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Abstract: Calcium homeostasis modulator 1 (CALHM1) is a protein responsible for causing Alzheimer’s
disease. In the absence of an experimentally designed protein molecule, homology modelling was
performed. Through homology modelling, different CALHM1 models were generated and validated
through Rampage. To carry out further in silico studies, through molecular docking and molecular
dynamics simulation experiments, various flavonoids and alkaloids from Bauhinia variegata were
utilised as inhibitors to target the protein (CALHM1). The sequence of CALHM1 was retrieved from
UniProt and the secondary structure prediction of CALHM1 was done through CFSSP, GOR4, and
SOPMA methods. The structure was identified through LOMETS, MUSTER, and MODELLER and
finally, the structures were validated through Rampage. Bauhinia variegata plant was used to check the
interaction of alkaloids and flavonoids against CALHM1. The protein and protein–ligand complex
were also validated through molecular dynamics simulations studies. The model generated through
MODELLER software with 6VAM A was used because this model predicted the best results in the
Ramachandran plot. Further molecular docking was performed, quercetin was found to be the most
appropriate candidate for the protein molecule with the minimum binding energy of −12.45 kcal/mol
and their ADME properties were analysed through Molsoft and Molinspiration. Molecular dynamics
simulations showed that CALHM1 and CALHM1–quercetin complex became stable at 2500 ps. It
may be seen through the study that quercetin may act as a good inhibitor for treatment. With the help
of an in silico study, it was easier to analyse the 3D structure of the protein, which may be scrutinized
for the best-predicted model. Quercetin may work as a good inhibitor for treating Alzheimer’s
disease, according to in silico research using molecular docking and molecular dynamics simulations,
and future in vitro and in vivo analysis may confirm its effectiveness.
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1. Introduction

Alzheimer’s disease is a long-term illness that causes brain cell loss and degeneration.
The most common kind of dementia is Alzheimer’s disease, which is characterised as a
gradual loss of mental, communicative, and social abilities that makes it difficult for a
person to operate independently [1]. Current Alzheimer’s disease medicines may tem-
porarily alleviate symptoms or delay the progression of the illness. Medications can often
assist patients with Alzheimer’s disease enhance their neuron function. For those with
Alzheimer’s disease, a variety of programs and services can be quite beneficial [2].

Intracellular calcium (Ca2+) dynamics govern key neuronal functions such as neuro-
transmission, synaptic plasticity, learning, and memory, and signalling cascades, cytoskele-
ton modifications, synaptic function, and neuronal survival are all affected by changes
in Ca2+ dynamics [3]. Several investigations have indicated the essential role of Ca2+

dysregulation in central Alzheimer’s disease-related pathogenic processes since the first
systematic hypothesis was proposed twenty years ago (AD). Disturbances in Ca2+ signals
were discovered in the early stages of Alzheimer’s disease, even before the build-up of
amyloid ß-peptide (Aß), a clinical marker of the disease [4]. A growing body of evidence
shows that mutations in AD-related genes such as presenilins, amyloid precursor protein,
or apolipoprotein-E affect Ca2+ signalling, leading to apoptosis, synaptic plasticity failure,
and neurodegeneration [5].

Ca2+o (extracellular calcium) plays an important part in physiological processes. In a
number of physiological and pathological circumstances, changes in Ca2+o concentration
([Ca2+o]) have been discovered to modify neuronal excitability, although the mechanisms
by which neurons detect [Ca2+]o remain unknown [6]. Calcium homeostasis modulator
1 (CALHM1) expression has been shown to generate cation currents in cells and enhance
the concentration of cytoplasmic Ca2+ ([Ca2+]) in response to Ca2+o removal and subse-
quent addition. It is unclear if CALHM1 is a pore-forming ion channel or a modulator of
endogenous ion channels. CALHM1 is also expressed in mouse cortical neurons, which
respond to reduced [Ca2+]o with increased conductivity and potential firing action, as well
as a significantly higher [Ca2+i] when Ca2+o is withdrawn [7]. Those reactions, on the other
hand, are significantly reduced in mouse neurons that have had CALHM1 genetically elim-
inated. These findings demonstrate that CALHM1 is an evolutionarily conserved family
of ion channels that senses membrane voltage and external Ca2+ levels and plays a role in
cortical neuronal excitability and Ca2+ homeostasis, notably in response to decreasing and
restoring [Ca2+o] [8].

The absence of an experimentally characterized structure has hampered progress in
determining the function of CALHM1 in Alzheimer’s disease. The two most common
experimental approaches for determining the structure of proteins are X-ray crystallography
and nuclear magnetic resonance (NMR) spectroscopy. These techniques, however, have
requirements such as a high time and personnel needs [9]. Obtaining protein sequences,
on the other hand, is much easier than obtaining protein structure, thanks to current
sequencing methods. As a result, databases such as UniProt (https://www.uniprot.org/
(accessed on 7 January 2021)) and TrEMBL (Translated EMBL) (https://www.uniprot.
org/statistics/TrEMBL (accessed on 8 January 2021)) include many protein sequences.
In the late twentieth century, computational approaches for predicting the structure of
proteins gave a sequence of amino acids. The information essential for a protein’s correct
folding is encoded in its amino acid sequence, according to research (Anfinsen’s dogma).
Homology modelling (based on sequence comparison) and threading are presently the
most used computational approaches for predicting protein structure (based on sequence
comparison) [10].

