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Abstract: An embryo’s in-utero exposure to ethanol due to a mother’s alcohol drinking results in a
range of deficits in the child that are collectively termed fetal alcohol spectrum disorders (FASDs).
Prenatal ethanol exposure is one of the leading causes of preventable intellectual disability. Its
neurobehavioral underpinnings warrant systematic research. We investigated the immediate effects
on embryos of acute prenatal ethanol exposure during gestational days (GDs) and the influence of
such exposure on persistent neurobehavioral deficits in adult offspring. We administered pregnant
C57BL/6J mice with ethanol (1.75 g/kg) (GDE) or saline (GDS) intraperitoneally (i.p.) at 0 h and again
at 2 h intervals on GD 8 and GD 12. Subsequently, we assessed apoptosis, differentiation, and signaling
events in embryo forebrains (E13.5; GD13.5). Long-lasting effects of GDE were evaluated via a
behavioral test battery. We also determined the long-term potentiation and synaptic plasticity-related
protein expression in adult hippocampal tissue. GDE caused apoptosis, inhibited differentiation,
and reduced pERK and pCREB signaling and the expression of transcription factors Pax6 and
Lhx2. GDE caused persistent spatial and social investigation memory deficits compared with saline
controls, regardless of sex. Interestingly, GDE adult mice exhibited enhanced repetitive and anxiety-
like behavior, irrespective of sex. GDE reduced synaptic plasticity-related protein expression and
caused hippocampal synaptic plasticity (LTP and LTD) deficits in adult offspring. These findings
demonstrate that binge-like ethanol exposure at the GD8 and GD12 developmental stages causes
defects in pERK–pCREB signaling and reduces the expression of Pax6 and Lhx2, leading to impaired
cellular differentiation during the embryonic stage. In the adult stage, binge-like ethanol exposure
caused persistent synaptic and behavioral abnormalities in adult mice. Furthermore, the findings
suggest that combining ethanol exposure at two sensitive stages (GD8 and GD12) causes deficits in
synaptic plasticity-associated proteins (Arc, Egr1, Fgf1, GluR1, and GluN1), leading to persistent
FASD-like neurobehavioral deficits in mice.

Keywords: FASD; alcohol; development; brain; electrophysiology; cognition; psychiatric disorders;
disabilities; synaptic plasticity; gestation; obsessive-compulsive disorder

1. Introduction

During pregnancy, maternal alcohol consumption causes a range of developmental
abnormalities in offspring, broadly described as fetal alcohol spectrum disorders (FASDs).
It was estimated that FASDs occur in 2% to 5% of live births in the United States [1] and
that FASDs continue to be a leading health issue in Western countries. In 2016, the Centers
for Disease Control (CDC) suggested that more than 3 million childbearing women may
be in danger of exposing their developing embryos to the potentially damaging effects
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of alcohol [2]. Due to the pervasive nature of FASDs, the World Health Organization
considers prenatal alcohol exposure to be an important preventable cause of intellectual
disability in the Western world. Despite public health cautions, approximately one in eight
pregnant women (approximately 500,000 per year) consume alcohol at certain stages of or
throughout pregnancy, and approximately 80,000 of these women binge drink [3]. Children
with FASDs exhibit physical, cognitive, and behavioral deficits, including impulsivity,
response inhibition, attention, learning and memory deficits [4–6], intellectual disabilities,
reduced IQ, and anxiety/depression [7–10]. Among the numerous potential harmful effects
of ethanol exposure during fetal growth, damage to the developing brain and enduring
neurobehavioral abnormalities are the most common [1,5]. Behavioral problems associated
with impulsivity, response inhibition, attention, activity, learning, and memory are common
among children with FASDs [6,11–21]. The severity of deficits due to prenatal ethanol
exposure in children with FASDs is associated with the gestational stage and/or the timing
and degree of alcohol exposure [22].

Many women continue with the regular consumption of alcohol before recognizing
that they are pregnant [23,24]. However, by that time, a developing embryo will have
already passed through two critical developmental stages: gastrulation in the third week
of gestation and neurulation in the fourth week of gestation. Women of childbearing age
drink higher amounts of alcohol before pregnancy recognition [25–27], with higher levels of
binge drinking. Therefore, it is important to examine the impact of stage-specific gestational
ethanol exposure on neurobehavioral impairments that are expressed in adulthood.

Several FASD animal models, established with varying ethanol doses at various devel-
opmental stages, have effectively recapitulated many of these behavioral deficits [28–32].
It was shown that embryos at certain gestational stages, such as gastrulation (GD7) and
neurulation (GD8), are highly vulnerable to high-dose binge-like ethanol exposure [33,34].
Binge-like ethanol exposure on GD7 or GD8 caused damage to the fetal forebrain (frontal
cortex, septal area, striatum, and hippocampus (HP)), as determined by histological and
neuroimaging analyses [35–43]. Several rodent studies using similar acute high-dose binge-
like ethanol (2.4 or 2.9 g/kg, twice at 4-h intervals) exposure during gastrulation and
neurulation reported deficits in various spatial learning and memory tasks [44–47] and
active and passive avoidance tasks [48]. However, a similar model in mice (2.8 g/kg twice
at a 4-h interval) showed no ethanol effect in an object placement spatial memory task [49].
These high-dose models have been associated with higher levels of prenatal and perinatal
death when compared with lower doses.

