraging labeled source data. Figure 4 depicts results of
transferring subject ‘AL’ to subject ‘AA’ using the four domain adaption approaches. As
shown in Figure 4, the raw source domain and target domain distribute differently, and
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their marginal distribution and conditional distribution are widely divergent. JDA and
JGSA minimize the discrepancy of marginal and conditional distributions between the
source and target, rather than the distance between features. MEKT and KMDA not only
minimize the distribution divergence, but also make the features from the same class
maximally close in the two domains. However, compared with MEKT, KMDA preserves
more target distribution characteristics.
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Figure 4. The visualization of transferring source data (subject AL with labels) to classify the
unlabeled target data (subject AA) by JDA, JGSA, MEKT, and KMDA.

Classification accuracy: We evaluated KMDA and the other methods (list in Table 2)
on different cross-domain scenarios. A baseline refers to the results of classifying the target
data directly by a classifier trained on the source. Table 3 depicts the Kappa values of four
metal tasks, and Table 4 shows the accuracies of Dataset IVa. We observed that the domain
adaptation methods improved transfer performance to varying degrees. In general, KMDA
achieved a better performance compared with other methods, the average Kappa values
of KMDA were 0.56 and 0.75, and the average accuracy was 81.56%, 0.08, 0.05, and 5.28%
higher than e-KMDA, respectively, which indicates that the 2D frame framework helps to
improve performance. The results of a Wilcoxon signed rank test further confirmed the
significant superiority of KMDA over other methods.

Parameter Sensitivity: We analyzed the parameter sensitivity of KMDA in the scenario
of ‘A08->A03’. The objective function of KMDA (17) contains three parameters, where
α, µ, and β are trade-off parameters to balance the principal components of the target
domain, the discrepancy of conditional probability distributions between the source and
target, and the within- and between-class variance of the source, respectively. Since α
only involves the target domain, and µ and β involve the source domain, the evaluation
of α, µ, and β can be boiled down to the evaluation of µ and β under the condition of
α = 1. Figure 5a demonstrates that the optimal values µ and β are not unique, and a large
range of µ (µ ∈ [ 0.4 1 ]) and β (β ∈ [ 0.001 0.4 ]) can be selected to obtain satisfactory
performances. This is partly explained by the fact that, when the β exceeds 0.4, the model
will overfit due to excessive attention to the discriminative information of the source.
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Table 3. Kappa statistics on cross-domain datasets. For each scenario, the highest value is marked in
boldface. Note: p-values are derived by the Wilcoxon signed rank test between KMDA and each of
the other methods.

Dataset IIa

Target Baseline SA CORAL TCA JDA JGSA MEKT KMDA 1 e-KMDA 2

A08->A01 0.28 0.38 0.41 0.62 0.47 0.56 0.65 0.68 0.60
A08->A02 0.24 0.24 0.23 0.34 0.37 0.43 0.40 0.42 0.40
A08->A03 0.34 0.36 0.32 0.41 0.40 0.72 0.69 0.74 0.57
A08->A04 0.18 0.24 0.21 0.24 0.29 0.41 0.41 0.44 0.30
A08->A05 0.12 0.13 0.22 0.28 0.21 0.39 0.37 0.40 0.33
A08->A06 0.19 0.16 0.15 0.30 0.26 0.28 0.26 0.31 0.26
A08->A07 0.21 0.29 0.31 0.35 0.30 0.64 0.61 0.61 0.59
A08->A09 0.33 0.34 0.32 0.52 0.48 0.77 0.75 0.78 0.61
A03->A08 0.30 0.32 0.31 0.39 0.42 0.67 0.65 0.69 0.63
Average 0.24 0.27 0.28 0.38 0.36 0.54 0.53 0.56 0.48
p-value p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01 0.1406 0.0823 - p < 0.01

Dataset IIIa

Target Baseline SA CORAL TCA JDA JGSA MEKT KMDA 1 e-KMDA 2

K3->K6 0.26 0.42 0.4 0.44 0.54 0.65 0.64 0.69 0.63
K3->L1 0.29 0.41 0.44 0.51 0.63 0.75 0.68 0.78 0.72
K6->K3 0.22 0.52 0.48 0.65 0.68 0.8 0.73 0.78 0.75
Average 0.26 0.45 0.44 0.53 0.62 0.73 0.68 0.75 0.70

1 KMDA describes the covariance matrix of the 2D frame. 2 e-KMDA describes the covariance matrix with the
EEG signal.

Table 4. Accuracy (%) on cross-domain datasets of Dataset IVa.