The goal of this research was to create useful models of the CALHM1 computa-
tional protein structure. As a result, additional research and analysis of CALHM1 func-
tion in Alzheimer’s disease will be aided [11]. Comparative modelling was carried out
in the absence of its experimentally deduced structure using the software programs
MODELLER (https:/salilab.org/modeller/ (accessed on 15 January 2021)), LOMETS (Lo-

https://www.uniprot.org/
https://www.uniprot.org/statistics/TrEMBL
https://www.uniprot.org/statistics/TrEMBL
https:/salilab.org/modeller/
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cal MetaThreading Server) (https:/zhanglab.ccmb.med.umich.edu/LOMETS/ (accessed
on 19 January 2021)) and MUSTER (MUlti-Sources ThreadER) (https:/zhanglab.cccmb.
med.umich.edu/MUSTER/ (accessed on 30 January 2021)) [12]. RAMPAGE (Ramachan-
dran Plot Assessment) (http:/mordred.bioc.cam.ac.uk/~{}rapper (accessed on 3 February
2021)) was then used to test the model structure. Using SPDBV (Swiss PDB Viewer)
(https:/spdbv.vital-it.ch/ (accessed on 5 February 2021)) software, the energy minimisation
of the four modelled structures was carried out. Using GOR4 (Garnier–Osguthorpe–
Robson) (https:/npsa-prabi.ibcp.fr/NPSA/npsagor4.html (accessed on 5 February 2021)),
CFSSP (Chou and Fasman Secondary Structure Prediction Server) (http:/www.biogem.org/
tool/chou-fasman/ (accessed on 5 February 2021)), and SOPMA (Self-Optimized Prediction
System with Alignment) algorithms (https:/npsa-prabi.ibcp.fr/cgi-bin/npsaautomat.pl?
page=/NPSA/npsasopma.html (accessed on 5 February 2021)) also generated secondary
protein structure [13].

2. Material and Methods

The protein structure prediction modelling for comparative modelling consisted of the
following steps. Target identification came first, followed by alignments of the target and
prototype sequences. The model was built when the alignment template procedure was
completed. Finally, the model’s strength, stearic collisions, and stability were evaluated.

2.1. Protein Sequence Retrieval

The CALHM1 protein sequence (accession number: Q8IU99 (CAHM1_HUMAN)
was saved from the UniProt database (https://www.uniprot.org/ (accessed on 7 January
2021)) [14].

2.2. Protein Secondary Structure Prediction

The CALHM1 protein sequence (accession number: O43315 (AQP9 HUMAN)) was
further subjected to secondary structure prediction on the Expasy server using GOR4,
SOPMA and CFSSP [15].

2.3. Protein Tertiary Structure Prediction through Template Identification

A thorough search of the PDB (Protein Data Bank) (http://www.rcsb.org/ (accessed
on 16 February 2021)) was conducted to search the most similar sequences already known
for experimentally designed structures. The template protein structures (6VAM A and
6LMT A) were analysed as the most accurate template for identifying the three-dimensional
protein structure based on various factors such as E-value, percentage identity, alignment
score, and query coverage [16].

2.4. Modelling

The protein CALHM1 three-dimensional structure was calculated using MODELLER
version 9.15, LOMETS, and the MUSTER server. MODELLER carries out a compara-
tive modelling of the proteins according to the identified template. LOMETS is based
on a metathreading technique for identifying the protein structure based on a template.
MUSTER is based on a protein threading algorithm, which identifies PDB library template
structures [17]. It generates sequence–template alignments with multiple structural data by
combining different sequences. Several models were created through two templates, and a
comparison of their DOPE score was selected for the best model [18].

2.5. Validation of the Structure

The RAMPAGE server was used to create Ramachandran plots in order to validate
the predicted protein structures by looking at criteria such as preferred, allowed, and
outside amino acid residue areas. The pdb files of the best target gene models predicted
by MODELLER, LOMETS, and MUSTER were sent to the RAMPAGE service to create
Ramachandran plots. Plots were identified for the anticipated structures, and the plots

https:/zhanglab.ccmb.med.umich.edu/LOMETS/
https:/zhanglab.cccmb.med.umich.edu/MUSTER/
https:/zhanglab.cccmb.med.umich.edu/MUSTER/
http:/mordred.bioc.cam.ac.uk/~{}rapper
https:/spdbv.vital-it.ch/
https:/npsa-prabi.ibcp.fr/NPSA/npsa gor4.html
http:/www.biogem.org/tool/chou-fasman/
http:/www.biogem.org/tool/chou-fasman/
https:/npsa-prabi.ibcp.fr/cgi-bin/npsa automat.pl?page=/NPSA/npsa sopma.html
https:/npsa-prabi.ibcp.fr/cgi-bin/npsa automat.pl?page=/NPSA/npsa sopma.html
https://www.uniprot.org/
http://www.rcsb.org/
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were matched to determine the best structure among the projected structures and further
studies. Validation of the protein structure’s quality was also carried out using the ProSA
server [12].