In another model, animals were exposed to ethanol vapor for 6 h, resulting in a blood
ethanol concentration (BEC) of 88 mg/dL, which caused significantly increased anxiety-like
behavior only in male adolescent offspring; the opposite effect was observed in males in
adulthood, and female offspring were unaffected in both adolescence and adulthood [50].
There were also social deficits in male offspring, as well as substantial decreases in social
preference in late adolescence and adulthood, regardless of sex [51]. These findings empha-
sized the possibility of risk associated with high-to-low binge-like alcohol exposure during
the first month of human pregnancy. Despite the limitations of studies of human prenatal
alcohol exposure (unknowns related to the pregnancy stage of alcohol exposure, amount of
alcohol consumed, etc.) and undefined mechanisms, these studies highlighted the possible
relationships between gestational-induced deficits in mice and humans.

Gastrulation, which corresponds to the third week of gestation in humans and GD6.25
to GD9. 5 in mice, is a critical developmental event during which embryonic cells undergo
a series of differentiation toward an adult organism. Therefore, alcohol exposure during
the early stages of embryonic development may produce many features of FASDs [34,52].
Furthermore, studies [34,52] have shown that early pregnancy is a sensitive period for
alcohol-induced developmental disruptions. However, the effects on the fetus of combined
alcohol exposure at these two sensitive stages (GD8 and GD12) are unknown. None of the
gestational ethanol exposure studies have examined the association between molecular and
behavioral outcomes in a single analysis. Therefore, in the current study, we modeled early
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gestational binge-like ethanol consumption by exposing GD8 and GD12 dams to ethanol
and examining its impact on the forebrains of embryo (GD13.5) and adult mice.

Although the mechanism by which prenatal ethanol causes persistent behavioral
deficits is unknown, several recent ethanol studies, based on different developmental stages,
began to show the possible involvement of many synaptic plasticity-related proteins that
have a well-established role in long-term memory formation [53–55]. Increased intracellular
Ca2+ initiates a series of events that activate transcription factors, such as the cAMP response
element-binding protein (CREB), in the nucleus. CREB binds to multiple recognition sites,
including the cAMP response element (CRE), causing the induction of plasticity-related
genes [56–58]. Together with other researchers, we recently demonstrated that postnatal
ethanol exposure disrupts CREB phosphorylation [32,54,55,59,60], which may result in
the disruption of the expression of immediate early genes, such as the activity-regulated
cytoskeleton-associated protein (Arc) and early growth-response 1 (Egr1) [32,54,60–64].
However, whether binge-like ethanol exposure on GD8 and GD12 (GDE) causes behavioral
impairments, and whether this correlates with persistent synaptic protein deficits in adult
mice, are unknown. Therefore, our current study expands the mouse gestational binge-
ethanol paradigm and reports enhanced apoptosis, reduced differentiation, and disrupted
phosphorylated extracellular signal-regulated kinase (pERK), pCREB, and transcription
factors in embryo forebrains (GD13.5) that underlie the immediate adverse effects of GDE.
We also provide evidence on the damaging impacts of GDE and show an association in
adulthood between behavioral deficits and decreased expression of synaptic plasticity-
related proteins in the HP.

2. Materials and Methods
2.1. Animals

C57BL/6J mice were bred at the animal facility of the Nathan Kline Institute (NKI) and
maintained under standard laboratory conditions (a 12 h light/12 h dark cycle) with food
and water available ad libitum. Our animal care and handling procedures followed the
guidelines of the National Institutes of Health and were approved by the NKI’s Institutional
Care and Use Committee (IACUC). A male mouse was placed with a female mouse from
8:00 a.m. to 9:00 a.m. Successful copulation, determined by the presence of a mating plug,
was designated as gestational day zero (GD0). Individual pregnant females were weighed
and placed in a single cage with regular nesting material.

2.2. Ethanol Administration

Saline or ethanol was administered to pregnant dams via intraperitoneal (i.p.) injec-
tions twice at a two-hour interval; the ethanol group (GDE) was given 1.75 g/kg (each dose)
ethanol in saline, and the saline control group (GDS) was given only saline on GD8 and
again at GD12, as previously described [49,65,66]. The BECs in the pregnant dam serum
were measured using a standard alcohol dehydrogenase-based method [67]. All i.p. injec-
tions and blood collections were achieved with appropriate animal-handling procedures,
and every precaution was taken to minimize the suffering of pregnant dams. In some stud-
ies, GD13.5 embryos were used. For adult studies, both GDS- and GDE-exposed male and
female offspring were weaned after 21 days (four mice per cage), allowed to grow normally
to adulthood, and randomly assigned for adult (P90) studies (5–10 mice/3–5 litters/group).
Separate cohorts of animals are used for each biochemical, LTP, LTD, or behavioral analysis.

