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Abstract: Human language and social cognition are two key disciplines that have traditionally been
studied as separate domains. Nonetheless, an emerging view suggests an alternative perspective.
Drawing on the theoretical underpinnings of the social brain hypothesis (thesis of the evolution of
brain size and intelligence), the social complexity hypothesis (thesis of the evolution of communica-
tion), and empirical research from comparative animal behavior, human social behavior, language
acquisition in children, social cognitive neuroscience, and the cognitive neuroscience of language, it
is argued that social cognition and language are two significantly interconnected capacities of the
human species. Here, evidence in support of this view reviews (1) recent developmental studies on
language learning in infants and young children, pointing to the important crucial benefits associated
with social stimulation for youngsters, including the quality and quantity of incoming linguistic
information, dyadic infant/child-to-parent non-verbal and verbal interactions, and other important
social cues integral for facilitating language learning and social bonding; (2) studies of the adult
human brain, suggesting a high degree of specialization for sociolinguistic information processing,
memory retrieval, and comprehension, suggesting that the function of these neural areas may con-
nect social cognition with language and social bonding; (3) developmental deficits in language and
social cognition, including autism spectrum disorder (ASD), illustrating a unique developmental
profile, further linking language, social cognition, and social bonding; and (4) neural biomarkers
that may help to identify early developmental disorders of language and social cognition. In effect,
the social brain and social complexity hypotheses may jointly help to describe how neurotypical
children and adults acquire language, why autistic children and adults exhibit simultaneous deficits
in language and social cognition, and why nonhuman primates and other organisms with significant
computational capacities cannot learn language. But perhaps most critically, the following article
argues that this and related research will allow scientists to generate a holistic profile and deeper
understanding of the healthy adult social brain while developing more innovative and effective
diagnoses, prognoses, and treatments for maladies and deficits also associated with the social brain.

Keywords: social brain; language brain; social brain hypothesis; social complexity hypothesis for
animal communication; social bonding; social cognitive neuroscience; language acquisition

1. Introduction

Human beings are an incredibly sophisticated species: technologically, scientifically,
and cerebrally—why is this? The social brain hypothesis posits that the cognitive pressures
of residing in dynamic animal societies, selected for increases in the volume of the primate
brain, explain the atypically large brains of a number of anthropoid primates [1–3]. The
initial data for this thesis came primarily from the discovery that neocortex size correlates
with the size of social groupings for a variety of anthropoid primates, including humans
(see Figure 1; for a review, see [4]). Since this initial finding, a substantive amount of
empirical research further demonstrates that the size of the primate neocortex is associated
with several distinct measures of social behavior and social cognition, including coalition
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frequency, deceit and deception, social learning, the prevalence of group play, female harem
size, the size of grooming groups (often used to facilitate social bonding), and, of course,
social group size [1]. This cognitive and behavioral complexity is partially reflected in
social bonding (facilitated by grooming groups) to thwart social groupings from dissolving
under these intense social dynamics.
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Copyright 2018 by John Wiley and Sons.

A simple extension of the social brain hypothesis, known as the social complexity
hypothesis for animal communication (more informally, the social bonding hypothesis),
postulates that species with complex social groupings demand complex communication
systems to manage the complex social dynamics involved and promote social bonds [5,6].
The original findings in support of this thesis came from a comparative investigation of
several dozen species of anthropoid primates, where both the average size of the social
group and average grooming duration (as a standard metric of social bonds) were correlated
with the size of the vocal repertoires of these primates (see Figure 2; [7]). Subsequent
studies have further found larger vocal repertoire sizes to be correlated with long-term
mating bonds among large, complex gelada baboon social groupings, compared to the
much more transient matings of tinier, less complex chacma baboon groupings [8]. In
humans, more recent social network analysis studies have confirmed two key predictions
of the social complexity hypothesis, where group size and social density processes appear
to be associated with communicative complexity and social bonding of human social
networks [9,10].

Intriguingly, further support for the social bonding evolutionary function of human
language, arguably the most complex of all primate communication systems, arises from
sociolinguistic analyses of human conversational behavior. In particular, studies of conver-
sational semantics reveal that, both in traditional cultures and industrial societies, gossip
concerns predominate in typical dialogue, encompassing nearly 70% of daily dialogue
time [11,12]. Moreover, further analyses have shown that the spread of information, rel-
evant to personal reputation via gossip, facilitates prosocial behavior by encouraging
mindful acquaintance choice when circumstances necessitate collaboration [13]. In addi-
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tion, feelings of relationship closeness have also been found to be promoted via gossip,
whereby the effect is often most impactful when comrades share a pessimistic perspective
of an absent party [14]. Furthermore, agent-based simulation models have suggested simi-
lar conclusions, in that the evolution of communication is contingent upon an ecological
requirement for large social groups, as evolutionary fitness improves as the size of the
group increases, and the network attains more independent information sources [15].
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(a) contrasts in the size of the vocal repertoire and mean size of the social group and (b) contrasts
in the size of the vocal repertoire and mean duration of social grooming as a metric of social bonds.
Adapted from McComb and Semple (2005) [7]. Copyright 2005 by The Royal Society.