2.6. Energy Minimisation of the Predicted Molecule

For SPDBV to achieve the lowest energy conformation, the identified and analysed
models were subjected to energy minimisation.

2.7. Preparation of Ligand Molecule

The flavonoids and alkaloids structure of the plant Bauhinia variegata were retrieved in
sdf format from the PubChem online database. The stem bark of the plant contains beta-
carotene, quercetin, stigmasterol, hentriacontane, flavanone, isoquericetroside, kaempferol-
3-glucoside, lupeol, myricetol, phenanthriquinone, quercitroside, rutoside, xanthophyll,
dihydroquercetin, octacosanol, and beta-sitosterol. All the structures were retrieved in
3D structure in SDF format and were further converted into pdb format through online
converting tool [19].

2.8. Initial Docking through iGEMDOCK Software

Initial docking was performed to screen the ligands on the basis of the binding energy.
The docking process was carried out through iGEMDOCK version 2.1. The result was in
the form of an electrostatic force, hydrogen bonds, and Van Der Waals forces [20]. The
docking was performed between protein and ligand with a population size of 200 and the
number of generations was 70 with 2 solutions [21].

2.9. Final Molecular Docking through AutoDock Vina and Drug Likeliness Property Analysis

The ligands were screened through iGEMDOCK and these screened ligands were
tested against CALHM1 protein through AutoDock vina software. This software tool is
freely available online. The protein CALHM1 was assigned with Kollman charges and
polar hydrogens. The screened ligands were added with nonpolar hydrogen atoms and
with Gasteiger partial charges. The torsion angles were allowed to rotate freely. A grid box
of 80 × 80 × 80 Å was adjusted in such a manner that it was covering the target molecule
to give the best docked result. The docking algorithm was adjusted to 100 runs. The default
parameters were the Lamarckian genetic algorithm (LGA) and the empirical free energy
function. The best-targeted molecule was screened further based on its minimal binding
energy (Kcal/mol) [22].

Drug likeliness analysis was done through Molsoft (http://www.molsoft.com/ (ac-
cessed on 2 March 2021)) and Molinspiration (http://www.molinspiration.com/ (accessed
on 2 March 2021)). Different properties of the screened ligand were analysed through
pkCSM [23].

2.10. Molecular Dynamics Simulations

According to the molecular docking results, a molecular dynamics simulation was
performed. The molecule which showed the minimum binding energy with the protein
molecule was compared with the protein molecule for the dynamics study. The Groningen
Machine for Chemical Simulations (GROMACS) 4.5.6 package was used to run molecular
dynamics simulations. For the simulations, Gromacs was utilised to build the protein target
and ligand file. With the help of an online server PRODRG2.5, the topology parameters
of the ligand were generated [24]. The protein and ligand complex was placed inside the
shell. The volume of the box was 284.14 nm3 and the distance between the protein molecule
and the box was kept at 1.0 nm. After adding 8 sodium ions to the shell, simple point
charges and water molecules were neutralized. Energy minimisation was achieved using
the steepest approach of 8 ps. The machine was balanced at 40 ps when the temperature
was raised to 300 K. The simulations at 10 ns were performed at 1 bar and at the temperature

http://www.molsoft.com/
http://www.molinspiration.com/
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of 300 K. Finally, an all-bond restriction was employed to keep the ligand from migrating
during molecular dynamics [25].

3. Results and Discussion
3.1. Protein Sequence

The protein sequence of CALHM1 was retrieved in FASTA format from the UniProt
database as shown in Figure 1.
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Figure 1. Protein sequence of CALHM1.

3.2. Protein Secondary Structure Prediction

The secondary structure prediction of CALHM1 was carried out with the aid of
methods such as Chou and Fasman Secondary Structure Prediction Server (CFSSP), Garnier–
Osguthorpe–Robson (GOR4), and the Self-Optimised Prediction Method with Alignment
(SOPMA). Information from GOR4, CFSSP, and SOPMA Expasy tools were obtained and
the secondary structures such as alpha helix, beta strand, and random coil for the target
CALHM1 were extracted.

Chou and Fasman Secondary Structure Prediction Server (CFSSP) is an empirical
predictive tool of secondary protein structures. The method depends on analyses of the
relative frequencies in alpha helices, beta sheets, and turns of each amino acid based on
known protein structures solved with X-ray crystallography. The analysis of the CFSSP
showed that CALHM1 consisted of 271 alpha helix, 248 extended strands, and 34 turns, as
shown in Figure 2.
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crystallography. The analysis of GOR4 showed that CALHM1 consisted of 133 alpha helix,
45 extended strands, and 168 random coils, as shown in Figure 3.
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The Self-Optimised Prediction Method with Alignment (SOPMA) is an Expasy server
protein-aided secondary structure prediction tool. Using consensus estimation from several
alignments, the algorithm contributes to significant advances in protein secondary structure.
Analysing SOPMA, CALHM1 consisted of 182 alpha helix, 34 extended strands, and
119 random coils as shown in Figure 4.
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3.3. Template Identification

PDB Blast was performed to define CALHM1 modelling prototype structures for
comparative homology modelling. We compared the templates and selected two of them
(6VAM A and 6LMT A) based on their query cover, E-value and identity as shown in
Table 1. Using MODELLER software, the two structures were downloaded from PDB for
modelling the protein.
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Table 1. CALHM1 BLAST parameters.