2.3. Protein Extraction, Electrophoresis, and Immunoblotting

For the immunoblot procedures, GD13.5 forebrains without olfactory bulbs or adult
HP (dorsal and ventral from both the hemisphere) homogenates were prepared, as previ-
ously described [32,55]. In all immunoblot tests, the blots were stained with Ponceau S to
confirm equal loading in each lane before further processing. The blots were incubated
for 3 h at room temperature or overnight at 4 ◦C with the following individual primary
antibodies: anti-rabbit cleaved caspase-3 (CC3) (Asp175) (polyclonal, #9661, 1:1000); anti-
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mouse-β-actin (monoclonal, #3700, 1:1000); anti-rabbit CREB (monoclonal, #9197, 1:1000);
anti-rabbit phospho-CREB (monoclonal, #9198, 1:1000); anti-rabbit p44/42 MAPK (ERK1/2)
(polyclonal, # 9102, 1:2000); anti-rabbit-phospho-p44/42 MAPK (polyclonal, # 9101, 1:1000);
anti-rabbit GluA1 (monoclonal, #13185) from Cell Signaling (Danvers, MA, USA); anti-
mouse-Arc (C-7, #sc-17839, 1:1000); anti-mouse-Egr1 (monoclonal, S-25, #sc-101033, 1:500)
from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA); anti-rabbit nucleoprotein
expressed in proliferative cells (Ki67) (polyclonal, #PA5-19462); anti-mouse LIM homeobox
2 (Lhx2) (monoclonal, # MA5-15834) from Thermo Fisher (Waltham, MA, USA); anti-rabbit
Paired Box 6 (Pax6) (polyclonal, #12323-1-AP) from Proteintech (Rosemont, IL, USA); anti-
rabbit fibroblast growth factor 1 (Fgf1) (polyclonal, #ab207321) from Abcam (Waltham, MA,
USA); and anti-rabbit GluN1 (polyclonal, #05-432) from Millipore Sigma (Burlington, MA,
USA). The blots were processed and analyzed using a procedure similar to one previously
described [32,55]. Blots incubated only with the secondary antibody (goat anti-mouse
peroxidase conjugate, #AP124P, 1:5000; goat anti-rabbit, #AP132P, 1:5000) (Millipore Sigma,
Burlington, MA, USA) exhibited no bands. The data were standardized to total protein and
β-actin to quantify proteins of interest.

2.4. Y-Maze Spatial Memory (SM) Task

Separate cohorts of adult male (n = 8 mice) and female (n = 8 mice) GDS and GDE
mice (n = 8 mice/group) were subjected to the SM task, which was performed using a
symmetrical Y-maze exactly as we previously described [32,55]. Mouse entry into one
arm (the novel arm) of the Y-maze was hindered with a sheet of opaque paper throughout
the duration of training (10 min). After a 24-h intertrial interval, the mice could explore
all three arms (3 min; preference trial). The number of arm entries and the time spent in
each arm were manually recorded from video footage by an observer who was blinded
to the treatments of the mice. The discrimination ratios for arm entries and dwell time
were calculated using the following formula for the preference for the novel arm over the
familiar other arm: novel/(novel + other).

2.5. Social Recognition Memory (SRM)

Separate cohorts of adult male (n = 8 mice) and female (n = 8 mice) GDS and GDE
mice (n = 8 mice/group) were subjected to the SRM task, which was performed as we
previously described [68]. The social investigative behaviors that were scored were previ-
ously described and included the following: direct contact with the juvenile (3–4 weeks old)
while inspecting any part of the body surface (including grooming, licking, and pawing);
sniffing of the mouth, ears, tail, anogenital area; and close following (within 1 cm) of the
juvenile [69,70]. The percentage of social investigation was calculated by dividing the
investigation time during the second exposure by the initial investigation time × 100.

2.6. Elevated Plus Maze (EPM)

The EPM test was performed as previously described [71,72]. Briefly, the behavioral
apparatus consisted of two open arms (5 cm width × 30 cm length) and two closed arms
(5 cm width × 30 cm length) elevated 50 cm above the floor and dimly illuminated. Each
mouse was individually presented in the center of the maze facing an open arm and
allowed to freely explore for 5 min. The amount of time present with the head and four
paws in the open arms and closed arms of the maze, as well as the number of entries into
each arm, were measured over 5 min. The maze was cleaned with 70% ethanol after each
test to prevent any influence of the previously tested mouse. The times present in the
open and closed arms were manually measured by an experimenter who was blind to the
treatment. The percentage of open and closed arm entries and the time spent in open arms
were calculated (n = 8 mice/sex/group).
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2.7. Marble Burying Test (MBT)

Behavior in the marble burying test (MBT) is a distinctive natural reflection of repetitive
compulsive-like behavior [73,74]. The MBT was performed in a home cage where individual
mice (n = 8 mice/sex/group) were placed with extra bedding and 25 marbles arranged
in a 5 × 5 grid, as previously described [73,75]. Briefly, home cages were filled with fresh,
regular mouse bedding material to a depth of 5 cm, and the bedding surface was leveled.
Each mouse was individually placed for habituation. After 10 min, each individual mouse
was removed, placed in its designated test cage with arranged marbles, and allowed to
explore for 15 min. The number of marbles buried (>50% of the marble covered by the
bedding) was recorded.

2.8. Nestlet Shredding Test (NST)

Behavior in the nestlet shredding test (NST) is an accurate reflection of repetitive
compulsive-like behavior that spontaneously occurs in mice [73,74]. The NST was per-
formed, as previously described [73,75], by placing one mouse (n = 8 mice/sex/group)
into a regular cage containing mouse bedding material. Cotton fiber (nestlets) (5 cm× 5 cm,
5 mm thick, ~2.5 g each) was weighed using an analytical balance. The nestlet was placed
on top of the bedding in each test cage, and the cage was closed with a filter-top cover.
During the testing period, food and water were offered, and the mouse was left undis-
turbed for 30 minutes. After test completion, the mouse was removed and returned to its
home cage. The remaining intact nestlet material was collected using forceps, allowed
to dry overnight, and weighed. The percentage of nestlets shredded was calculated by
determining the weight difference divided by the starting weight.

