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Abstract: The past decade has witnessed the great success of deep neural networks in various do-
mains. However, deep neural networks are very resource-intensive in terms of energy consumption,
data requirements, and high computational costs. With the recent increasing need for the autonomy
of machines in the real world, e.g., self-driving vehicles, drones, and collaborative robots, exploitation
of deep neural networks in those applications has been actively investigated. In those applications,
energy and computational efficiencies are especially important because of the need for real-time
responses and the limited energy supply. A promising solution to these previously infeasible appli-
cations has recently been given by biologically plausible spiking neural networks. Spiking neural
networks aim to bridge the gap between neuroscience and machine learning, using biologically
realistic models of neurons to carry out the computation. Due to their functional similarity to the
biological neural network, spiking neural networks can embrace the sparsity found in biology and
are highly compatible with temporal code. Our contributions in this work are: (i) we give a com-
prehensive review of theories of biological neurons; (ii) we present various existing spike-based
neuron models, which have been studied in neuroscience; (iii) we detail synapse models; (iv) we
provide a review of artificial neural networks; (v) we provide detailed guidance on how to train
spike-based neuron models; (vi) we revise available spike-based neuron frameworks that have been
developed to support implementing spiking neural networks; (vii) finally, we cover existing spiking
neural network applications in computer vision and robotics domains. The paper concludes with
discussions of future perspectives.

Keywords: spiking neural networks; biological neural network; autonomous robot; robotics; com-
puter vision; neuromorphic hardware; toolkits; survey; review

1. Introduction

The last decade has witnessed the growing abilities of artificial neural networks
(ANNs) from the first generation multi-layer perceptron (MLP) to the many state-of-the-art
techniques in the second generation deep neural networks (DNNs). This achievement
strongly depends on a large amount of annotated data and the widespread availability of
high-performance computing devices as well as the general-purpose Graphics Processing
Units (GPUs). Despite this great advancement, ANNs still lag behind the biological neural
networks in terms of energy efficiency and abilities for online learning. Many attempts
have been made to reduce the power consumption of traditional deep learning models.
In order to find more compact networks that can achieve similar performance with much
less complexity and a smaller number of parameters compared to the original network,
many techniques have been developed such as quantization [1], pruning [2], and knowl-
edge distillation [3]. Quantization converts the weights and inputs of the network into
integer types, which makes the overall operations lighter than the floating-point operations.
In pruning, the connections of a network are iteratively removed during or after the train-
ing. To compress a neural network without dropping performance, knowledge distillation
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transfers complex knowledge learned by a heavy network called a teacher to a lightweight
network called a student.

Although ANNs/DNNs are historically brain-inspired, they are fundamentally dif-
ferent in structure, neural computations, and learning rules compared to the biological
neural network. This observation leads to the spiking neural networks (SNNs), which are
often referred to as the third generation of neural networks that could be a breakthrough
of bottlenecks of ANNs. Using SNNs on neuromorphic hardware, such as TrueNorth [4],
Loihi [5], SpiNNaker [6], NeuroGrid [7], etc., is worth mentioning and a promising ap-
proach to the energy consumption problem. In SNNs, such as in biological neural networks,
neurons communicate with each other with discrete electrical signals called spikes and
work in continuous time.

Due to their functional similarity to the biological neural networks, SNNs can em-
brace the sparsity found in biology and are highly compatible with temporal code [8].
Although SNNs still lag behind DNNs in terms of their performance, the gap is vanishing
on some tasks, while SNNs typically require much lower energy for the operation. How-
ever, SNNs are still difficult to train in general, mainly owing to their complex dynamics
of neurons and the non-differentiable nature of spike operations. A comparison between
biological neural networks, ANNs, and SNNs is given in Table 1. BP is backpropagation.

Table 1. A comparison of properties between biological neural networks, ANNs, and SNNs.

Properties Biological NNs ANNs SNNs

Information Representation Spikes Scalars Spikes

Learning Paradigm Synaptic plasticity BP Plasticity/BP

Platform Brain VLSI Neuromorphic VLSI

2. Biological Neurons

Neurons are the basic working units of the nervous system that process information by
propagating electrochemical signals through action potentials. Neurons are not electrically
neutral nor extracellular fluid because of the presence of ions within them. Ions are
constantly moving in and out of the cell through a membrane that can dynamically modify
its electric permeability with external electrochemical signals. The flux of ions entering and
exiting the cell causes a virtual current flow through the membrane, mostly ascribed to
Na+, K+, and Cl− ions.

Figure 1 shows a typical structure of a neuron with four main components: den-
drites, soma, axon, and synapse. Dendrites are the short nervous termination that can be
considered as the input of the neuron. They translate the chemical signals carried by neu-
rotransmitters released from the pre-synaptic neuron into electric signals. Soma is the cell
body where membrane potentials propagated from synaptic inputs are integrated, which
ultimately determines whether the post-synaptic cell fires action potentials before being
transmitted to the axon. This interaction of influences is called neural integration. Axon
carries the action potential towards other nerve cells. In order to rapidly carry the action
potential at long distances without attenuation, some axons are coated with a myelin sheath.
Synapses are the contact structure for information transfer that interconnect neurons in a
neural network. Synapses can be broadly divided into chemical and electrical synapses.
In chemical synapses, there is no direct contact between the pre- and post-synaptic neurons.
The signal from the pre-synaptic neuron is transmitted via neurotransmitters contained in
the synaptic granules released into the synaptic cleft. Neurotransmitters bind to receptors
in the post-synaptic cell, directly altering membrane potential or activating intracellular
secondary messengers to transmit the information. This type of transmission is slow but am-
plifies the signal and can make the effects of the incoming spike last longer. Chemical
synapses can be subdivided into excitatory and inhibitory synapses. Excitatory synapses
are synaptic connections that depolarize post-synaptic cells through synaptic transmission
and promote the firing of action potentials. Inhibitory synapses are synaptic connections that
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hyperpolarize post-synaptic cells by synaptic transmission and inhibit the development of
action potentials. Glutamate and GABA are the most common excitatory and inhibitory
neurotransmitters, respectively; ionotropic receptors for glutamate are AMPA and NMDA
and that of GABA are GABAA and GABAB [9]. Electrical synapses, on the other hand,
are structures that transmit membrane potential charges directly to the next neuron via
gap junctions on the contact membrane. This kind of communication is very rapid since
there are no chemical reactions within the transmission; however, there is no gain in signal
amplitude as in the chemical synapses.

soma

axon terminals

axon

synapse

dendrites

neurotransmitters

postsynaptic
potential

myelin 
sheath

presynapric
action potential

Figure 1. A typical structure of a biological neuron and synapse.

2.1. Membrane Potential

The electric potential inside a cell with respect to the outside of the cell is called
the membrane potential. The membrane potential can be derived using the Goldman–
Hodgkin–Katz equation, which takes into consideration the relative permeability of the
plasma membrane to each ion in question.

vm =
RT
F

ln
PK[K+]out + PNa[Na+]out + PCl [Cl−]in
PK[K+]in + PNa[Na+]in + PCl [Cl−]out

(1)

where R is the universal gas constant, T is the absolute temperature 310.15 (K) at human
body temperature (37 [◦C]), F is the Faraday constant (=96, 485 (C·mol−1)), (A)out is the
extracellular concentration of ion A, and (A)in is the intracellular concentration of ion A,
and PA is the membrane permeability for ion A, and for a typical neuron at rest, it is known
that PK:PNa:PCl = 1:0.04:0.45. In contrast, approximate relative permeability at the peak of
a typical neuronal action potential are PK:PNa:PCl = 1:12:0.45 [10].

2.1.1. Resting Membrane Potential

Due to the action of a number of proteins, ions are constantly moving in and out of
the cell. Although the influx of ions does not stop, charge transfer becomes apparently
immobile when the total charge of the outflowing ions and the total charge of the inflowing
ions per unit time becomes the same. The resting membrane potential of a cell is determined
by the net flow of ions through the “leak” channels that are open in the resting state. Based
on the relative membrane permeability for a typical neuron at rest, we can calculate the
resting membrane potential Em as follows:

Em =
RT
F

ln
5.5PK + 135× 0.04PK + 9× 0.45PK

150PK + 15× 0.04PK + 125× 0.45PK

= −70.15 [mV]

(2)
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Since the reversal potential for Cl− ion is typically close to the resting membrane
potential, the Cl− ion is usually ignored when discussing a neuron’s resting membrane
potential.