Query Cover E-Value Identity Accession

99% 6 × 10−169 68.36% 6VAM A

88% 4 × 10−139 58.82% 6LMT A

3.4. Modelling through MODELLER

Through 6VAM A and 6LMT A prototype files, structures were modelled using
MODELLER version 9.15 software for the protein CALHM1. Fifty models were produced
using 6VAM A and 6LMT A modellers. With the help of the DOPE score as a criterion,
we selected one best model for 6VAM A (Model 1) as shown in Figures 5 and 6LMT A
(Model 2) as shown in Figure 6.
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3.5. Structure Prediction through LOMETS Server

LOMETS server was used as a meta threading approach to identify the 3D structure of
the given sequence. Ten protein structures were generated, and the best structures were
further evaluated. Comparing the Z-score and maximum coverage, the best model among
them was selected as shown in Figure 7.
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3.6. Protein Structure Prediction Using MUSTER Server

In addition, the MUSTER online server was used for protein treading. This server
created ten different protein sequence models, among which the structure with the lowest
Z-score and the maximum coverage was chosen as the fittest structure as shown in Figure 8.
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3.7. Structure Validation Using Ramachandran Plot

The selected four protein structures were uploaded to RAMPAGE to analyse the
predicted structures, which produced the Ramachandran plots for the predicted protein
structures as shown in Figure 9. In this plot, the amino acids (residues) have been identified
in three distinct regions. The three distinct regions were favoured region, allowed region,
and outlier region as shown in Table 2. Further structure validation was also performed
through the ProSA server (https://prosa.services.came.sbg.ac.at/prosa.php (accessed on
3 February 2021)) to analyse the protein structure as shown in Figure 10.
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3.8. Energy Minimisation

The energy minimisation was carried through SPDBV (Swiss PDB Viewer) (https:
//spdbv.vital-it.ch/ (accessed on 5 February 2021)) software for the predicted models. The
values retrieved from the energy minimisation were analysed to identify the best protein
structure which was predicted as shown in Table 3. MODELLER 6VAM A had the least
energy content (E = 2468.876 KJ/mol).

Table 3. Energy minimisation values through SPDBV.

MODELLER
LOMETS MUSTER

6VAM A 6LMT A

Energy (KJ/mol) 2468.876 5688.255 10,265.889 8714.236

3.9. Ligands from Bauhinia variegata

The three-dimensional structure in sdf format were downloaded from PubChem. The
secondary metabolites were xanthophyll, beta-carotene, beta-sitosterol, dihydroquercetin,
quercetin, stigma sterol, hentriacontane, octacosanol, flavanone, isoquericetroside,
kaempeferol-3-glucoside, lupeol, myricetol, phenanthriquinone, quercitroside, and ru-
toside, as shown in Table 4.

Table 4. Compounds and their respective PubChem IDs.

Compound PubChem ID

Hentriacontane CID: 12410

Octacosanol CID:68406

Stigmasterol CID:5280794

Betasitosterol CID:222284

Flavanone CID:10251

Isoquericetroside CID:5484006

Kaempeferol-3-glucoside CID:6325460

Lupeol CID:259846

Myricetol CID:5281672

Phenanthriquinone CID:6763

Quercitroside CID:5280459

Rutoside CID:5280805

Xanthophyll CID:5281243

Beta- carotene CID:5280489

Dihydroquercetin CID:439533

Quercetin CID:5280343

3.10. Screening of Ligands through iGEMDOCK

All the downloaded ligands were interacted with the protein molecule (CALHM1).
Table 5 shows how the Van der Waal forces, binding energy, and hydrogen bond were used
to filter the best docked molecules. The structure of the screened docked protein– ligands
are shown in Figure 11.

https://spdbv.vital-it.ch/
https://spdbv.vital-it.ch/
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Table 5. Initial docking by iGEMDOCK.

Ligands Binding Energy VDW HBond

Quercetin (CID: 5280343) −12.66 −22.13 −2.34

Dihydroquercetin (CID: 439533) −10.30 −21.11 −2.18

Beta-carotene (CID: 5280489) −10.26 −20.11 −3.42

Xanthophylls (CID: 5281243) −8.20 −11.33 −4.57

Stigma sterol (CID: 5280794) −7.80 −29.20 −7.6

Beta-sitosterol (CID: 222284) −6.70 −30.29 −3.41
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3.11. Molecular Docking Analysis through AutoDock Vina

Using the AutoDock vina program, the screened ligands were docked with CALHM1.
The ligands were then sorted according to their minimal binding affinity. The optimum
posture was determined based on the lowest binding affinity, as illustrated in Figure 12.
Quercetin (CID: 5280343) exhibited the lowest binding affinity with CALHM1 according
to molecular docking findings. The optimum energy value after comparing the poses of
quercetin with CALHM1 was −12.45 Kcal/mol, as indicated in Table 6. The AutoDock
vina energies were evaluated.
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Table 6. Docking result of quercetin against CALHM1.