2.9. LTP and Long-Term Depression (LTD)

HP slices (400 µm) and electrophysiological recordings were performed using a typical
and previously described procedure [32,55]. Briefly, immediately after preparation, the
HP slices (n = 5 mice/group; 10 slices/group) were transferred to a recording chamber
(29 ◦C) and perfused with artificial cerebrospinal fluid (ACSF; in mM: 124.0 NaCl, 4.4 KCl,
1.0 Na2HPO4, 25.0 NaHCO3, 2.0 MgSO4, 2.0 CaCl2, and 10.0 glucose, osmolarity 290–300)
and continuously bubbled with 95% O2 and 5% CO2 for 90 min. Electrodes (stimulating and
recording) were placed at the CA1 stratum radiatum, and CA1 field excitatory postsynaptic
potentials (fEPSPs) were recorded. The stimulus voltages were plotted against the fEPSP
slopes to measure basal synaptic transmission. A 10 min baseline was recorded at an
intensity that evoked approximately 35% of the maximum evoked response. LTP was
produced by tetanic stimulation of the Schaeffer collateral pathway (4 pulses at 100 Hz;
bursts were repeated at 5 Hz, and each tetanus included three 10-burst trains separated
by 15 s) [32]. Then, the fEPSP responses were recorded for 2 h. LTD was induced by
low-frequency stimulation (LFS; 1 Hz, 900 pulses) [76]. Then, the fEPSP responses were
recorded for 60 min. The fEPSP slope was expressed as a percentage of the baseline.

2.10. Statistical Analysis

Where possible, we sought to randomize and blind the sample data. The unblinded
experimental data were analyzed in the same manner for all conditions to remove possible
experimenter bias. All experiments were evaluated using equal numbers of mice per
treatment. We used one-way analysis of variance (ANOVA) or two-way ANOVA with
Bonferroni’s post hoc test to compare the data. In all the comparisons, p < 0.05 was
considered to indicate statistical significance. Prism software (GraphPad, San Diego, CA,
USA) was used for all statistical analyses. All the data were presented as the mean ± SEM.

3. Results
3.1. Effects of GDE Exposure on Body Weight and Litter Data

GD8 and GD12 ethanol exposure paradigms produced a maternal BEC of 300 ± 10 mg/dL
one hour after the second administration, which decreased to 80 ± 5 mg/dL at 9 h. Because
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BEC is comparable to brain ethanol concentration, and maternal BEC is comparable to fetal
BEC [77], brain ethanol concentration in GD8 or GD12 embryos was presumed to be similar
to that of maternal BECs. Unlike GDS exposure, GDE exposure did not cause abnormalities
related to the number of pups/litter, the sex ratio, or the average pup weight on P7. In addition,
unlike GDS exposure, GDE exposure failed to affect body weight in male and female adults.

3.2. Effects of GDE Exposure on Embryonic Cell Proliferation and Survival

The experimental design used in the present study is shown in Figure 1a. We examined
neuronal stem cell (NSC) proliferation by subjecting GD13.5 embryo forebrain tissue
extracts to immunoblotting with anti-Ki67 (a nucleoprotein expressed in proliferative cells)
antibody. The Ki67 protein levels were significantly lower in the forebrain of GDE embryos
than in the GDS controls on GD13.5 (F3,21 = 17; p < 0.05). We examined NSC apoptosis
by evaluating the cleaved caspase-3 (CC3) levels using immunoblotting. The CC3 levels
were significantly higher in the forebrains of GDE embryos than in the forebrains of GDS
controls on GD13.5 (Figure 1b) (F3,21 = 23; p < 0.05). We examined ERK signaling by
determining pERK and ERK levels using immunoblotting of forebrain tissue. The pERK
levels were significantly lower in the forebrains of the GDE group than in the forebrains of
the GDS control group (F3,21 = 13; p < 0.05). Furthermore, we determined CREB signaling by
examining pCREB and CREB levels in forebrain tissue. The pCREB levels were significantly
reduced in the forebrains of the GDE group, compared with the forebrains of the GDS
control group (F3,21 = 15; p < 0.05). We also examined the effects of GDE on two important
transcription factors, Pax6 and Lhx2. We found significantly lower Pax6 (F3,21 = 37; p < 0.05)
and Lhx2 (F3,21 = 32; p < 0.05) in the forebrains of the GDE group than in the forebrains
of GDS controls (Figure 1c). These data suggested that ethanol exposure on GD8 and
GD12 resulted in abnormal cell proliferation and affected survival during neocortical
development at GD13.5.
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Figure 1. GDE enhances apoptosis and reduces proliferation in GD13.5 embryo forebrain tissues.
Experimental design indicates developmental age, timing of ethanol exposure, and various analyses
at early (GD13.5) and adult stages (a). Pregnant mice were exposed to 1.75 g/kg ethanol or saline i.p.
at 0 h and again at 2 h on GD8 and GD12. Cleaved caspase-3 (CC3), a nucleoprotein expressed in
proliferative cells (Ki67); (b) phosphorylated extracellular signal-regulated kinase (pERK), phospho-
rylated cAMP-response element binding protein (pCREB), Paired Box 6 (Pax6), and LIM homeobox 2
(Lhx2); (c) levels were evaluated in forebrain tissues obtained from GD13.5 embryos by Western blot
analysis. The protein samples were equally loaded, confirmed with Ponceau S staining, and normal-
ized to β-actin or total proteins. Error bars, SEM (* p < 0.05 vs. GDS group; n = 8 embryos/group)
(one-way ANOVA).
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3.3. Effects of GDE Exposure on SM Performance