2.1.2. Action Potential

When an action potential occurs, sodium channels on the axon are opened and Na+

ions are free to move in and out of the cell membrane. The membrane potential fluctuates
accordingly toward the reversal potential of the Na+ ion. The sodium channel is then
inactivated and closed, and now the potassium channel, which is potential-dependent, is
opened. Now, the membrane potential descends back toward the reversal potential of the
K+ ion and undershoots beyond the resting membrane potential Em.

vpeak =
RT
F

ln
5.5PK + 135× 12PK + 9× 0.45PK

150PK + 15× 12PK + 125× 0.45PK0
= 38.43 [mV]

(3)

3. ANN Models

A rate-based neuron models the activity of a neuron only by the macroscopic feature,
firing rate r, regardless of the change in membrane potential or spike timing. The first
rate-coded artificial neuron, which is known as formal neuron or threshold logic unit, was
proposed by [11]. Based on the formal neuron, reference [12] introduced perceptron, using
the Heaviside step function as the activation function. These first-generation neurons fire
binary signals when the sum of incoming signals reaches a threshold of a neuron. This con-
cept is later extended to utilize continuous activation functions, including the sigmoid [13]
or hyperbolic tangent function, to deal with analog inputs and outputs; consequently, this
enabled the training of the neural network through a powerful backpropagation algorithm
that exploits gradient-descent. Because of the proven ability of a sufficiently large neural
network of artificial neurons to approximate any analog function arbitrarily well (universal
approximation theorem states that a feed-forward network with a single hidden layer with a
finite number of neurons can approximate continuous functions, under assumptions on the
non-polynomial activation function [14,15]; Sigmoidal activation function and the ReLU are
also proved to follow the universal approximation theorem [16]), artificial neural networks
have been widely used as a powerful information-processing tool in machine learning.
In general, the discrete-time firing rate model can be formulated as r = σ(∑i wi,jxj) and
usually grouped together for computational efficiency:

r = f (Wu + b) (4)

where u ∈ RNpre is the firing rate of pre-synaptic neurons, r ∈ RNpost is the firing rate of
post-synaptic neurons, W ∈ RNpost×Npre is the weight matrix that represents the synaptic
strength between the pre- and post-synaptic neurons, b ∈ RNpost is the bias term, and f (·)
is the non-linear activation function.

Nowadays, Rectified Linear Unit (ReLU) [17] and its variants are commonly employed
as the non-linearity because they tend to show better convergence performance than the
sigmoidal activation function [18]. This formulation of the group of rate-based neurons is
often referred to as a fully-connected layer. The modern architecture of neural networks
stacks a variant of this layer to create very deep networks of neurons, which is often referred
to as deep neural networks (DNNs). Neural networks are typically called deep when they
have at least two hidden layers computing non-linear transformations of the input. One
of the commonly used building blocks of DNNs is a convolutional layer. A convolutional
layer is a special case of the fully connected layer that implements weight sharing for
processing data that has a known grid-like topology, e.g., images. Because of this inductive
bias, convolutional neural networks (CNNs) [19,20] can utilize the spatial correlation of
the signal in a more sensible way. The representational properties of early layers in the
CNNs are similar to the response properties of neurons in the primary visual cortex (V1),
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which is the first cortical area in the visual hierarchy of the primate’s brain. CNNs possess
two key properties that make them extremely useful for image applications: spatially
shared weights and spatial pooling. This kind of network learns features that are shift-
invariant, i.e., filters that are useful across the entire image (due to the fact that image
statistics are stationary). The pooling layers are responsible for reducing the sensitivity of
the output to slight input-shift and distortions and increasing the reception field for later
layers. Since 2012, one of the most notable results in deep learning is the use of CNNs to
obtain a remarkable improvement in the ImageNet classification challenge [21,22]. Based
on this technological breakthrough in image classification, various improvements have
been proposed for the network architectures in vision models [23–25]. Although ANNs
have been remarkably successful in many applications, including object detection [26,27],
image segmentation [28–30], and action recognition [31,32], they are still limited in the way
they deal with temporal information.

4. SNN Models

The ability to simultaneously record the activity of multiple cells has led to the idea
that the time difference between spikes in different neurons and the spike timing itself can
have functional significance. Since the firing rate model cannot handle the problem of this
perspective, a model describing the timing of spikes and the variation of the sub-threshold
membrane potential has been investigated. A model that handles the generation of such
spikes is distinguished from the firing rate model and called the spiking model. Such neuron
models are generally expressed in the form of ordinary differential equations. Figure 2
depicts the differences between the biological neuron, artificial neuron, and spiking neuron.

...

Synapse
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Axon from pre-neuron

Output axon  
to post-neuron
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Synapse1 0 1 0  1 1 0 0
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Figure 2. A comparison between the biological neuron, artificial neuron, and spiking neuron.
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4.1. Spiking Neuron Models

A variety of spiking neuron models have been proposed, and they display trade-
offs between biological accuracy and computational feasibility (Figure 3). Choosing an
appropriate model depends on the user requirements. Spike-based neuron models are
reviewed regarding the computational efficiency and biological plausibility in [33]. In this
section, several models of spiking neurons are presented.

Figure 3. A comparison of spiking neuron models in terms of implementation cost and biological
plausibility (adopted from [33]).

4.1.1. Hodgkin–Huxley (HH) Model

Hodgkin and Huxley conducted the experiment on the giant axon of a squid and
concluded that two types of ion channels, K+ channel and Na+ channel, are involved in
the generation of the action potential [34]. This model can be expressed by adding two
terms that take care of the behavior of those two ion channels to Equation (9). Although
the change in permeability of the ion channel is actually due to the structural change of
the protein, it can be described phenomenologically by the analogy of opening and closing
the gates.

Cm
dvm(t)

dt
= Iion(t) + Isyn(t) (5)

Iion(t) = GKn4(vm − EK) + GNam3h(vm − ENa) + GL(vm − EL) (6)

where Cm is membrane capacitance (pF), vm is the membrane potential (mV), Isyn is synaptic
input current (pA), GK represents conductance of K+ ion, EK represents reversal potential
of K+ ion, GNa represents conductance of Na+ ion, ENa represents reversal potential of
Na+ ion, GL represents leak conductance, and EL represents leak reversal potential, which
is now thought to be a Cl− ion’s reversal potential. n, m, and h are dimensionless quantities
between zero and one that are associated with potassium channel activation, sodium
channel activation, and sodium channel inactivation, respectively.

The three gates, n, m, and h, are described by the following differential equation,
where g represents the gating variables n, m, and h, and the transition rate (where αg(v) is
the transition rate from non-permissive to permissive states, whereas βg(v) is the transition
rate from permissive to non-permissive states) for each gate αg(v) and βg(v) are defined in
Equation (8) (in neural simulation software packages, the rate constants in Hodgkin–Huxley
models are often parameterized using a generic functional form [35]: A+Bvm

C+H exp( vm+D
F )

).

dg
dt

= αg(vm)(1− g)− βg(vm)g (7)
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αm(vm) =
0.1(25−vm)

exp((25−vm)/10)−1

βm(vm) = 4 exp(−vm/18)

αh(vm) = 0.07 exp(−vm/20)

βh(vm) =
1

exp((30−vm)/10)+1

αn(vm) =
0.01(10−vm)

exp((10−vm)/10)−1

βn(vm) = 0.125 exp(−vm/80)

(8)

By solving these equations, the Hodgkin–Huxley model can simulate the membrane
potential behavior during spike generation without introducing spike generation proce-
dures presented in the LIF model (Equation (10)). Although the Hodgkin–Huxley model
is biologically accurate (the model is limited in the way that it only describes the chan-
nels and flow of ions in the neuron when generating spikes; several drawbacks have
been pointed out [36,37]), it demands large computational resources and is infeasible in
large-scale simulations.

4.1.2. Leaky Integrate and Fire (LIF) Model

The model in which the input current is integrated over time until the membrane
potential reaches a threshold without taking into account the biological ion channel behavior
is called the integrate-and-fire (IF) model. The leaky integrate-and-fire (LIF) model reflects
the diffusion of ions that occurs through the membrane when some equilibrium is not
reached in the cell by introducing a “leak” term to the IF model. Because of its simplicity
and low computational cost, the LIF model and its variants are one of the widely used
instances of the spiking neuron model. The model dynamics are represented by the
following equation:

Cm
dvm

dt
= −GL(vm − EL) + Isyn(t)

if vm ≥ vθ , vm ← vpeak then vm ← vreset

(9)

where vθ is the threshold voltage, vpeak is the action potential, and vreset is the resetting
membrane potential. When the voltage reaches the threshold vθ , usually one is used for
simplicity, the neuron fires the spike, and then the voltage is reset to zero for a refractory
period τre f that limits the firing frequency of a neuron.