S.No Mode Affinity
(kcal/mol)

Distance From Best
Mode RMSD l.b

Distance From Best
Mode RMSD u.b

1. 1 −12.45 0.000 0.000

2. 2 −12.34 21.115 20.357

3. 3 −12.12 12.235 12.514

4. 4 −11.65 9.656 6.524

5. 5 −11.25 8.459 2.722

6. 6 −10.81 8.287 10.650

7. 7 −9.45 7.775 1.089

8. 8 −9.32 6.002 11.924

9. 9 −8.23 6.028 14.615

3.12. Cheminformatics Properties and Lipinski’s Rule of Five Validation of Quercetin

The cheminformatics properties were studied for quercetin. The properties were
molecular formula, molecular weight (g/mol), molar refractivity (cm3), density (cm3), drug
likeness, etc., as shown in Table 7. The molecular weight of quercetin was 302.24 g/mol, the
value of log P was 0.56, molecular refractivity was 122.60 cm3. The comparative result of
quercetin predicts it to be a good candidate. Quercetin was also validated for its Lipinski’s
rule of five properties, the value of quercetin predicted <10 hydrogen bond acceptors,
<5 hydrogen bond donors, <500 g/mol molecular weight, <5 log P value [26].

Table 7. Cheminformatics properties of quercetin.

Molecular Formula C15H10O7

Molecular weight (g/mol) 302.24

Hydrogen bond acceptor 7

Hydrogen bond donor 5

Rotatable bonds 1

Log p 0.56

No of atoms 22

Polar surface area (A2) 103.49 A2

Molar refractivity (cm3) 122.60

Density (cm3) 1.23

Molar volume (cm3) 268.73 cm3

Drug likeness 1

Lipinski validation yes

GPCR ligand −0.06

Ion channel modulator −0.19

Kinase inhibitor 0.28

Nuclear receptor ligand 0.36

Protease inhibitor −0.25

Enzyme inhibitor 0.28

3.13. Quercetin’s Pharmacokinetic Properties

Properties such as absorption, distribution, metabolism, excretion and toxicity proper-
ties (ADMET) were analysed for quercetin under pharmacokinetics.
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The absorption property was analysed by intestinal water solubility at −2.925 log mol/L,
and the intestinal solubility was found to be 96.902 percent, and the skin permeability value
was −2.735 log Kp, which showed a strong quercetin structure that validated its good
behaviour in terms of drug likeness. The blood brain barrier (BBB) and central nervous
system (CNS) permeability values of quercetin were analysed for distribution properties
with a weak BBB value of −1.098 log BB. However, the permeability value of the central
nervous system (CNS) was −3.065 log PS. The CYP3A4 substrate, which is the isoform of
cytochrome P450, confirmed the metabolism property. The property of excretion showed
that the total clearance value was 0.407, which showed that quercetin had nontoxic actions,
and nontoxicity was inferred [27]. Table 8 shows all of the results.

Table 8. Pharmacokinetic properties of quercetin.

S.No. Property Model Name Predicted Value Unit

1. Absorption Water solubility −2.925 Numeric (log mol/L)

2. Absorption Caco2
permeability −0.229 Numeric (log Papp in

10–6 cm/s)

3. Absorption
Intestinal

absorption
(human)

96.902 Numeric (% absorbed)

4. Absorption Skin permeability −2.735 Numeric (log Kp)

5. Absorption P-glycoprotein
substrate Yes Categorical (Yes/No)

6. Absorption P-glycoprotein I
inhibitor No Categorical (Yes/No)

7. Absorption P-glycoprotein II
inhibitor No Categorical (Yes/No)

8. Distribution VDss (human) 1.559 Numeric (log L/kg)

9. Distribution Fraction unbound
(human) 0.206 Numeric (Fu)

10. Distribution BBB permeability −1.098 Numeric (log BB)

11. Distribution CNS permeability −3.065 Numeric (log PS)

12. Metabolism CYP2D6 substrate No Categorical (yes/no)

13. Metabolism CYP3A4 substrate No Categorical (yes/no)

14. Metabolism CYP1A2 inhibitor Yes Categorical (yes/no)

15. Metabolism CYP2C19 inhibitor No Categorical (yes/no)

16. Metabolism CYP2C9 inhibitor No Categorical (yes/no)

17. Metabolism CYP2D6 inhibitor No Categorical (yes/no)

18. Metabolism CYP3A4 inhibitor No Categorical (yes/no)

19. Excretion Total clearance 0.407 Numeric (log
ml/min/kg)

20. Excretion Renal OCT2
substrate No Categorical (yes/no)

21. Toxicity AMES toxicity No Categorical (yes/no)

22. Toxicity Max. tolerated
dose (human) 0.499 Numeric (log

mg/kg/day)

23. Toxicity hERG I inhibitor No Categorical (yes/no)

24. Toxicity hERG II inhibitor No Categorical (yes/no)
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Table 8. Cont.