Target Baseline SA CORAL TCA JDA JGSA MEKT KMDA 1 e-KMDA 2

AL->AA 55.23 68.14 65.52 70.43 73.92 76.5 73.37 78.57 74.29
AL->AV 44.15 52.17 56.39 62.18 65.61 71.69 69.34 69.54 64.46
AL->AW 63.54 68.43 65.30 77.20 79.49 83.18 79.84 84.32 76.17
AL->AY 61.96 69.64 68.41 72.38 77.90 71.76 77.38 79.70 77.08
AY->AL 76.15 85.07 84.03 93.57 91.63 95.71 93.57 95.71 91.43
Average 60.21 68.69 67.93 75.15 73.71 79.77 78.7 81.56 76.28

1 KMDA describes the covariance matrix of the 2D frame. 2 e-KMDA describes the covariance matrix with the
EEG signal.

Computation Complexity: We validated the convergence of KMDA, and checked the
computation cost of the JDA, JGSA, MEKT, and KMDA/e-KMDA methods. Figure 5b,c
demonstrate the results in ‘A08->A03’, ‘AL->AA’, and ‘K3->L1’ scenarios. As can be
seen from Figure 5b,c in KMDA, the classification accuracy improved with the number
of iterations, and the distribution distance gradually decreased and converged within
5 iterations. Figure 6 depicts the average running time of different algorithms above
three scenarios, with the iterations. Although the proposed KMDA did not show an
overwhelming advantage in terms of computation consumption, it was competitive under
the trade-off of time and performance. Additionally, KMDA saved nearly half of the time
compared to e-KMDA.
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5. Discussion
5.1. Covariance Matrix as a Feature

The results in Tables 3 and 4 not only prove the effectiveness of the KMDA (e-KMDA)
method, but also imply that it is feasible to use the covariance matrix as a feature. Moreover,
the results of KMDA (the covariance matrix of the 2D frame as a feature) are superior to
those of e-KMDA (the covariance matrix of the EEG signal as a feature), which demon-
strates that the framework for converting multichannel EEG signals to 2D frames improves
the accuracy, accounting for the fact that it considers the electrode position and power
spectrum characteristic of the signal. In order to further investigate the advantages of the
2D frame feature, we conducted a comparative experiment with the CSP-based variants.
We compared KMDA (e-KMDA) with CCSP [25], SGRM [11], and CSP. Note that CSP
is a supervised feature extraction method for binary data; for simplicity, only left- and
right-hand mental data of Dataset IIa and Dataset IIIa were considered for this experiment.
The source data were set according to the description of Section 4, with 20 trials per class
with labels randomly selected from the target. Note that the KMDA (e-KMDA) prototype
was designed for unlabeled target data. When considering the labels of the target data, we
simply executed steps 7–9 of Algorithm 2 once. We opted to use RBF-based SVM (LibSVM
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Toolbox) as the classifier, whose parameters (-g gamma, -c cost) were determined by the
built-in k-fold cross-validation function.

The results are depicted in Table 5. The classification accuracy was improved to
varying degrees compared with the baseline CSP algorithm with the help of source data.
The results of methods characterized by the SPD matrix were superior to the compared
CSP variants with variance-based features. Specifically, the proposed KMDA method
achieved the highest average accuracy of 78.54%, and e-KMDA came second with 75.79%.
We conducted a Wilcoxon signed rank test on the accuracies to investigate the significance
of the difference between KMDA and the other methods (p < 0.05). The results confirmed
the significant superiority of KMDA (e-KMDA) over CSP in small target training sets.

Table 5. Classification accuracies achieved by CSP, CCSP, SGRM, KMDA, and e-KMDA with SVM
being the classifier, respectively, on Dataset IIa and Dataset IIIa with 20 labeled trials per class. The
highest accuracy of each subject is marked in bold. The p-values are derived by the Wilcoxon signed
rank test between the results of KMDA (e-KMDA) and the other methods, respectively.