When the synaptic input current is constant (Isyn(t) = I) and vreset = 0, we can solve
for the membrane potential as follows:

vm(t) = Rm I
(

1− exp
(
− t

τm

))
(10)

where Rm is the membrane resistance (MΩ), τm = RmCm is the membrane time constant.
Since the neuron fires the spike when the membrane potential reaches the threshold, the first
spike time t(1) can be found by setting vm(t) = vθ :

t(1) = τm ln
Rm I

Rm I − vθ
(11)

Therefore, steady-state firing rate can be found as:

f =

(
τre f + τm ln

Rm I
Rm I − vθ

)−1
(12)

Theoretically, it is possible to train a deep neural network using Equation (12) as
the static non-linearity and make a reasonable approximation of the network in spiking
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neurons [38]. Intuitively, especially when τre f = 0, τm = 1, Rm = 1, and vθ = 1, the firing
rate of the neuron corresponding to the input current behaves similar to the ReLU activation
function in ANNs. This feature is often utilized for ANN-to-SNN conversion.

4.1.3. Izhikevich Model

Izhikevich proposed a model that combines the biological plausibility of the HH
model’s dynamics and the computational efficiency of the LIF neurons [39]. The model is
represented by the two-dimensional (2D) system of ordinary differential equations, and the
Izhikevich model [40] can be expressed in the following form:

Cm
dvm

dt
= k(vm − EL)(vm − vt)− u + Isyn(t) (13)

du(t)
dt

= a(b(vm − Em)− u) (14)

with the auxiliary after-spike resetting

if vm ≥ vθ then
{

vm ← c
u← u + d

(15)

where u represents the activation of K+ ionic currents and inactivation of Na+ ionic currents
(pA), and vt is the instantaneous threshold potential (mV).

The Izhikevich model can exhibit the firing patterns of all known types of cortical
neurons with the choice of parameters based on [40].

4.1.4. Adaptive Exponential Integrate-and-Fire (AdEx) Model

The aforementioned Izhikevich neuron can be considered to be an adaptive quadratic
integrate-and-fire model, whereas the adaptive exponential integrate-and-fire (AdEx)
model [41] has an exponential voltage dependence, coupled with a slow variable, which
models threshold adaptation as follows:

Cm
dvm

dt
= −GL(vm − EL)

+ GL∆T exp
vm − vT

∆T
− w + Isyn

(16)

τw
dw
dt

= a(vm − EL)− w (17)

with reset conditions

if vm ≥ vθ then
{

vm ← vreset
w← w + b

(18)

where w is the slow variable taking into account adaptation, VT is the rheobase current, ∆T
models the sharpness of the Na+ channels’ activation function.

The LIF model can be obtained from the AdEx model by taking the limit ∆T → 0 and
removing the adaptation current w. The AdEx model shares the ability to reproduce firing
patterns at a low computational cost such as the Izhikevich neuron.

4.2. Synaptic Models

A synaptic interaction can be modeled as a process of binding a neurotransmitter
to a closed receptor, which consequently opens it, and unbinding the transmitter from
the receptor closing it. These can be modeled as a rate of ion channel opening or a
variation of the conductance, as in the Hodgkin–Huxley model. Synaptic kinetics is defined
by the number of neurotransmitters released from the pre-synaptic cell, the number of
neurotransmitters bonded to the post-synaptic cell, or the opening rate of the ion channel
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of the post-synaptic cell. The following models are used to model the post-synaptic current
(PSC) as well as the post-synaptic potential (PSP).

4.2.1. Single Exponential Model

Assuming the binding of neurotransmitters is instantaneous, the behavior of PSC can
be modeled as an exponential decay with a time constant. This can be modeled as:

f (t) = exp
(
−(t− tk)

τd

)
ssyn(t) = ∑

tk<t
f (t− tk)

(19)

where ssyn is synaptic kinetics, tk is the kth spike occurrence timing, and τd is synaptic
decay time constant.

The previous equation can be expressed in a differential equation form:

dssyn

dt
= −

ssyn

τd
+

1
τd

∑
tk<t

δ(t− tk) (20)

where δ(·) is the Dirac delta function that represents the occurrence of a spike.

4.2.2. Double Exponential Model

While ignoring the physiological process, the double exponential model reproduces
the behavior of the post-synaptic current (PSC) well, considering not only decay but the
rise of the PSC.

f (t) = A
(

exp
(
− t

τd

)
− exp

(
− t

τr

))
A =

τd
τd − τr

(
τr

τd

) τr
τr−τd

(21)

where A is the normalizing constant and τr is the synaptic rising time constant.
The double exponential model can be expressed in a form of differential equations

as follows:

dssyn

dt
= −

ssyn

τd
+ h

dh
dt

= − h
τr

+
1

τrτd
∑

tk<t
δ(t− tk)

(22)

where h is the helping variable. When τ = τd = τr, Equation (21) is called the alpha
function With these synaptic models, the input current to the cell Isyn can be expressed as
follows if we consider ssyn as the pre-synaptic kinetics:

Isyn(t) = Wssyn(t) (23)

where ssyn ∈ RNpre , Isyn ∈ RNpost is synaptic input of post-synaptic neurons, and W ∈
RNpost×Npre is the weight matrix that represents the synaptic strength between the pre- and
post-synaptic neurons.

5. SNN Learning Mechanisms

Learning in neural networks involves the modification of the connectivity of neurons.
Unlike the ANNs, which can be successfully trained by stochastic gradient descent and
backpropagation, SNNs still do not have solid training methods. The native training
methods of SNNs can be classified into: supervised learning with gradient descent and
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spike backpropagation, unsupervised learning with local learning rule at the synapse
(e.g., spike-time-dependent plasticity), and reinforcement learning with reward/error
signal using reward modulated plasticity. Synaptic plasticity is the biological process by
which specific patterns of synaptic activity result in changes in synaptic strength. Synaptic
plasticity was first proposed as a mechanism for learning and memory on the basis of
theoretical analysis by [42]. Although the local learning rule at the synapse is said to
be biologically more plausible, the learning performance is usually lower than that of
supervised learning. An alternative approach to indirectly train the SNNs is the conversion
of ANNs to SNNs [43]. Among those methods, state-of-the-art results are mostly obtained
from the model conversion from ANNs.

5.1. Spike-Based Backpropagation

Similar to the backpropagation algorithm for ANNs, SpikeProp [44] is designed to
determine a set of the desired firing timings of all output neurons at the post-synaptic
neurons for a given set of the input pattern. Event-based methods, including SpikeProp,
have the derivative term defined only around the firing time, whereas [45–47] ignore
the temporal effect of the spike signal. Reference [48] proposed an improved method
of SpikeProp called SuperSpike that utilizes the derivative of the membrane potential
instead of the spike, which allows training a model with an absence of spike occurrence.
SuperSpike uses the van Rossum distance [49] between the output and desired spike trains
as the loss function, while SpikeProp uses the sum-squared error. The following shows the
loss function for the network in time interval t ∈ [0, T].

L =
1
2

∫ T

0
(α× (s(t)− ŝ(t)))2dt (24)

where α is a normalized smooth temporal convolution kernel, s is the output spike train,
and ŝ is a target spike train. Here, spike train is represented as s(t) = ∑tk<t δ(t− tk).

When calculating the derivative of Equation (24) with respect to the synaptic weights,
the problematic term ∂s

∂w that contains the Dirac delta function appears. In order to avoid
this term, the spike train is approximated with a continuous auxiliary function of the
membrane potential of the LIF model.

∂s
∂w
≈ ∂σ(vm)

∂w
= σ′(vm)

∂vm

∂w
(25)

where σ(x) = x/(1 + |x|) represents a fast sigmoid. Here we further approximate ∂vm
∂w ≈

ε× s with a normalized smooth temporal convolution kernel ε.

∂L
∂w

=
∫ T

0
α× (s− ŝ) α× (σ′(vm)(ε× spre))dt (26)

where the α× (s− ŝ) is an error signal and α× (σ′(vm)(ε× spre)) is a synaptic eligibil-
ity trace.