S.No. Property Model Name Predicted Value Unit

25. Toxicity Oral rat acute
toxicity (LD50) 2.471 Numeric (mol/kg)

26. Toxicity Oral rat chronic
toxicity (LOAEL) 2.612 Numeric (log

mg/kg_bw/day)

27. Toxicity Hepatotoxicity No Categorical (yes/no)

28. Toxicity Skin sensitisation No Categorical (yes/no)

29. Toxicity T. pyriformis
toxicity 0.288 Numeric (log µg/L)

30. Toxicity Minnow toxicity 3.721 Numeric (log mM)

3.14. Molecular Dynamic Simulations Analysis

The protein target (CALHM1) along with quercetin and CALHM1 were selected for
the molecular dynamics simulations to check the conformations. Using the GROMACS, the
trajectories were analysed in terms of RMSD (root mean square deviation), Rg (radius of
gyration), SASA (solvent accessible surface area), and RMSF (root mean square fluctuation).

3.15. Root Mean Square Deviation (RMSD)

The RMSD was used to identify the stability of unliganded CALHM1 and CALHM1
with quercetin. The system was in balance, with RMSD fluctuating about 2500 ps. As seen
in Figure 13, the backbone atoms grew up to around 0.23 nm before stabilising until the
end of the simulation, showing that the molecular system was then properly set.
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3.16. Radius of Gyration

After around 2500 ps, the systems stabilised, indicating that the molecular dynamics
simulation equilibrated. The CALHM1–quercetin binding was anticipated to be excellent
based on the radius of gyration. As illustrated in Figure 14, the environment does not alter
during contact.
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3.17. Solvent Accessible Surface Area (SASA)

The CALHM1 total solvent exposed surface area was displayed at 10,000 ps. The
differences seen in the SASA graph were a bit similar to those of the radius of gyration. As
demonstrated in Figure 15, it can be seen that there is a similarity between the SASA and
the radius of gyration, which shows the accuracy in the simulation results.
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3.18. Root Mean Square Fluctuation (RMSF)

The RMSF was used to investigate the mobility of CALHM1 residues in the presence
and absence of ligands. The findings show that variations greater than 0.25 nm indicate
residues located far from each ligand’s binding sites. Furthermore, as seen in Figure 16, the
residues in contact with the quercetin were the most stable and had the lowest RMSF values.
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4. Conclusions

In recent years, there has been a huge growth in the use of various software and
algorithms to predict protein structure using in silico methods. However, the precision of
structure prediction, the severity of fold assignment errors, and the modelling of side chains
and loops all need a significant body shift. CALHM1 (calcium homeostasis modulator
1) is involved in the pathogenesis of Alzheimer’s disease. CALHM1’s various models
were developed and verified using homology modelling and Rampage. The interaction of
alkaloids and flavonoids with CALHM1 was tested using the Bauhinia variegata plant. The
model created with MODELLER software and 6VAM A was chosen because it performed
best on the Ramachandran plot. Quercetin was shown to be the best choice for the protein
molecule, with a minimum binding energy of −12.45 kcal/mol, and its ADME qualities
were assessed using Molsoft and Molinspiration. At 2500 ps, CALHM1 and the CALHM1–
quercetin combination became stable, according to molecular dynamics simulations. Finally,
the in silico analysis suggested that quercetin might be a suitable therapeutic inhibitor.
Quercetin may operate as a good inhibitor for treating Alzheimer’s disease, according to in
silico research using molecular docking and molecular dynamics simulations, and future
in vitro and in vivo investigations may establish its therapeutic potential.

Author Contributions: N.K.—Performed the entire experiment. S.K.M., S.M.D.R., H.M.A., S.A.A.,
W.A., Q.Z. and C.V.—They all helped in performing the experiment. S.K.J. and N.K.J.—They both
helped in designing and preparing the manuscript. D.I. and A.K.J.—They conceived the idea and pre-
pared the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by a Deanship of Scientific Research at Majmaah University
under project no. R-2022-177.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are very thankful to the Institute of Technology and Management,
Meerut, Uttar Pradesh, India, Shri Ramswaroop Memorial University, India and Institute of Applied
Medicines and Research, Ghaziabad, India for providing a good platform to carry out the research
work. The authors would also like to thank Deanship of Scientific Research at Majmaah University
for supporting this work under project no. R-2022-177.



Brain Sci. 2022, 12, 770 19 of 20

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chandra, P.M.; Venkateshwar, J. Biological evaluation of Schiff bases of new isatin derivatives for anti Alzheimer’s activity. Asian J.

Pharm. Clin. Res. 2014, 7, 114–117. Available online: https://innovareacademics.in/journals/index.php/ajpcr/article/view/966
(accessed on 31 December 2020).