Subject
Left Hand vs. Right Hand

CSP CCSP SGRM KMDA e-KMDA

A01 65.28 71.11 73.85 75.62 74.13
A02 50.69 59.16 62.03 63.56 59.26
A03 83.33 84.71 85.19 80.09 79.38
A04 62.14 65.11 68.11 72.13 67.51
A05 57.64 62.70 66.38 68.84 64.35
A06 60.17 61.63 69.61 65.76 67.25
A07 67.36 79.40 84.06 87.96 81.64
A08 78.86 83.94 86.98 89.69 86.27
A09 93.04 81.36 87.76 90.66 89.22
K3 78.92 78.96 85.44 92.08 84.27
K6 66.37 70.07 76.60 76.60 74.47
L1 73.58 73.69 76.28 79.53 81.75

Ave. 69.78 ± 11.11 72.65 ± 8.34 76.86 ± 9.46 78.54 ± 9.18 75.79 ± 8.75
p-value p < 0.01 p < 0.01 p < 0.05 - p < 0.01
p-value p < 0.01 p < 0.01 0.1722 p < 0.01 -

5.2. Classification on Different Training Sets

Generally, the proposed KMDA is a transudative setting method, and so are the
methods listed in Table 1. However, KMDA is also applicable to the classification of
unseen test data. Herein, we explored the effectiveness of KMDA in an inductive setting,
with varying numbers of labeled training samples from the target. We implemented this
experiment on Dataset IVa and Dataset IIa, and the source data were set as stated in
Section 4. For target setting, we considered only the left- vs. right-hand task of Dataset IIa,
with calibration for training and evaluation data for testing. The Dataset IVa was divided
in half, one for training and the other for testing. A given number of labeled samples were
randomly selected from the training set, and the average accuracy of 5 repetitions was
taken as the final output of the current subject.

SVM in tangent space (TSVM) [27,33,35] is a pervasive classifier for SPD matrices’
classification. To investigate the effectiveness of KMDA in the small-sample training set,
we compared the results of TSVM with those of KMDA using SVM (LibSVM toolbox)
as a classifier. Tables 6 and 7 depict the accuracies of KMDA with different numbers of
labeled training samples. It was observed that most results of KMDA outperformed those
of TSVM, and the KMDA scores tended to be higher for the target subjects who performed
well on TSVM, which demonstrated that KMDA could boost the classifier performance
with knowledge from the source. However, we also found that KMDA domain adaptation
was not always effective for all subjects in any scenario, and we expound the reason in the
Limitations Section below.
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Table 6. Classification accuracies achieved by KMDA and TSVM with varying numbers of labeled
training samples from the target (per class), on Dataset IIa. The better results for KMDA are high-
lighted in bold, and the better results for TSVM are underlined.

A01 A02 A03 A04 A05 A06 A07 A09 A08 Ave.

10 trials
TSVM 63.85 48.61 77.11 59.03 54.17 58.33 57.64 65.97 80.79 62.83
KMDA 68.76 54.32 80.75 62.47 61.01 63.19 63.41 72.06 83.89 67.76

20 trials
TSVM 65.28 50.69 83.33 62.14 57.64 60.17 67.36 78.86 91.67 68.57
KMDA 75.62 63.56 80.09 72.13 68.84 65.76 87.96 89.69 90.66 77.15

40 trials
TSVM 72.43 55.76 90.97 63.78 64.58 65.97 70.14 82.73 93.04 73.27
KMDA 76.19 69.8 87.51 70.41 68.4 69.96 87.33 82.11 89.45 77.91

70 trials
TSVM 82.64 63.89 92.36 66.67 65.12 68.06 75.43 94.44 93.75 78.04
KMDA 79.01 72.52 90.25 70.25 68.55 71.02 88.29 90.71 90.66 80.14

Table 7. Classification accuracies achieved by KMDA and TSVM with varying numbers of labeled
training samples from the target (per class), on Dataset IVa. The better results for KMDA are
highlighted in bold, and the better results for TSVM are underlined.