SLAYER [50] distributes the credit of error back in time in order to solve the drawback
of event-based methods. SLAYER assumes a stochastic spiking neuron approximation
for the IF model with a refractory response and can simultaneously learn both synaptic
weights and axonal delays.

∂L
∂w

=
∫ T

0
ρ(t)(α� e)(α× spre)dt (27)

where ρ(t) is the probability density function that could be formulated with the spike
escape rate function [51], � represents the element-wise correlation in time, and e is the
backpropagation estimate of error.
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5.2. Spike-Time-Dependent Plasticity (STDP)

Spike-time-dependent plasticity (STDP) is an unsupervised Hebbian learning mech-
anism, which adjusts synaptic weight based on the temporal order of the pre- and post-
synaptic spikes [52,53]. When the pre-synaptic spike arrives before a post-synaptic spike,
the synaptic weight is increased, which is known as long-term potential (LTP). If the arrival
timing of the synaptic spike is reversed, the synaptic weight is decreased, which is known
as long-term depression (LTD).

∆w =

A+ exp
(

tpre−tpost
τ+

)
if tpre ≤ tpost

−A− exp
(
− tpre−tpost

τ−

)
if tpre > tpost

(28)

Equation (28) suggests that the synaptic strength can be increased or decreased in-
finitely, which is biologically unrealistic and makes learning unstable. Biological neurons
have a capacity to regulate their own excitability relative to network activity by decreasing
the strength of each synapse so that the relative synaptic weighting of each synapse is
preserved [54]. This phenomenon is called homeostatic scaling and can be implemented by
making A± weight dependent. With the following exponential rule, the magnitude of the
weight modification is regularized according to the current synaptic weight.{

A+(w) = η+ exp(winit − w)

A−(w) = η− exp(w− winit)
(29)

Here, η± are learning rates that take small positive values, and winit refers to the initial
weight of the synapse (sometimes this term is dropped).

In terms of biology as well as the implementation, it is infeasible to remember all
the times of spike occurrence, as seen in Equation (28). This is where the spike trace
x is introduced:

dw
dt

= A+xpre · δpost − A−xpost · δpre (30)

dxpre

dt
= −

xpre(t)
τ+

+ δ(t)

dxpost

dt
= −

xpost(t)
τ−

+ δ(t)
(31)

where τ+ and τ− are the time constants. Figure 4 shows the response of a spike trace and
corresponding weight modifications based on STDP. The spike trace xpre can be interpreted
as an opening rate of N-methyl-D-aspartate (NMDA) receptor and xpost as Ca2+ influx
through voltage-gated Ca2+ channels activated by a backpropagating action potential
(bAP). This multiplicative STDP implementation that is inherently stable by combining
the weight-dependent exponential rule with spike trace information is often referred to as
stable STDP (S-STDP) [55].
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Figure 4. Weight change in two neurons based on STDP learning rule.

In the following subsections, we will review various STDP variants.

5.2.1. Anti-Hebbian STDP (aSTDP)

Although STDP-like synaptic weight modifications have been found in various neu-
ronal systems, all the systems do not follow the STDP rule. Synapses between parallel fibers
and Purkinje-cells in the cerebellum-like structure, for example, follow an anti-Hebbian
temporal order [56]. The anti-Hebbian STDP (aSTDP) shows the opposite dependence
on the relative timing of pre-synaptic input and the post-synaptic spike compared to
STDP. With aSTDP, pre-synaptic activity occurring before post-synaptic activity leads to
depression, and vice versa. The aSTDP rule is given:

∆w =

A+ exp
(
− tpre−tpost

τ+

)
if tpre > tpost

−A− exp
(

tpre−tpost
τ−

)
if tpre ≤ tpost

(32)

Compared to the standard STDP, the directions of the greater than/less than signs is
opposite, and the magnitude of the learning rate could be different from that for STDP.

5.2.2. Mirrored STDP (mSTDP)

Mirrored STDP was introduced as an effort to implement autoencoders in a biologically
realistic fashion [57]. mSTDP combines STDP and aSTDP for feedforward and feedback
connections of a two-layer autoencoder such that feedforward and feedback learning
is symmetric. This learning rule accounts for high LTP correlation with no causality.
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However, the biological plausibility is limited because it neglects the causality underlined
by Hebb [42].

5.2.3. Probabilistic STDP

A probabilistic variant of simplified STDP [58] that adjusts the synaptic weight for
LTP according to an exponential function of the current weight magnitude was introduced
by [59]. Probabilistic STDP shows the robustness in performance regardless of a complexity
in the spiking neuron model, i.e., non-leaky IF neurons and Izhikevich-like neurons.

∆w =

{
η+ exp(−w) if tpre ≤ tpost

−η− if tpre > tpost
(33)

5.2.4. Reward Modulated STDP (R-STDP)

While STDP operates based upon the correlation between the spike timings of the
pre- and post-synaptic neurons, a reward signal is introduced to modulate STDP in order
to implement a reinforcement learning mechanism. If the reward is positive, the cor-
responding synapse is potentiated; otherwise, the corresponding synapse is depressed.
According to [60], dopaminergic neurons are characterized as having two different firing
patterns. In the absence of any stimulus, they exhibit a slow (1–8 Hz) firing rate, known
as background firing. When stimulated, the dopaminergic neurons exhibit burst firing.
Burst firing is where neurons fire in very rapid bursts, followed by a period of inactivity.
The modulation is conducted by introducing an eligibility trace z for pre- and post-synaptic
spike occurrence as follows:

dw
dt

= ηr(t)zi,j(t) (34)

dzi,j

dt
= −

zi,j(t)
τ

+ STDP(t) (35)

where r(t) is the reward given at time t, z is the eligibility trace.

5.3. Prescribed Error Sensitivity (PES)

Prescribed error sensitivity (PES) is a supervised learning rule suited for online learn-
ing for adaptive control that learns a function by minimizing an external error signal
frequently used with the neural engineering framework (NEF) [61]. This rule has been
used for many works, including a biologically detailed neural model of hierarchical rein-
forcement learning [62] and adoptive control of quadcopter flight [63]. The weight update
for this rule is defined as follows:

∆w = ηe(t)a (36)

where e(t) is an error signal at time t, and a is the rate activity of each neuron.

5.4. Intrinsic Plasticity

The intensity of an average synaptic input in the brain may change dramatically.
Neurons maintain responsiveness to both small and large synaptic inputs by regulating
intrinsic excitability to promote stable firing. This way, neuronal activity can keep from
falling silent or saturating when the average synaptic input falls extremely low or rises
significantly high. Intrinsic plasticity (IP) regulates the firing rate of a neuron within an
appropriate range [64,65]. The firing rate entropy can be influenced by the neuron’s intrinsic
properties. By changing these intrinsic properties, the neuron can achieve the optimal firing
rate distribution.

φ =


−η exp( τmin−∆tISI

τmin
) if ∆tISI < Tmin

η exp(∆tISI−τmax
τmax

) if ∆tISI > Tmax

0 otherwise

(37)
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b← b + bmax · φ (38)

where η is a learning rate, Tmin and Tmax are thresholds that determine the desired range of
inter-spike interval (ISI) represented as ∆tISI .

During the training, the most recent ISI is examined and neuronal excitability is ad-
justed. When ISI is larger than the threshold Tmax, the neuronal excitability is strengthened
to make the neuron more sensitive to input stimuli, and if ISI is less than the threshold Tmin,
the neuronal excitability is weakened to make the neuron less sensitive to input stimuli.

5.5. ANN-to-SNN Conversion

Most ANN-to-SNN conversion methods have focused on converting ReLU to IF
neurons. Reference [43] proposed an ANN-to-SNN conversion method that neglects bias
and max-pooling. In subsequent work, reference [66] proposed data-based normalization
to improve the performance in deep SNNs. Reference [67] presented conversion methods of
batch normalization and spike max-pooling. Reference [68] expanded conversion methods
to VGG and residual architectures. One core hypothesis of several ANN-to-SNN conversion
designs is that the heavy computational cost of existing ANNs results from the continual
transmission of real-valued activities between connected nodes in the network, as well
as the subsequent matrix multiplication or convolution [69]. As a result, implementing
ANN-to-SNN conversion may enable the same information transmission and function
but decrease the costs of signal transmission and computation. Binary-valued spikes both
reduce the number of bits per transmission by turning real-valued signals into binary ones,
and they make signals sparse in time by not transmitting information for each connection
every timestep. These ANN-to-SNN conversion methods are based on the idea of importing
pre-trained parameters (e.g., weights and biases) from an ANN to an SNN. ANN-to-SNN
conversion methods have achieved comparable results in deep SNNs to those of original
ANNs (e.g., VGG and ResNet) and can be considered as a solution to the energy-efficiency
problem of ANNs in the deployment time.