In summary, the subsequent analysis examines the relationship between social cogni-
tion and language acquisition within the framework of the social brain hypothesis. This
hypothesis posits that specific brain regions form a dedicated neural network for pro-
cessing social information, playing a crucial role in both understanding and interacting
with other individuals. Crucially, deficits within this social brain network may contribute
to the language impairments observed in autism spectrum disorder (ASD). For instance,
evidence will be highlighted linking mentalizing abilities—a core function of the social
brain—to the development of complex syntactic structures in both typical and atypical
language development.

In particular, the following discussion reviews (1) recent developmental studies on
language learning in infants and young children, pointing to the important crucial bene-
fits associated with social stimulation for youngsters, including the quality and quantity
of incoming linguistic information, dyadic infant/child-to-parent non-verbal and verbal
interactions, and other important social cues integral for facilitating language learning and
social bonding; (2) studies of the adult human brain, suggesting a high degree of special-
ization for sociolinguistic information processing, memory retrieval, and comprehension,
suggesting that the function of these neural areas may connect social cognition with lan-
guage and social bonding; (3) developmental deficits in language and social cognition,
including autism spectrum disorder (ASD), illustrating a unique developmental profile,
further linking language, social cognition, and social bonding; and (4) neural biomarkers
that may help to identify early developmental disorders of language and social cognition.

2. The Social Brain and Social Cognitive Neuroscience

Despite the clear anthropological and evolutionary connection between social cogni-
tion, social behavior, and the social brain, described above, this framework has not yet been
fully integrated into our current understanding of social cognitive neuroscience. In truth,
the intricacies of the neurological computations that underpin group living in primates
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are substantial, including activities like coalition formation, tactical deception, organizing
grooming cliques, social play, and social learning [1]. In humans, a complex network of
brain regions underlies important social activities, including the recognition and cognitive
processing of social signals, recognizing faces, evaluating mental states (i.e., mentalizing
or theory of mind), perceiving emotions, sharing attention, determining friends from foes,
evaluating others’ perceptions and beliefs, social learning, relationship formation, and
social bonding [1,16,17].

In a preliminary, noteworthy model of the social brain in the 1990s, neuroscientist
Leslie Brothers [18] highlighted the contributions of the amygdala, orbitofrontal cortex
(OFC), superior temporal sulcus (STS), and fusiform gyrus (FFG) to social information
processing. More recently, functional magnetic resonance imaging (fMRI) has provided
additional recognition of an interconnected network of regions joining the parietal and
temporal brain lobes to the prefrontal brain lobes [4]. In particular, these include the parietal
association cortex, OFC, dorsolateral prefrontal cortex, amygdala, anterior cingulate cortex
(ACC), and superior temporal gyrus (STG) (see Figure 3; [16,19]).
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Figure 3. Areas of the social brain include the amygdala (AMG), anterior cingulate cortex (ACC),
prefrontal cortex (PFC), fusiform face area (FFA), and temporal and parietal lobes. This includes the
medial prefrontal cortex (mPFC), ventromedial prefrontal cortex (vmPFC), and orbitofrontal cortex
(OFC) of the PFC, motor cortex (MC) and premotor cortex (PreMC) of the parietal lobe, fusiform face
area (FFA) of the temporal lobe, and temporal-parietal junction (TPJ) and action-perception network
(APN) of the temporal and parietal lobes. Adapted image from the public domain.

Broadly speaking, the OFC is implicated in social reinforcement and social reward
processing [16,19]. More specifically, the STS region, particularly the right-hemisphere
posterior STS (pSTS) area, processes biological motion signals, like the hand, eye, and
salient motions of the body, to predict and interpret the intentions and behaviors of other
agents [16,19]. In addition to this area, the right inferior temporal gyrus, fusiform gyrus,
right parietal lobule, and middle temporal gyrus in each hemisphere are differentially
activated by processing the direction of gaze [16,19]. Several areas have been further
implicated in empathy and emotional perception. For example, the amygdala has been
implicated in recognizing others’ emotional states through facial expression processing and
analysis, as well as in the regulation and experience of internal emotional states [16,19].
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Furthermore, the FFG houses an area referred to as the fusiform face area (FFA), which is
implicated specifically in the detection and recognition of faces (see Figure 3; [16,19]).

Moreover, the default mode network (DMN)—comprised of the dorsal medial pre-
frontal cortex (mPFC), posterior cingulate cortex, precuneus, angular gyrus, and, occa-
sionally, right temporoparietal junction (rTPJ)—which is known for activation when an
individual is unfocused on the external world and the brain is at conscious rest, further
appears to be active when an individual is thinking about the self, the past and future, and
most intriguingly, evaluating the mental states of other people (i.e., mentalizing or theory
of mind) [20]. Further, much work now reveals that the social brain hypothesis explains
not only variation in the volume of the brain between various primates, but also individual
differences in the volume of the brain in humans, in regard to several different features of
human social networking and social cognition. In particular, the volume of gray matter in
the OFC, ACC, ventromedial prefrontal cortex (vmPFC), amygdala, and STS are associated
with individual differences in higher-order intentionality capacity (i.e., advanced mentaliz-
ing or theory of mind) and social network size [21–23]. Lastly, recent findings from brain
lesion investigations have revealed that general intelligence, emotional intelligence, and
social problem-solving are underpinned by a substantively shared network of temporal,
frontal, and parietal areas of the brain, including white-matter tracts connecting the areas
into an organized system [24].