Two-way ANOVA of data from the Y-maze test revealed that GDS-exposed male and
female mice entered the novel, formerly unvisited arm of the maze more regularly and with
longer dwell times than the previously visited arm (Figure 2a,b). However, GDE-exposed
male and female mice displayed a significantly reduced preference for the novel arm (arm
entry: male: F3,21 = 27; female: F3,21 = 20; p < 0.05) (Figure 2a) and spent less time in the
novel arm (dwell time: male: F3,21 = 24, p < 0.05; female: F3,21 = 22; p < 0.05) (Figure 2b)
than GDS-exposed mice after a 24 h retention period. Furthermore, the GDS-exposed male
and female mice preferred the novel arm as the first choice, whereas the GDE-exposed male
(F3,21 = 18, p < 0.05) and female (F3,21 = 16, p < 0.05) mice exhibited a significantly lower
preference for the novel arm (Figure 2c). No significant (p > 0.05) difference was observed
between male and female GDS or GDE mice.
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Figure 2. GDE-caused spatial memory and spatial recognition memory abnormalities in adult mice.
SM was evaluated with a Y-maze in adult male and female mice exposed to GDS or GDE. The
discrimination ratios (preference for the novel arm over the familiar other arm [novel/(novel + other)]
for arm entries (a) and dwell time (time spent in each arm) (b) were determined for GDS and GDE
mice 24 h after the first encounter with the partially opened maze. The percentages of mice choosing
the novel arm as the first choice (c) are shown for GDS and GDE mice 24 h after the first encounter
with the partially opened maze. The percentages of time spent in social investigation are shown
(d) for the GDS and GDE groups 24 h after the first encounter by the same juvenile mice. Error bars,
SEM (* p < 0.05 vs. GDS male group, # p < 0.05 vs. GDS female group; n = 8 mice/group/behavior).
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3.4. Effects of GDE Treatment on SRM

Two-way ANOVA of the data from the SRM test revealed that GDE-treated male and
female mice displayed significantly impaired SRM compared with the GDS-treated male
(F3,21 = 16, p < 0.05) and female (F3,21 = 18, p < 0.05) animals (Figure 2d). Less than 3–4%
of the animals exhibited aggressive encounters, and these mice were excluded from the
statistical analysis. These results indicated that GDE exposure causes SRM impairments
irrespective of sex (p > 0.05) in adult mice.

3.5. Effects of GDE Treatment on Stereotyped Repetitive Behavior in the NST and MBT

The effect of GDE exposure on repetitive behavior in the NST is shown in Figure 3a.
Based on two-way ANOVA followed by post hoc analysis, GDE-exposed mice shredded
significantly more nestlets than GDS-exposed male and female mice (male, F3,21 = 13;
female, F3,21 = 12; p < 0.05). Notably, no significant difference in the percentage of shredded
nestlets was observed between the male and female mice (p > 0.05). The effect of GDE
treatment on the repetitive behavior in the MBT is shown in Figure 3b. Two-way ANOVA
and post hoc analysis revealed that GDE-exposed mice exhibited a significantly higher
percentage of buried marbles than GDS-exposed mice (male, F3,21 = 8; female, F3,21 = 9;
p < 0.05). Notably, no significant difference was observed in the percentage of marbles
buried by male and female mice (p > 0.05).
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Figure 3. GDE-caused repetitive behavioral abnormalities in adult mice. The percentage of nestlets
shredded was calculated by determining the weight difference divided by the starting weight in
adult male and female mice exposed to GDS or GDE (a). The number of marbles buried (>50%
marble enclosed by bedding) was recorded in adult male and female mice exposed to GDS or
GDE (b). Error bars, SEM (* p < 0.05 vs. GDS male group, # p < 0.05 vs. GDS female group; n = 8
mice/group/behavior).
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3.6. Effects of GDE Exposure on Anxiety-like Behavior in EPM

Two-way ANOVA with the data from the EPM test revealed that GDE exposure,
compared to GDS exposure, significantly reduced the percentage of open arm entries (male,
F3,21 = 12; female, F3,21 = 11; p < 0.05) (Figure 4a) in tandem with an increase in closed arm
entries (male, F3,21 = 6; female, F3,21 = 8; p < 0.05) (Figure 4b), and significantly less time
in the open arms (male, F3,21 = 19; female, F3,21 = 16; p < 0.05) (Figure 4c). No significant
effects of sex were found (p > 0.05).
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in the elevated plus maze was calculated by determining the percentage of open arm entries (a), the
percentage of open arm time (b), and closed arm entries (c) for adult males and females. Error bars,
SEM (* p < 0.05 vs. GDS male group, # p < 0.05 vs. GDS female group; n = 8 mice/group).