6. Spike Encoding

Since SNNs utilize the spike and spike sequences to convey the information, encoding
real data into spikes is a substantial step in creating SNNs. Although the way information is
encoded into spikes in biology is one of the biggest unresolved challenges in neuroscience.
Two main encoding schemes, rate encoding and temporal (pulse) encoding, can be found in
many kinds of literature. In addition, it is noteworthy that some sensors, such as Dynamic
Vision Sensor (DVS), can produce raw spike sequences.

6.1. Rate Encoding

The rate encoding scheme is based on the average number of spikes over time; infor-
mation is encoded with a number of spikes generated over a time window. Depending on
the different averaging schemes, there are several ways to define the firing rate, such as an
average over time or an average over several repetitions.

n =
∫ T

0
dt δ(t− tk) (39)

where T is the time window, and tk is the time of spike occurrence. Then, the firing rate r
can be expressed as:

r =
n
T

(40)

This firing rate can be used as an input for rate-base neuron models, i.e., ANNs, where
the activation function represents the frequency–current (FI) curve.

The firing rate can also be utilized to model the discrete spikes with the point process.
In the Poisson process, which is one of the point processes, the probability of the random
variable N(t) being equal to n, i.e., when the probability of a point occurring follows a
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Poisson distribution with intensity λ, the probability of a spike occurring n times by time
t, is given by: P{N(t) = n} = (λt)n

n! e−λt. Then, the single spike occurrence during a short
time step ∆t is:

P{N(∆t) = 1} = λ∆t(e−λ∆t) ' λ∆t + o(∆t) (41)

where the e−λ∆t term is approximated with the McLaughlin expansion.
When encoding an image into spike sequence, we can assume each pixel value corre-

sponds to the firing rate r, and following Equation (41), spike occurrence for each time step
t can be obtained as:

s =
{

1 if ξ ∼ U(0, 1) < r∆t
0 otherwise

(42)

6.2. Temporal Encoding

The temporal encoding scheme is based on the exact timing of spikes, where the more
salient information is encoded as earlier spike times. Compared to the rate encoding scheme,
temporal encoding produces much sparser spikes since the spike-timing rather than the
spike-frequency represents information. Although the temporal code allows representing
the features of the input with small groups of neurons, it contains a vulnerability to input
noise or temporal jitter.

When encoding an image, each individual pixel value ranging from 0 to 255 can be
simply used to produce the spike time that is proportional to the brightness of the pixel.
For instance, a pixel with normalized brightness of 0.1 corresponds to a spike time at t = 0.1.
In a grayscale image, white pixels (brightness equals 1 or 255) do not cause spikes, as it can
be considered that they do not carry any information.

7. SNNs in Computer Vision

SNNs have been a driving factor in the development of many modern computer
vision and other signal processing techniques. The application of SNNs is gradually
being considered in computer vision where data consisting of temporal information is
handled or where the saving of computational resources is aimed. The former case often
involves the use of an event camera or LiDAR sensor whose data has importance in
the temporal dimension. The latter case often focuses on the conversion of ANNs into
SNNs so that deep neural network models can embrace the energy-efficient operations of
neuromorphic hardware.

Although some studies have shown SNNs can be used for image classification on
large datasets such as ImageNet [38,67,68], most applications of SNNs are still limited to
less complex datasets such as MNIST [70], N-MNIST [71], and N-Caltech101 [71]. One
of the primary reasons for the limited application scope is the complex dynamics and
non-differentiable operations of spiking neurons. Recently, some remarkable studies have
applied SNNs for object detection tasks [72–74], showing comparative results with DNNs
while requiring much less energy for the computations. Following the successes of the
ANNs to SNNs conversion methods on image classification and object detection tasks, refer-
ence [75] leveraged SiamFC [76] and introduced SiamSNN, a spike-based Siamese network
for object tracking. Recently, UNet-based SNN in [69] leveraged the Nengo framework to
translate a simplified U-Net into a spiking network to deploy on the Intel Loihi neuromor-
phic chip. The UNet-based SNN model is implemented with two frameworks: TensorFlow
and NengoDL [77]. Furthermore, a partitioning algorithm, which minimizes inter-chip
communication resulting in a faster and more energy-efficient network, is proposed in [69]
to deploy SNN on Loihi.

Unlike frame-based cameras, event-based cameras are often referred to as bio-inspired
silicon retinas. However, event-based cameras require a high temporal resolution (in the
order of microseconds) and a fraction of power consumption. The combination of spiking
neural networks and event-based vision sensors holds the potential of highly efficient
and high-bandwidth optical flow estimation [55]. Reference [78] proposed Spike-FlowNet,
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a deep hybrid neural network architecture integrating SNNs and ANNs for efficiently
estimating optical flow from sparse event camera outputs without sacrificing performance.

To illustrate how to implement an SNN framework for computer vision, we choose
the task of image classification with the DCSNN network [79]. The overall structure of
DCSNN for digit recognition is shown in Figure 5. The input image is convolved with
six different Gaussian (DoG) filters at various scales with zero padding. Window sizes
are set to 3 × 3, 7 × 7, and 13 × 13, where their standard deviations (σ1, σ2) are (3/9, 6/9),
(7/9, 14/9), and (13/9, 26/9), respectively. Then, a spike is generated and propagated to
the next layer by an intensity-to-latency encoding [80]. From the output of the DoG filters,
all the values below 50 are ignored and the remaining values are descendingly sorted,
denoting the order of spike propagation. Generated spikes are processed through three
spiking convolution-then-pooling layers (S1–C1, S2–C2, and S3–C3). The convolutional
layer (S-layer) contains several 2-dimensional grids of IF neurons, which constitute the
feature maps. All S-layers are trainable, employing either STDP or R-STDP learning rules.
The C-layer has the same number of feature maps as its previous S-layer, and there is a
one-to-one association between maps of the two layers. There are two types of C-layers:
spike-based and potential-based. The network makes its decision in C3, where neurons are
pre-assigned to digits, and the decision is the digit assigned to the neuron with either the
maximum internal potential or the earliest spike time. When the decision of the network
has been made, it will be compared with the original label of the input image. By using the
R-STDP rule for synaptic plasticity, a reward or punishment will be generated depending
on if the decision and ground truth label match or mismatch [67].

Figure 5. The overall structure of DCSNN for digit recognition. Courtesy of [79].

Table 2 summarizes the use of SNNs in the field of computer vision.

8. SNNs in Robotic Control

Mobile robots with continuous high-dimensional observation and action spaces are
increasingly being deployed to solve complex real-world tasks. Given their limited on-
board energy resources, there is an unmet need to design energy-efficient solutions for the
continuous control of these autonomous robots.

Biology shows that the event-based paradigm is applicable not just to perception and
inference but also to control. Spiking neural networks have been utilized as a “brain” of
robots that provides robotic perception and action to mimic the behaviors captured in
nature. Most commonly, the utilization of SNNs in robotic applications involves hand-
crafting and tuning for the task of interest. Many fields of robotics, e.g., locomotor systems,
have been inspired by biological systems. Nowadays, several methods have been proposed
to achieve locomotion in a variety of robots, which is known as a central pattern generator
(CPG). CPG is a neural network in which interconnected excitatory and inhibitory neurons
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produce an oscillatory, rhythmic output without some rhythmic inputs. Most of the current
research explores ANNs based on non-spiking neurons, but there is a growing body
of research on SNNs. Reference [81] presented the first implementation of a real-time
neuromorphic spiking CPG (sCPG) that runs on the SpiNNaker to command a hexapod
robot to perform a walk, trot, or run motion. Reference [82] implemented sCPG with
an AdEx neuron model that exhibits a tripod-like gait. Their model can manipulate
the amplitude, frequency, and phase while the network is running, indicating that these
characteristics can be updated in an online manner to further explore the role of sensory
feedback in shaping locomotion.