2. Khare, N.; Maheshwari, S.K.; Jha, A.K. Screening and identification of secondary metabolites in the bark of Bauhinia variegata
to treat Alzheimer’s disease by using molecular docking and molecular dynamics simulations. J. Biomol. Struct. Dyn. 2020, 39,
5988–5998. [CrossRef]

3. Ma, Z.; Siebert, A.P.; Cheung, K.H.; Lee, R.J.; Johnson, B.; Cohen, A.S.; Foskett, J.K. Calcium homeostasis modulator 1 (CALHM1)
is the pore-forming subunit of an ion channel that mediates extracellular Ca2+ regulation of neuronal excitability. Proc. Natl. Acad.
Sci. USA 2012, 109, E1963–E1971. [CrossRef]

4. Syrjanen, J.L.; Michalski, K.; Chou, T.H.; Grant, T.; Rao, S.; Simorowski, N.; Furukawa, H. Structure and assembly of calcium
homeostasis modulator proteins. Nat. Struct. Mol. Biol. 2020, 27, 150–159. [CrossRef] [PubMed]

5. Rubio, M.F.; Seto, S.N.; Pera, M.; Bosch, M.M.; Plata, C.; Belbin, O.; Soininen, H. Rare variants in calcium homeostasis modulator 1
(CALHM1) found in early onset Alzheimer’s disease patients alter calcium homeostasis. PLoS ONE 2013, 8, e74203.

6. Ma, Z.; Tanis, J.E.; Taruno, A.; Foskett, J.K. Calcium homeostasis modulator (CALHM) ion channels. Pflüg. Arch.-Eur. J. Physiol.
2016, 468, 395–403. [CrossRef] [PubMed]

7. Taruno, A.; Vingtdeux, V.; Ohmoto, M.; Ma, Z.; Dvoryanchikov, G.; Li, A.; Koppel, J. CALHM1 ion channel mediates purinergic
neurotransmission of sweet, bitter and umami tastes. Nature 2013, 495, 223–226. [CrossRef] [PubMed]

8. Nacmias, B.; Tedde, A.; Bagnoli, S.; Lucenteforte Cellini, E.; Piaceri, I.; Sorbi, S. Lack of implication for CALHM1 P86L common
variation in Italian patients with early and late onset Alzheimer’s disease. J. Alzheimer’s Dis. 2010, 20, 37–41. [CrossRef]

9. Bigiani, A. Calcium homeostasis modulator 1-like currents in rat fungiform taste cells expressing amiloride-sensitive sodium
currents. Chem. Senses 2017, 42, 343–359. [CrossRef] [PubMed]

10. Dreses, W.U.; Lambert, J.C.; Vingtdeux, V.; Zhao, H.; Vais, H.; Siebert, A.; Pasquier, F. A polymorphism in CALHM1 influences
Ca2+ homeostasis, Aβ levels, and Alzheimer’s disease risk. Cell 2008, 133, 1149–1161. [CrossRef]

11. Dreses, W.U.; Vingtdeux, V.; Zhao, H.; Chandakkar, P.; Davies, P.; Marambaud, P. CALHM1 controls the Ca2+-dependent MEK,
ERK, RSK and MSK signaling cascade in neurons. J. Cell Sci. 2013, 126, 1199–1206. [CrossRef] [PubMed]

12. Wu, S.; Zhang, Y. MUSTER: Improving protein sequence profile–profile alignments by using multiple sources of structure
information. Proteins 2008, 72, 547–556. [CrossRef] [PubMed]

13. Orry, A.J.; Abagyan, R. Homology Modeling: Methods and Protocols; Humana Press: New York, NY, USA, 2012.
14. Karim, R.; Aziz, M.; Al, M.; Shatabda, S.; Rahman, M.S.; Mia, M. CoMOGrad and PHOG: From computer vision to fast and

accurate protein tertiary structure retrieval. Sci. Rep. 2015, 5, 13275. [CrossRef]
15. Drozdetskiy, A.; Cole, C.; Procter, J.; Barton, G.J. JPred4: A protein secondary structure prediction server. Nucleic Acids Res. 2015,

43, W389–W394. [CrossRef]
16. Liu, J.; Wu, T.; Guo, Z.; Hou, J.; Cheng, J. Improving protein tertiary structure prediction by deep learning and distance prediction

in CASP14. Proteins 2022, 90, 58–72. [CrossRef]
17. Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Schwede, T. SWISS-MODEL: Homology modelling

of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [CrossRef] [PubMed]
18. Marhefka, C.A.; Moore, B.M.; Bishop, T.C.; Kirkovsky, L.; Mukherjee, A.; Dalton, J.T.; Miller, D.D. Homology modeling using

multiple molecular dynamics simulations and docking studies of the human androgen receptor ligand binding domain bound to
testosterone and nonsteroidal ligands. J. Med. Chem. 2001, 44, 1729–1740. [CrossRef] [PubMed]

19. Khare, P.; Kishore, K.; Sharma, D. A study on the standardization parameters of Bauhinia variegate. Asian J. Pharm. Clin. Res.
2017, 10, 133–136. [CrossRef]

20. Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. In Chemical Biology; Humana Press: New York,
NY, USA, 2015; pp. 243–250.

21. Nousheen, L.; Akkiraju, P.C.; Enaganti, S. Molecular docking mutational studies on human surfactant protein-D. World J. Pharm.
Res. 2014, 3, 1140–1148.