3.7. Effects of GDE Treatment on LTP and LTD

The effects of GDE on LTP were assessed using male mice, as we found no sex effects
in spatial memory or other behavioral tests. I/O responses were not significantly different
between GDS- and GDE-exposed mouse HP slices (p > 0.05). The baseline fEPSP recording
was performed for 10 min at 60 s intervals with a stimulation intensity equivalent to ~35%
of the maximum evoked response. The application of theta burst stimulation (TBS) in
HP slices from GDS-exposed mice produced strong LTP that was constant over 120 min.
However, TBS application in HP slices from GDE mice resulted in a significantly reduced
LTP magnitude (F1,18 = 33, p < 0.05; one-way ANOVA) (Figure 5a–c). The application of
low-frequency stimulation to HP slices from GDS-exposed mice resulted in typical LTD.
However, LFS in GDE HP slices resulted in defective LTD magnitudes (Figure 5d,e).
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Figure 5. GDE-caused LTP and LTD impairments in adult mice. Input/output relationship plots of
HP slices from GDS and GDE mice (a). The average field excitatory postsynaptic potentials (fEPSP)
slope at various time points obtained from GDS and GDE adult male mice (b). For each slice, the
fEPSP slopes were normalized against the average slope over the 10 min recording period before
LTP induction. The arrows show the time of theta burst stimulation (TBS) (4 pulses at 100 Hz; the
bursts repeated at 5 Hz, and each tetanus included three different 10-burst trains separated by 15 s).
The bar graph indicates the average fEPSP slopes at multiple time points after TBS for the GDS
and GDE groups (c). The average fEPSP slope at various time points obtained from GDS and GDE
adult male mice after LTD induced by low-frequency stimulation (LFS) (d). The fEPSP slopes were
normalized to the average value 10 min before LFS stimulation. A bar graph indicates a combined
plot of the averages of fEPSP slopes at 75 min and shows the absence of LTD induced by LFS in GDE
mice compared with GDS mice (e). Error bars, SEM (* p < 0.05 vs. GDS group; n = 5 mice/group;
10 slices/group).

3.8. Effects of GDE on Synaptic Plasticity-Related Protein Expression in Adult Mice

We examined the persistent effects of GDE on synaptic plasticity-related proteins
in the HP using immunoblotting. One-way ANOVA of the immunoblot data revealed
significantly lower pCREB(F3,21 = 13; p < 0.05), Egr1(F3,21 = 26; p < 0.05), Fgf1(F3,21 = 37;
p < 0.05), and Arc (F3,21 = 16; p < 0.05) protein levels in the adult GDE male HP than in the
corresponding levels in the GDS control HP (Figure 6a). We also examined the persistent
effects of GDE on α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) (GluR1
subunit) and N-methyl-D-aspartate (NMDA) (GluN1 subunit) protein expression using
immunoblotting. One-way ANOVA of the immunoblot data revealed significantly lower
GluR1(F3,21 = 12; p < 0.05) and GluN1(F3,21 = 11; p < 0.05) protein levels in the adult GDE
male HP than in the corresponding levels in the GDS control HP (Figure 6b).
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Figure 6. Decreased pCREB, Egr1, Fgf1, Arc (a), GluR1, and GluN1 (b) protein levels in adult
mouse HP tissues in response to GDE. HP nuclear or membrane fractions were subjected to Western
blot analysis. The protein samples were equally loaded, confirmed with Ponceau S staining, and
normalized to β-actin and total proteins. Error bars, SEM (* p < 0.05 vs. GDS group; n = 8 mice/group).
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4. Discussion

Human and preclinical animal studies have reported significant neurobehavioral ab-
normalities in offspring after prolonged low-to high-dose prenatal ethanol exposure, i.e.,
exposure resulting in low-to-high BECs [78–83]. However, limited animal studies have
investigated the effects of lower, moderate, and high ethanol doses administered acutely
during specific developmental stages [47,84–86] and established the time, pattern, and
dose of ethanol exposure to model heavy human drinking (i.e., 3–5 drinks in one sitting on
2 successive days). This issue is especially important when women continue with a regular
consumption of alcohol before recognizing that they are pregnant [23,24]. Drinking during
this early unrecognized pregnancy period could expose a developing embryo at critical de-
velopmental stages, such as the gastrulation or neurulation periods of gestation [47,84–86].
Moreover, some women of childbearing age drink higher levels of alcohol before pregnancy
recognition [25–27] and exhibit a higher proportion of binge drinking.

In the current study, we evaluated acute binge-like ethanol exposure at the early
gestational period and modeled human drinking during the third and fifth weeks of
pregnancy [87]. The current ethanol exposure paradigm resulted in maternal BECs of
300 mg/dL 1 h after the second dose, which reduced to 80 mg/dL at 9 h. This result caused
no apparent deficits related to the number of pups/litters, sex ratio, or average pup weight
on P7 compared to GDS-exposed females. The GDE- and GDS-exposed male and female
adult animals exhibited normal body weight. Similar observations were found in previous
studies based on acute early gestational ethanol exposure [50,51,66,88]. In contrast, chronic
ethanol exposure throughout the gestational period has been shown to reduce pup or
offspring body weight [89,90]. In the prenatal stage (GD13.5), GDE exposure induced cell
death and reduced cell differentiation and cell survival signaling (pERK and pCREB). In
addition, the expression of transcription factors Pax6 and Lhx2 was decreased in the GD13.5
forebrains of mice exposed to GDE. These results suggested that reduced-cell survival and
cell-death events are immediate teratogenic results of early gestational ethanol exposure.

Previous studies have found excessive cell death due to ethanol exposure during the
GD7 and GD14 stages [91–93]. However, the basis for the selective vulnerability to ethanol-
induced cell death remains unclear. It is possible that GDE-induced inhibition of survival
signaling (pERK and pCREB) could contribute to cell death. Indeed, previous studies
have shown that ethanol exposure during neurogenesis perturbs the MAPK pathway
and downstream effectors (pCREB) [94–96] and adversely affects cyclin D1, which aids
the balance between neuronal differentiation and proliferation [97,98]. Similarly, reduced
pERK and pCREB were also found in postnatal ethanol-exposed P7 mice, causing neuronal
apoptosis [32,55,60]. Furthermore, GDE exposure reduced Pax6 expression in the forebrains
of mice at GD13.5. Pax6 is a transcription factor that has an essential function in cell
proliferation and is involved in the regional specification of the telencephalon. Consistent
with our data, previous studies reported a reduced expression of Pax6 in response to
ethanol exposure [99–102]; forced expression of Pax6 rescued ethanol-induced deficits in
neuronal differentiation [101,103]. However, GDE exposure from GD6 to GD16 caused
enhanced Pax6 expression in the E12 embryonic brains of mice [104].