In robotics, the lamprey has often been used as a model for understanding the role of
CPG in locomotion. The lamprey swims by propagating a mechanical wave, transmitted
along the body. Reference [83] proposed to implement a sCPG using an analog/digital VLSI
device interfaced with an FPGA board, which can be directly interfaced to the actuators
of a bio-mimetic robotic lamprey. Reference [84] used the sCPG model implemented in
Nengo to produce the swimming gaits modulated by the high-level brainstem control of a
simulated lamprey robot model in various scenarios. They showed that the robot can be
controlled dynamically in direction and pace by modifying the input to the network.

Inspired by the success of SNNs on event-based cameras, reference [85] proposed, for
the very first time, a fully embedded application of the Loihi neuromorphic chip prototype
in a flying robot to bridge the gap between simulation and the real world. In this work,
the SNN architecture is evolved in a highly randomized and abstracted vertical simulation
and takes the ventral optic flow divergence as its input to determine the thrust setpoint to
achieve a smooth landing. Focusing on proportional, integral, derivative (PID) controller
in neuromorphic hardware, reference [86] improved the work in [87] and proposed an
event-based PID controller to improve the PID controller on Loihi. In [86], they re-designed
the integral path of the controller to cope with a limited resolution of value representation,
which led to fast saturation of the I-path. Then, they simplified the network, removing the
inner control loop and simplified the network, removing the inner control loop.

In addition to a pattern generator and motor control, navigation is an important task
in robotics. With the requirement of energy efficiency in simultaneous localization and
mapping (SLAM), which is crucial for mobile robots exploring unknown environments,
SNN is an appropriate solution. Reference [88] proposed a biologically constrained SNN ar-
chitecture to solve the unidimensional SLAM problem on Loihi. In [88], the robot’s heading
is determined via spike-based recursive Bayesian inference of multisensory cues (i.e., visual
and odometry information). Reference [89] demonstrated a model of rat hippocampus
place, grid, and border cells implemented with the SpiNNaker. The implemented place
cells were used to represent the location of landmarks for “home” and “cheese”, whereas
the grid cells provide displacement information to the robot. They showed that the robot
can detect these landmarks correctly. Reference [90] presented a brain-like navigation
system with LIF neurons trained by STDP. In this work, reference [90] shows that SNN may
robustly control an autonomous robot in mapping and exploring an unknown environment,
while compensating for its own intrinsic hardware imperfections, such as partial or total
loss of visual input. Reference [91] proposed a variant of deep deterministic policy gradient
(DDPG), called spiking deep deterministic policy gradient (SDDPG), which consists of a
spiking actor network and a deep critic network that were trained jointly using gradient
descent for energy-efficient mapless navigation. This work explored an indirect SNN train-
ing approach based on the reward-modulated spike-timing-dependent plasticity (R-STDP)
learning rule and supervised learning framework. The model was validated with Turtle-
bot2 platform and Intel’s Kapoho-Bay USB chipset. The authors claimed that the proposed
method performed slightly better than the state-of-the-art thanks to the generalization
introduced by the Poisson spike encoding of the state input.

In this category, we will introduce [88] as an instance to show how SNNs are used in
robotics. The model has two sensory spike rate-encoders and five sub-networks, as shown
in Figure 6. The odometry sensor and the RGB-depth camera signals drive the neural
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activity of speed cells and sensory neurons encoding the angular speed and the distance to
the nearest object, respectively. With five sub-networks, Head Direction (HD) receives the
input from the speed cells and plays the role of the heading of the robot; Reference Frame
Transformation (RFT) receives the egocentric input from sensory neurons and generates
the allocentric distance representation in the world reference frame (defined by the HD
network); Distance Mapping (DM) learns the allocentric observations from the RFT and
forms a map of the robot’s surrounding environment; Observation Likelihood (OL) uses
the map from the DM to compute the observation likelihood distribution of the robot’s
heading based on the egocentric observation from sensory neurons; Bayesian Inference
(BI) produces a near-optimal posterior of the robot’s heading and corrects the heading
representation within the HD.

Figure 6. The overall structure of SNN architecture for SLAM. Courtesy of [88].

Table 3 summarizes the use of SNNs in the field of robotics.

9. Available Software Frameworks

The steadily increasing interest in SNN has led to many attempts to develop SNN
libraries for Python. Unlike ANNs, the objectives in SNNs are time consumption and
energy efficiency. To provide functional systems for researchers to execute applications that
are designed with SNNs, several software frameworks have been proposed to provide SNN
platforms. We provide a list of open-source software frameworks for the SNN simulation
with some emphasis on the relation with deep learning frameworks in Table 4.

10. Conclusions and Future Perspectives

In this paper, we present a review of the fundamentals of spiking neural networks
(SNNs) and provide a survey of the literature on the use of SNNs in computer vision
and robotics applications, which demonstrates the great potential of SNNs in the research
community. Over the past decade, SNNs have gained huge attention and shown they
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are promising in temporal information processing capability, low power consumption,
and high biological plausibility. However, realizing the full potential of SNNs requires
solving several challenges ahead of us.

• Training of SNNs: There are two main approaches to train SNNs: (i) training SNNs di-
rectly based on either supervised learning with gradient descent or unsupervised learn-
ing with STDP (ii) convert a pre-trained ANN to an SNN model. The first approach
has the problem of gradient vanishing or explosion because of a non-differentiable
spiking signal. Furthermore, an SNN trained by gradient descent is restricted to
shallow architectures and produces low performance on large-scale datasets such as
ImageNet. The second approach increases the computational complexity because of
the large number of timesteps, even though these SNNs achieve comparable accuracy
to ANNs, due to the similarity between SNNs and recurrent neural networks (RNNs),
and results in backpropagation through time (BPTT). Recently, reference [92] showed
that RTRL, an online algorithm to compute gradients in RNNs, can be combined with
an LIP neuron to provide good performance with a low memory footprint.

• SNNs Architecture: While the majority of existing works on SNNs have focused on
the image classification problem and utilize available ANN architectures such as
VGG or Resnet, having an appropriate SNN architecture is critical. Recently, meta-
learning such as neural architecture search (NAS) has been utilized to find the best
SNN architecture [93].

• SNNs Performance on Large-scale Data: While SNNs have shown an impressive advan-
tage with regard to energy efficiency, their accuracy performances are still low com-
pared to ANNs on large-scale datasets such as ImageNet. Recently, references [94–96]
utilized the huge success of ResNet in ANNs to train deep SNNs with residual learning
on ImageNet.
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Table 2. Summary of recent applications of SNNs in computer vision.

Method
Year

Training
Paradigm Description Performance

Image Classification

DCSNN [79] (2018) STDP and RSTDP

A convolutional SNN was trained by a combination of STDP for
the lower layers and reward-modulated STDP for the higher ones,
which allows training the entire network in a biologically plausible
way in an end-to-end fashion.

They have achieved 97.2% accuracy on the MNIST
dataset. https://github.com/miladmozafari/
SpykeTorch (accessed on 5 September 2021)

LM-SNNs [97] 2020 STDP

Lattice map spiking neural network (LM-SNN) model with mod-
ified STDP learning rule and biological inspired decision-making
mechanism was introduced. Learning algorithm in LM-SNN mani-
fests an unsupervised learning scheme.

Dataset: MNIST handwritten digits and a collection of
snapshots of Atari Breakout.

Zhou et al. [98] (2020) STDP
First work to apply SNNs to a medical image classification task. Uti-
lized an STDP-based convolutional SNN to distinguish melanoma
from melanocytic nevi.

Dataset: ISIC 2018 [74] includes 1113 images of MEL
and 6705 images of NV. Performance: Without feature
selection: 83.8% With feature selection: 87.7%

Zhou et al. [99] (2020) R-STDP

An imbalanced reward coefficient was introduced for the R-STDP
learning rule to set the reward from the minority class to be higher
than that of the majority class and to set the class-dependent rewards
according to the data statistic of the training dataset.

Dataset: ISIC 2018. Performance: classification rate of the
minority class from 0.774 to 0.966, and the classification
rate of the majority class is also improved from 0.984 to
0.993.

Lou et al. [100] (2020) STDP

Both temporal and spatial characteristics of SNN are employed for
recognizing EEG signals and classifying emotion states. Both spatial
and temporal neuroinformatic data to be encoded with synapse and
neuron locations as well as timing of the spiking activities.

74%, 78%, 80% and 86.27% for the DEAP dataset, and the
overall accuracy is 96.67% for the SEED dataset

Object Detection

Spiking YOLO [73]
(2019)

ANN-to-SNN Con-
version

Spiking-YOLO was presented for the first kind to perform energy-
efficient object detection. They proposed channel-wise normaliza-
tion and signed neuron with imbalanced threshold to convert leaky-
ReLU in a biologically plausible way.