AL->AA AL->AV AL->AW AL->AY AY->AL Ave.

10 trials
TSVM 60.00 54.29 57.43 63.78 70.00 61.10
KMDA 65.21 63.78 67.09 68.21 74.02 67.66

20 trials
TSVM 68.57 65.71 67.86 69.32 95.00 73.29
KMDA 75.02 69.03 71.73 70.02 86.34 74.43

40 trials
TSVM 70.00 65.71 76.43 75.00 96.43 76.71
KMDA 78.34 70.32 78.32 76.34 86.32 77.93

70 trials
TSVM 71.43 70.00 86.43 84.29 97.86 82.00
KMDA 80.11 73.03 82.53 83.31 93.53 82.50

5.3. Limitations

We further observed the results of Tables 6 and 7 and found that, for subjects A03, A08,
A09, and AL, when the training samples of the target were greater than 20 trials per class,
the results of TSVM were higher than those of KMDA, i.e., the source data impaired the
classification performance of the target, resulting in Negative Transfer (NT). The reason
may be that for subjects who are good at motor imagery, their feature distributions are
discriminative, while the source data becomes feature noise instead, hindering the gen-
eralization of the model. Due to the pervasive individual differences, the generalization
from the source to the target is often limited by NT, unless the distributions of the source
and target are close, and the tasks are similar [52]. To cope with NT, existing research
can be summarized into four main categories: source data quality, target data quality,
domain divergence, and integrated algorithms. For a more detailed survey on NT, please
refer to [52]. Since the essence of the proposed KMDA is to learn cross-domain feature
representation, we improved the performance of KMDA from two aspects: improving the
quality of source data and reducing domain distribution discrepancy.

Source instance selection/weighting attempts to make the features of the source closer
to those of the target by selecting similar instances or adjusting the weights. TrAdaBoost [53]
is a typical instance-based boosting approach that increases the weight of the source instance
if the corresponding instance is correctly classified, and vice versa. In addition, the similarity
measures commonly used in the literature include Kellback–Leibler divergence [20], Cosine
similarity [52], MMD distance [13,14,17], and domain transferability estimation [33]. In
KMDA, we leveraged the pseudo-labels to calculate the conditional distribution distance of
the embedded features. However, pseudo-labels and embedded features are two common
unstable factors during transfer [52]. Therefore, it is of great significance to design a transfer
model robust to feature noise (caused by embedded features) and class noise (induced by
pseudo-labels) in the subspace learning process. For KMDA, we can introduce a sparse
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regularized term of the projection matrix into the objective function (15) to model the
feature noise.

6. Conclusions

This paper proposed a kernel-based Riemannian manifold domain adaptation ap-
proach for motor imagery-based BCI classification. Compared to existing cross-subject EEG
trial transfer works, KMDA (1) describes the EEG trials with their covariance matrices,
(2) aligns the SPD matrices of sources and the target in the Riemannian manifold, and
(3) exploits the Gaussian kernel based on the log-Euclidean metric to map the SPD matri-
ces to a high-dimensional Reproducing Kernel Hilbert Space, then (4) performs domain
adaptation by minimizing the probability distribution distance between the source and the
target, while preserving the target’s distinct information and the discriminative informa-
tion of sources. An optional descriptor of the EEG trial signal is presented to convert the
chain-like EEG trial to a 2D framework, while preserving the spatial distribution. Extensive
experiments on three motor imagery BCI datasets validated the effectiveness of KMDA
in cross-subject adaptation. In brief, this paper presented a domain adaptation method
that aims at transferring knowledge obtained from auxiliary EEG databases to the target
subject, overcomes the subject dependence of the BCI system, and shortens the training
time of the model. However, we note that not all source data produced positive effects.
When the quality of target data was more discriminative than that of source data, the
effectiveness of KMDA could not be guaranteed, resulting in negative migration. Under
the framework of KMDA, we can further improve the effect of domain adaptation from
two aspects: (1) by selecting similar instances or adjusting weights, the source features
can be closer to the target features, so as to improve the quality of source data, and (2) by
improving the generalization of classifiers trained on the source code, the discrepancies of
domain distributions can be reduced.
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