We also found that GDE exposure reduced Lhx2 expression in the forebrains of mice
at GD13.5. Lhx2, a transcription factor, plays an essential function in cortical development
by determining cortical progenitor fate during the early stages of corticogenesis [105,106].
Two previous studies reported a lack of ethanol effect on Lhx2 transcripts in embryonic
human-derived cultured cortical slices or mouse embryonic cortical tissues obtained from
two different prenatal ethanol models (GD14 to GD16 [107] and GD0.5 to GD19.5 [108].
These inconsistent data may be due to the developmental stage at which ethanol exposure
occurred, the cells that were impacted, and the tissue used for analysis. Moreover, we found
no studies that analyzed Lhx2 protein expression in any prenatal ethanol studies. Taken
together, our findings indicated that GDE exposure impairs transcription factors, such as
Pax6 and Lhx2 expression, which have a critical function in neuronal differentiation.
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It is well-established that the HP is one of the most vulnerable and affected structures
following developmental ethanol exposure. Therefore, most studies have evaluated spatial
memory to demonstrate disruption of the HP [32,64,109–111]. Previous studies using high
ethanol doses administered over exposure times lasting a few or several days to a full
trimester-equivalent or more showed impairments in spatial learning and memory on an
array of tasks (e.g., radial arm maze, water maze, Y-maze, and T-maze alternation) in rodent
offspring at different postnatal developmental stages (e.g., adolescent and adult) (for a
review, see [28,112–114]). Collectively, these studies indicated that the extent of spatial
memory deficits is related to dose, time, and mode of ethanol exposure and correlated to
the age at which animals are examined [115]. Previous studies in which a high amount
of ethanol exposure was restricted to a narrow window early in development, such as
neurulation [116], have found that the exposure caused either no impairments [49], typical
acquisition but impaired retention in spatial learning tasks [44], deficits in the acquisition
of spatial learning tasks [46], or deficits in spatial reference memory [47]. It is unknown
whether other studies [50,51] in which exposure was restricted to the early neurogenesis
period (GD11 or GD12) [116] indicate that the exposure causes spatial memory deficits,
although these studies have reported other behavioral deficits.

The current study reported a significant deficit in spatial memory in the Y-maze, where
GDE significantly diminished the number of arm entries and time spent in the novel arm.
In addition, a high percentage of GDE animals exhibited reduced entry into the novel arm
as the first choice, compared with their GDS counterparts. These observations further
emphasize the increased vulnerability of embryos in the neurulation and neurogenesis
periods to ethanol-induced spatial memory impairments and suggested the importance
of the duration of exposure in addition to the ethanol levels and the gestational timing
of exposure. Consistent with these animal models, binge-like alcohol exposure during
early pregnancy in primates produced significant behavioral impairments in offspring (for
references, see [117]). In addition, a recent cross-sectional study reported that children with
low levels of prenatal alcohol exposure exhibited significant structural abnormalities and
more behavioral impairments than a well-matched control group [118]. These observations
indicate that gestation alcohol exposure, even in small amounts, produces a measurable
influence on brain structure and behavior in offspring.

Maternal ethanol has been shown to produce alterations in social behavior in exposed
children. Children have difficulties contemplating the consequences of their actions, appre-
ciating social cues, and interacting in social contexts [119–121]. Studies using animal models
of developmental ethanol at different developmental stages, such as GDE [50,51,122–126]
and postnatal [32,64,127,128] periods, or ethanol exposure across all three trimesters [129],
have reported impaired social interaction in both males and females or impairment in
a sexually dimorphic way [50,51,126,128]. In the current study, GDE exposure caused
significantly reduced social interaction in male and female adult mice. In general, previous
studies showed that social interaction deficits found in ethanol-exposed animals were
observed at all ages [130]. However, in some studies, reduced social preference lessened
with age and was no longer observed in P77 males [51].

Although cognitive deficits are the major outcome of prenatal ethanol exposure, in-
creased anxiety behavior has also been observed in many FASDs [131–134] and animal
studies [78,135–138]. However, some studies reported increased or decreased anxiety-like
behaviors, depending on sex, following prenatal ethanol exposure [50,51,126,139–142]. In
our study, GDE exposure significantly decreased open-arm entries in tandem with in-
creased closed-arm entries. In addition, GDE animals spent significantly less time than
GDS-exposed male and female adult mice in the open arms. We also found enhanced
marble-burying behavior in GDE male and female mice. Previous studies have shown en-
hanced marble-burying behavior only in prenatal ethanol-exposed male offspring [50,143].
Administration of BDNF in offspring exposed to prenatal ethanol rescued marble-burying
behavior [143]. Our data indicated enhanced nestlet shredding behavior in GDE-exposed
male and female mice, consistent with the marble-burying behavior. Although these studies
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emphasized the importance of anxiety-like behavior and obsessive-compulsive disorder
(OCD) in prenatal ethanol exposure, the reason for the inconsistent literature regarding
the effects of prenatal ethanol exposure on anxiety-like behaviors in males and females
is unknown. It is possible that the expression of anxiety-like behavior is very complex
and may be influenced by many environmental factors, including the amounts of ethanol
and the timing of ethanol exposure, secondary effects, and the developmental stages at
which the behaviors were observed [115,144,145]. Taken together, these data suggested that
binge-like ethanol exposure during GD 8 and GD12 predisposes animals to anxiety-like
behavior and OCD.