They have achieved mAP% 51.83 on PASCAL VOC and
mAP% 25.66 on MS COCO

Deep SCNN [74]
(2020) Backpropagation

SNN based on the Complex-YOLO was applied on 3D point-cloud
data acquired from a LiDAR sensor by converting them into spike
time data. The SNN model proposed in the article utilized the IF neu-
ron in spike time form (such as the one presented in Equation (11))
trained with ordinary backpropagation.

They obtained comparative results on the KITTI dataset
with bird’s-eye view compared to Complex-YOLO with
fewer energy requirements. Mean sparsity of 56.24%
and extremely low total energy consumption of 0.247 mJ
only.

https://github.com/miladmozafari/SpykeTorch
https://github.com/miladmozafari/SpykeTorch
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Table 2. Cont.

Method
Year

Training
Paradigm Description Performance

Image Classification

FSHNN [101] (2021) STDP & SGD
Monte Carlo dropout methodology is adopted to quantify uncer-
tainty for FSHNN and used to discriminate true positives from
false positives.

FSHNN provides better accuracy compared to ANN-
based object detectors (on MSCOCO dataset) while being
more energy-efficient. Features from both unsupervised
STDP-based learning and supervised backpropagation-
based learning are fused. It also outperforms ANN,
when subjected to noisy input data and less labeled train-
ing data with a lower uncertainty error.

Object Tracking

SiamSNN [75] (2020) ANN-to-SNN Con-
version

SiamSNN, the first SNN for object tracking that achieves short
latency and low precision loss of the original SiamFC was intro-
duced along with an optimized hybrid similarity estimation method
for SNN.

OTB-2013, OTB-2015, and VOT2016. SiamSNN achieves
50 FPS and extremely low energy consumption on
TrueNorth.

Two multi-layered
SNNs [102] (2020) R-STDP

This addressed the issue of SNN-based moving-target tracking on a
wheel-less snake robot. A Dynamic Vision Sensor (DVS) is utilized
to perceive the target and encode it as spikes that are fed into the
SNN to drive the locomotion controller of the snake robot.

The simulation experiments conducted in the NRP. Com-
pared to SNN, the relative direction of the target to
the robot is with less fluctuation when using the multi-
layered SNN.

Object Segmentation

Unet-based SNN [69]
(2021)

ANN-to-SNN Con-
version

Instead of using a fixed firing rate target for all neurons on all exam-
ples, Unet-based SNN regularizes a rank-based statistic computed
across a neuron’s firing rates on multiple examples to allow a range
of firing rates. Unet-based SNN also proposes the percentile-based
loss function to regularize the (almost) maximum firing rate of each
neuron across all examples. During the forward pass, it uses a
modification of the ReLU non-linearity

Even achieve lower accuracy performance (92.13%) com-
pared to Unet baseline (94.98% on Tensorflow and 92.81%
on NengoDL) on the ISBI 2D EM Segmentation dataset,
Unet-based SNN runs on the Loihi neuromorphic hard-
ware with greater energy efficiency.

SpikeMS [103] (2021) Backpropagation
SpikeMS includes spike counts and classification labels to address
the problem of motion segmentation using the event-based DVS
camera as input

SpikeMS achieves performance comparable to an ANN
method but with 50× less power consumption on EV-
IMO, EED and MOD datasets.

Chen et al. [104]
(2021)

ANN-to-SNN con-
version

Temporal redundancy between adjacent frames is capitalized to
propose an interval reset method where the network state is reset
after a fixed number of frames.

It achieved a 35.7× increase in convergence speed with
only 1.5% accuracy drop using an interval reset of 20
frame



Brain Sci. 2022, 12, 863 22 of 30

Table 2. Cont.

Method
Year

Training
Paradigm Description Performance

Image Classification

SpikeSEG [105]
(2021)

STDP & backpropa-
gation

This is a spiking fully convolutional neural network used for se-
mantic event-based image segmentation through the use of active
pixel saliency mapping. Both spike-based imaging and spike-based
processing are utilized to deliver fast and accurate class segmented
spiking images.

The SpikeSEG network performs well on the synthetic
dataset with accuracy values of 97% and mIoU of 74%

Optical-Flow Estimation

Hierarchical
cuSNN [55] (2019) Stable STDP

The selectivity of the local and global motion of the visual scene
emerges through STDP from event-based stimuli. The input statis-
tics of event-based sensors are handled by an adaptive spiking
neuron model. The neuron is learnt by the proposed stable STDP.
The neuron model and STDP rule are combined in a hierarchical
SNN architecture to capture geometric features, identify the local
motion of these features, and integrate this information into a global
ego-motion estimate.

It is evaluated on synthetic and real event sequences with
the Event Camera Dataset on DAVIS and SEES1 DVS
sensors. Code available: https://github.com/tudelft/
cuSNN (accessed on 4 September 2021)

Spike-FlowNet [78]
(2020) Backpropagation

Spike-FlowNet, a deep hybrid neural network, integrating SNNs
and ANNs for efficiently estimating optical flow from sparse event
camera outputs without sacrificing the performance was proposed.
They trained the IF neuron with spike-base backpropagation.

On the MVSEC dataset, Spike-FlowNet accurately pre-
dicts the optical flow from discrete and asynchronous
event streams along with substantial benefits in terms of
computational efficiency compared to the corresponding
ANN architecture. Code available: https://github.com/
chan8972/Spike-FlowNet (accessed on 27 August 2021)

STaRFlow [106]
(2021) Backpropagation

STaRFlow is a lightweight CNN for multi-frame optical flow estima-
tion with occlusion handling. Temporal information is exploited by
temporal recurrence, where the same weights over a scale recurrence
are repeatedly used.

STaRFlow obtains SOTA performances on MPI Sintel and
Kitti2015 and involves significantly fewer parameters.
Code available: https://github.com/pgodet/star_flow
(accessed on 5 September 2021)

https://github.com/tudelft/cuSNN
https://github.com/tudelft/cuSNN
https://github.com/chan8972/Spike-FlowNet
https://github.com/chan8972/Spike-FlowNet
https://github.com/pgodet/star_flow
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Table 3. Summary of recent applications of SNNs in robotics.

Method
Year

Software/
Hardware Description Performance

Pattern Generation
Cuevas-
Arteaga et al. [107]
(2017)

PyNN/
SpiNNaker

Spiking CPG (sCPG) to command a hexapod robot to perform walk, trot,
or run.

NeuroPod [81] (2019) -/SpiNNaker The first implementation of a real-time neuromorphic sCPG that runs on
the SpiNNaker to command a hexapod robot to perform walk, trot, or run.

The robot was based on the design from https://www.thingiverse.
com/thing:1021540 (accessed on 5 September 2021)

Strohmer et al. [82]
(2020) NEST/-

An sCPG with AdEx neuron model that exhibits a tripod-like gait. Their
model can manipulate the amplitude, frequency, and phase while the net-
work is running, indicating that these characteristics can be updated in an
online manner to further explore the role of sensory feedback in shaping
locomotion.

A validation test was performed on the Modular Robot Framework
(MORF), and source code is available at: https://gitlab.com/esrl/
scpg-network-simulation (accessed on 4 September 2021)

Donati et al. [83] (2014) -/FPGA

Implement an sCPG using analog/digital VLSI device interfaced with
an FPGA board, which can be directly interfaced to the actuators of a
bio-mimetic robotic lamprey. CPG network is implemented using silicon
neurons and synapses with biologically plausible time constants.

The neuromorphic chip can reproduce the behavior of the theoreti-
cal CPG model, offering the possibility of directly controling the
actuators of an artificial bio-inspired lamprey robot. The neuron
produces periodic bursting, lasting approximately 60 ms, with an
inter-burst interval of about 1.5 s. The spiking frequency during
the burst is about 35 Hz.

Angelidis et al. [84]
(2021)

Nengo/
SpiNNaker

Used the sCPG model implemented in Nengo to produce the swimming
gaits modulated by the high-level brainstem control of a simulated lamprey
robot model in various scenarios. They showed that the robot can be
controlled dynamically in direction and pace by modifying the input to the
network.

The experiments are conducted on an isolated CPG model and
neuromechanical simulations. It provides a vast number of pos-
sible synchronized gaits, e.g., traveling and standing waves, and
smoothly controls a lamprey robot that, with regulation of the
high-level drive, adapts to various simulation scenarios. On neuro-
morphic hardware, it achieves real-time operation.