22. Fuhrmann, J.; Rurainski, A.; Lenhof, H.P.; Neumann, D. A new Lamarckian genetic algorithm for flexible ligand-receptor docking.
J. Comput. Chem. 2010, 31, 1911–1918. [CrossRef]

23. Pires, D.E.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using
graphbased signatures. J. Med. Chem. 2015, 58, 4066–4072. [CrossRef] [PubMed]

24. Van, S.P.D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: Fast, flexible, and free. J. Comput. Chem.
2005, 26, 1701–1718.

25. Iqbal, D.; Khan, M.S.; Waiz, M.; Rehman, M.T.; Alaidarous, M.; Jamal, A.; Alothaim, A.S.; AlAjmi, M.F.; Alshehri, B.M.; Banawas,
S.; et al. Exploring the Binding Pattern of Geraniol with Acetylcholinesterase through In Silico Docking, Molecular Dynamics
Simulation, and In Vitro Enzyme Inhibition Kinetics Studies. Cells 2021, 10, 3533. [CrossRef]

https://innovareacademics.in/journals/index.php/ajpcr/article/view/966
http://doi.org/10.1080/07391102.2020.1796798
http://doi.org/10.1073/pnas.1204023109
http://doi.org/10.1038/s41594-019-0369-9
http://www.ncbi.nlm.nih.gov/pubmed/31988524
http://doi.org/10.1007/s00424-015-1757-6
http://www.ncbi.nlm.nih.gov/pubmed/26603282
http://doi.org/10.1038/nature11906
http://www.ncbi.nlm.nih.gov/pubmed/23467090
http://doi.org/10.3233/JAD-2010-1345
http://doi.org/10.1093/chemse/bjx013
http://www.ncbi.nlm.nih.gov/pubmed/28334404
http://doi.org/10.1016/j.cell.2008.05.048
http://doi.org/10.1242/jcs.117135
http://www.ncbi.nlm.nih.gov/pubmed/23345406
http://doi.org/10.1002/prot.21945
http://www.ncbi.nlm.nih.gov/pubmed/18247410
http://doi.org/10.1038/srep13275
http://doi.org/10.1093/nar/gkv332
http://doi.org/10.1002/prot.26186
http://doi.org/10.1093/nar/gky427
http://www.ncbi.nlm.nih.gov/pubmed/29788355
http://doi.org/10.1021/jm0005353
http://www.ncbi.nlm.nih.gov/pubmed/11356108
http://doi.org/10.22159/ajpcr.2017.v10i4.16295
http://doi.org/10.1002/jcc.21478
http://doi.org/10.1021/acs.jmedchem.5b00104
http://www.ncbi.nlm.nih.gov/pubmed/25860834
http://doi.org/10.3390/cells10123533


Brain Sci. 2022, 12, 770 20 of 20

26. Iqbal, D.; Rehman, M.T.; Bin Dukhyil, A.; Rizvi, S.M.D.; Al Ajmi, M.F.; Alshehri, B.M.; Alsaweed, M. High-Throughput Screening
and Molecular Dynamics Simulation of Natural Product-like Compounds against Alzheimer’s Disease through Multitarget
Approach. Pharmaceuticals 2021, 14, 937. [CrossRef] [PubMed]

27. Ongey, E.L.; Yassi, H.; Pflugmacher, S.; Neubauer, P. Pharmacological and pharmacokinetic properties of lanthipeptides undergo-
ing clinical studies. Biotechnol. Lett. 2017, 39, 473–482. [CrossRef] [PubMed]

http://doi.org/10.3390/ph14090937
http://www.ncbi.nlm.nih.gov/pubmed/34577637
http://doi.org/10.1007/s10529-016-2279-9
http://www.ncbi.nlm.nih.gov/pubmed/28044226

	Introduction 
	Material and Methods 
	Protein Sequence Retrieval 
	Protein Secondary Structure Prediction 
	Protein Tertiary Structure Prediction through Template Identification 
	Modelling 
	Validation of the Structure 
	Energy Minimisation of the Predicted Molecule 
	Preparation of Ligand Molecule 
	Initial Docking through iGEMDOCK Software 
	Final Molecular Docking through AutoDock Vina and Drug Likeliness Property Analysis 
	Molecular Dynamics Simulations 

	Results and Discussion 
	Protein Sequence 
	Protein Secondary Structure Prediction 
	Template Identification 
	Modelling through MODELLER 
	Structure Prediction through LOMETS Server 
	Protein Structure Prediction Using MUSTER Server 
	Structure Validation Using Ramachandran Plot 
	Energy Minimisation 
	Ligands from Bauhinia variegata 
	Screening of Ligands through iGEMDOCK 
	Molecular Docking Analysis through AutoDock Vina 
	Cheminformatics Properties and Lipinski’s Rule of Five Validation of Quercetin 
	Quercetin’s Pharmacokinetic Properties 
	Molecular Dynamic Simulations Analysis 
	Root Mean Square Deviation (RMSD) 
	Radius of Gyration 
	Solvent Accessible Surface Area (SASA) 
	Root Mean Square Fluctuation (RMSF) 

	Conclusions 
	References