Synaptic plasticity is the biological process through which synaptic activity results in
synaptic strength and ultimately contributes to behavioral learning and memory processes.
LTP is a type of synaptic plasticity in which synaptic connections become more robust
after high-frequency stimulation (HFS). Our study and previous studies [32,64,146–148]
of postnatal ethanol models indicated reduced LTP in the CA3-CA1 Schaffer collateral
pathway in adult offspring. Prenatal ethanol exposure also caused reduced LTP in the
HP [82,146,149,150]. Persistent changes in synaptic plasticity can also include a weakening
of synaptic efficacy, which is referred to as LTD. However, very few studies have determined
the effects of early prenatal ethanol on LTD in offspring. In a previous study, the exposure
of dams to ethanol throughout the gestation period resulted in a reduced LTD only in
male juvenile rat offspring [151]. However, ethanol exposure spanning all three trimesters
caused enhanced LTD (LFS 600 × 1 Hz and paired pulses- LFS-200-900) in young adult rat
hippocampal slices [152]. In our study, GDE exposure caused a reduced magnitude of LTD
in both male and female adult offspring.

Thus, the current study indicates that GDE impairs bidirectional synaptic plasticity
(LTP and LTD) in the CA3-CA1 Schaffer collateral pathway in both male and female adult
offspring. HFS-induced LTP or LFS (900 pulses applied at 1 Hz)-induced LTD in the
Schaffer collateral pathway has been previously shown to be dependent on N-methyl-D-
aspartate receptors (NMDARs). Our current findings indicated a reduction in GluN1 in
the HP. However, the effects of prenatal or postnatal ethanol exposure on NMDA receptor
subunits have been inconclusive [153–156]. The findings cannot be compared, because each
study used different ethanol exposure paradigms and different animal species. Therefore,
although reduced LTP and LTD in the HP have been associated with reduced GluN1 levels
after GDE, the possible link between these results and the expression levels of NMDA
receptor subunits warrants further study in the future.

We also found that GDE exposure caused reduced GluR1 in the HP of adult offspring.
A similar reduction in GluR1 expression was shown in the HP of female adult offspring ex-
posed to ethanol throughout the gestation period [157,158]. Consistent with these changes,
ethanol exposure throughout gestation impaired CA1 α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor (AMPAR)-mediated neurotransmission [159,160]. Because
AMPAR regulation at the synaptic surface controls NMDAR-dependent synaptic plasticity
at the CA3-CA1 Schaffer collateral pathway [161,162], reduced expression of calcium-
permeable GluR1 receptors can produce changes in downstream signaling molecules,
including pCREB [158,163], leading to impaired synaptic plasticity gene expression and
synaptic plasticity [164]. These observations indicate that GDE may cause structural defects.
Indeed, the exposure of pregnant rhesus macaques to ethanol (1.5 g/kg/d) over the first
60 days of gestation resulted in significantly induced structural abnormalities in fetuses
at gestational day 135, as measured by magnetic resonance image (MRI) [165]. These
abnormalities were associated with the reduced excitatory, but not inhibitory, postsynaptic
event amplitude in the somatosensory cortex and putamen [165], suggesting a functional
significance of the structural effects of fetal alcohol exposure.

As several studies demonstrated, pCREB promotes the transcription of synaptic plas-
ticity genes, which are essential in hippocampal function and in the process of memory
formation [53–55]. Together with other researchers, we recently demonstrated that postna-
tal ethanol exposure disrupts CREB phosphorylation [32,54,55,59,60], which affects many
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synaptic proteins, including the expression of immediate early genes, such as Arc and
Egr1 [32,54,60,64]. In addition, we and other researchers have reported decreased expres-
sion of synaptic plasticity (Bdnf, C-Fos, Egr1, and Arc)-related genes [64] and Egr1 and Arc
protein expression [32,54,60–64] in different ethanol models. Consistent with our findings, a
recent study of the mouse HP showed that Fgf1 enhances the maintenance of synaptic plas-
ticity and improves associative contextual fear memory. Interestingly, temporal regulation
of Fgf1b gene expression was shown to be correlated with the strength of associative mem-
ory, so that a weak training protocol leads to a transient increase in Fgf1, whereas strong
training leads to a sustained increase in Fgf1 [166]. Consistent with these earlier studies, the
current findings suggested reduced pCREB and expression of synaptic plasticity-related
proteins, such as Egr1, Fgf1, and Arc, in the adult HP. Thus, the present results convincingly
show that ethanol exposure on GD8 and GD12 can impact developmental programs and
contribute to persistent synaptic plasticity gene expression and neurobehavioral deficits.

5. Conclusions

In summary, ethanol exposure during the active cell differentiation stage of brain
development causes cell apoptosis, reduces cellular proliferation, and reduces survival
signaling and transcription factor levels in embryos. In addition, GDE-induced impairments
that occur within cells of the early-developing brain may delay or reduce synaptic circuit
maturation, leading to persistent deficits in synaptic plasticity, learning and memory
deficits, anxiety, and repetitive and OCD-like behavior in adults, which are similar to
the effects observed among children with FASDs [1,5,7,167–169]. The current findings
demonstrate that ethanol exposure at two sensitive stages (GD8 and GD12) causes changes
in synaptic plasticity-related proteins (Arc, Egr1, Fgf1, GluR1, and GluN1) and FASD-like
neurobehavioral deficits in mice.
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