Motor Control

Dupeyroux et al. [85]
(2020) PySNN/Loihi

This is a fully embedded application of the Loihi neuromorphic chip proto-
type in a flying robot. It uses an evolutionary algorithm to optimize SNN
controllers and an abstracted simulation environment for evaluation.

The resulting network architecture consists of only 35 neurons
distributed among three layers. Quantitative analysis between
simulation and Loihi reveals a root-mean-square error of the thrust
setpoint as low as 0.005 g, along with a 99.8% matching of the spike
sequences in the hidden layer and 99.7% in the output layer. Videos
of the flight tests can be found at https://mavlab.tudelft.nl/loihi/
(accessed on 5 September 2021)

https://www.thingiverse.com/thing:1021540
https://www.thingiverse.com/thing:1021540
https://gitlab.com/esrl/scpg-network-simulation
https://gitlab.com/esrl/scpg-network-simulation
 https://mavlab.tudelft.nl/loihi/
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Table 3. Cont.

Method
Year

Software/
Hardware Description Performance

Stagsted et al. [86]
(2020) Nengo/Loihi

By modifying SNN architecture and improving the interface between neu-
romorphic cores and the host computer allowed, it improves the latency
and frequency of the controller. The integral path of the controller was re-
designed to cope with a limited resolution of value representation. The in-
ner control loop was removed to simplify the network, and the time step
duration of the control loop was decreased to improve the I/O interface.

SNN-based proportional, integral, derivative (PID) controller was
tested on a drone constrained to rotate on a single axis. They
achieved comparable performance for overshoot, rise and settling
times.

Navigation

Spiking RatSLAM [89]
(2012)

Spatial Envelope
Synthesis (SES)

It demonstrates a model of rat hippocampus place, grid, and border cells
implemented with the SpiNNaker. The implemented place cells were used
to represent the location of landmarks for “home” and “cheese” whereas
the grid cells provide displacement information to the robot. They showed
that the robot can detect these landmarks correctly.

Place cells represent the location of landmarks for “home” and
“cheese”, while Grid cells provide displacement information to the
robot. The experiment shows that that robot is correctly able to
detect these landmarks http://neuromorphs.net/nm/wiki/act12/
results/Combined (accessed on 5 September 2021)

Gridbot [90] (2018) ROS/-

Gridbot is an autonomously moving robot with 1321 spiking neurons and
is able to map the environment by itself. Gridbot contains neurons that
were modeled as LIF units; synapses that were either hardwired or under-
went plastic changes through STDP, dendritic trees that integrated synaptic
inputs. Gridbot encoded sensory information into distributed maps and
generated motor commands to control the robot movement.

Three experiments: follow the walls of the environment for 30 min;
explored the environment randomly; the robot walked through the
learned environment for more than 2 h

Bing et al. [108] (2019) -/Kapoho-Bay USB
chipset

It is a fast method to build an SNN-based controller for performing robotic
implementations by using a model-based control method to shape a desired
behavior of the robot as a dataset and then use it to train an SNN based on
supervised learning.

It performed slightly better than the state-of-the-art thanks to gen-
eralization introduced by Poisson spike encoding of the state input

Tang et al. [88] (2019) Gazebo/-

The model has two sensory spike rate-encoders and five sub-networks (head
direction, reference frame transformation, distance mapping, observation
likelihood, Bayesian inference). All five sub-networks are integrated, and
the model has intrinsic asynchronous parallelism by incorporating spiking
neurons, multi-compartmental dendritic trees, and plastic synapses, all of
which are supported by Loihi.

A mobile robot is equipped with an RGB-depth camera, in both
the AprilTag real-world and Gazebo simulator, for validating our
method. It is validated for accuracy and energy-efficiency in both
real- world and simulated environments by comparing with the
GMapping algorithm. It consumes 100 times less energy than
GMapping run on a CPU while having comparable accuracy in the
head direction localization and map-generation.

SDDPG [91] (2020) PyTroch/-
Spiking deep deterministic policy gradient (SDDPG), which consists of a
spiking actor network and a deep critic network that were trained jointly
using gradient descent for energy-efficient mapless navigation.

The model was validated with Turtlebot2 platform and In-
tel’s Kapoho-Bay USB chipset. https://github.com/combra-lab/
spiking-ddpg-mapless-navigation (accessed on 6 September 2021)

http://neuromorphs.net/nm/wiki/act12/results/Combined
http://neuromorphs.net/nm/wiki/act12/results/Combined
https://github.com/combra-lab/spiking-ddpg-mapless-navigation
https://github.com/combra-lab/spiking-ddpg-mapless-navigation
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Table 4. List of available software frameworks for SNNs simulation.

Framework Training
Paradigm Description

SNN simulator

Brain2 [109] STDP Brian2 is a widely-used open-source simulator for spiking neural networks. https://opensourcelibs.com/lib/brian2 (accessed
on 6 September 2021)

Nest [110] STDP/RSTDP Nest focuses on the dynamics and structure of neural systems, and it is used in medical/biological applications but maps poorly
to large datasets and deep learning.

Nengo [111] STDP
PES

Neural simulator for large-scale neural networks based on the neural engineering framework (NEF), which is a large-scale
modeling approach that can leverage single neuron models to build neural networks.

Nengo DL [77] ANN conversion NengoDL allows users to construct biologically detailed neural models, intermixed with deep-learning elements bucked by
TensorFlow and Keras [112].

SpykeTorch [113] STDP/RSTDP SpykeTorch is based on PyTorch [114] and simulates convolutional SNNs with at most one spike per neuron and the rank-order
encoding scheme.

BindsNet [115] STDP/RSTDP
ANN conversion

BindsNet is also based on PyTorch targeting machine-learning tasks. Currently, synapses are implemented without their own
dynamics.

Slayer PyTorch [116] BP Slayer PyTorch provides solutions for the temporal credit problem of spiking neurons that allows backpropagation of errors.

Norse BPTT
RSNN

Norse is an expansion of PyTorch to perform deep learning with spiking neural networks using sparse and event-driven hardware and
data. Used in long short-term spiking neural networks (Bellec 2018). https://github.com/norse/norse (accessed on 7 September 2021)

snn_toolbox [67] ANN conversion
SNN toolbox is used to transform rate-based ANNs defined in different deep-learning frameworks, such as TensorFlow, PyTorch,
etc., into SNNs and provides an interface to several backends for simulation (pyNN, Brian2, etc.) or deployment (SpiNNaker,
Loihi). https://github.com/NeuromorphicProcessorProject/snn_toolbox (accessed on 7 September 2021)

GeNN [117] SNN GeNN provides an interface for simulating SNNs on NVIDIA GPUs by generating model-driven and hardware-specific C/C++
CUDA code. https://genn-team.github.io/ (accessed on 7 September 2021)

PySNN STDP PySNN focuses on having an efficient simulation of SNN on both CPU and GPU. Written on top of PyTorch to achieve this.
https://github.com/BasBuller/PySNN (accessed on 7 September 2021)

CARLsim [118,119] STP
STDP

CARLsim allows th euser to simulate large-scale SNNs using multiple GPUs and CPU cores concurrently. The simulator provides
a PyNN-like programming interface in C/C++, which allows for details and parameters to be specified at the synapse, neuron,
and network level. https://github.com/UCI-CARL/CARLsim5 (accessed on 4 September 2021)

Auryn [120] STDP Auyrn is a simulator for a recurrent spiking neural network with synaptic plasticity. https://github.com/fzenke/auryn (accessed
on 5 September 2021)

SNN-based brain simulator

Neucube [121] STDP NeuCube is the development environment and a computational architecture for the creation of brain-like artificial intelligence.
https://kedri.aut.ac.nz/R-and-D-Systems/neucube (accessed on 4 September 2021)

FNS [122] STDP FNS is an event-driven spiking neural network framework oriented to data-driven brain simulations. https://www.
fnsneuralsimulator.org/ (accessed on 6 September 2021)

https://opensourcelibs.com/lib/brian2
https://github.com/norse/norse
https://github.com/NeuromorphicProcessorProject/snn_toolbox
https://genn-team.github.io/
https://github.com/BasBuller/PySNN
https://github.com/UCI-CARL/CARLsim5
https://github.com/fzenke/auryn
https://kedri.aut.ac.nz/R-and-D-Systems/neucube
https://www.fnsneuralsimulator.org/
https://www.fnsneuralsimulator.org/
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