Lastly, recent studies of ‘mirror neurons’—neurons in the brain that activate when
an organism acts, as well as when the same organism observes this same action done by
another—have been postulated to be integral for mentalizing or theory of mind, language,
empathy, comprehending the intentions and acts of agents, and imitative learning [25,26].
In other words, studies of the default mode neural network, especially, in studies of adult
monkeys, suggest that observing an action and producing the same action oneself are
neurally equivalent, and, at least in monkeys, this capacity appears to occupy a role in
social comprehension and imitation [25,26]. Though mirror neurons of the brain have
been observed directly in non-human primates—most notably, in macaques—in humans,
brain activity merely consistent with mirror neurons has been found in the primary so-
matosensory cortex, inferior and superior parietal lobes, inferior frontal cortex, premotor
cortex, and supplementary motor region [27]. In summary, the cognitive neuroscience of
the human brain suggests a large amount of functional specialization for social perception
and social information processing, including regulation from the neural network level to
the neurotransmitter level, including distinctly social neurotransmitters such as oxytocin
and endorphins [4,19,28–32].

3. The Social Brain and Cognitive Neuroscience of Language

In a similar fashion, despite the clear anthropological and evolutionary connection
between the social brain and social communication, as described above, this framework has
not yet been fully integrated into our current understanding of the cognitive neuroscience
of human language [33,34]. Perhaps most critically, a complex neurological system of
communication—for regulating interactions and social bonding with important members
of the group—appears to be crucial for many non-human primates, including human social
relationships [6]. In humans, a complex network of brain regions underlies the processing
of language, including speech comprehension and production, and substantive integration
with the social brain, including social-semantic working memory, and encompassing
regulation from the neural network level to the neurotransmitter level, including social
neurotransmitters such as oxytocin, endorphins, and dopamine [35–39].

In an influential and noteworthy model of the cognitive neuroscience of language,
Pierre Paul Broca determined in 1861 that language processing areas are located primarily
in the left cerebral hemisphere of the brain [40]. In later years, much research, including
neuroanatomical analyses by Geschwind and Galaburda, further suggested left hemisphere
dominance in brain areas dedicated to language [41,42], including myelinated axons and
larger pyramidal neurons in the left hemisphere, allowing for more rapid and efficient
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processing of linguistic information [43,44]. Eventually, it became well-established that, at
least in neurotypical adults, brain regions associated with expressive language processing,
or Broca’s area, and brain regions associated with receptive language processing, also
known as Wernicke’s area, are typically isolated to the left cerebral hemisphere, including
white matter association tracts, such as the left arcuate fasciculus, which connect Broca’s
and Wernicke’s areas into an integrated system [45,46]. But perhaps most relevantly, Broca’s
area has been found to be related to both speech and the mirror neuron system, suggesting
that there may in fact be substantial overlap between the neural networks for language,
social cognition, and other related social brain networks (see Figure 4; [34,47,48]).
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Figure 4. Broca’s area (BA) is related to both speech and the mirror neuron system, suggesting overlap
between the networks for language, social cognition, and related social brain networks, including the
inferior frontal gyrus (IFG), angular gyrus (AG), primary auditory cortex (PAC), and motor cortex
(MC). The arcuate fasciculus (AF), a white-matter association tract, connects Broca’s area (BA) with
Wernicke’s area (WA), a region critical for language comprehension. Canonical social brain areas,
namely, the temporoparietal junction (TPJ) and left temporal lobe, appear to be associated with
social-semantic working memory, further suggesting substantive overlap and integration with the
language and social brain. Adapted image from the public domain.

Nonetheless, more recent work has further shown that additional areas, including
the putamen, caudate nucleus, and internal capsule appear to play additional roles in
language processing [49], while very young children also show significant activity in the
inferior frontal and superior temporal regions of the right cerebral hemisphere—homologs
of traditional left cerebral hemisphere language areas—with an activation profile in the
right cerebral hemisphere that appears to diminish with age [50]. Intriguingly, homol-
ogous brain regions of Broca’s area and Wernicke’s area have also been discovered in
the brains of social, group-adapted, nonhuman primates, strongly suggesting a shared
evolutionary or phylogenetic history [51,52]. Though their function in nonhuman primates
is poorly understood, an evolutionary perspective would suggest that they are probably
central to nonhuman primate vocalization processing, in ways similar to human language
processing [53–59].
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Recent studies of the social cognitive neuroscience of language have further shown
that neural activity during sentence processing in two canonical language areas, the left
ventral temporoparietal junction (vTPJ) and lateral anterior temporal lobe (lATL), are asso-
ciated with social-semantic working memory, in opposition to previous studies primarily
implicating their role in general semantic or syntactic processing. In other words, these
regions were sensitive to sentences only if the sentences conveyed social meaning. More-
over, these same regions appeared to maintain activity even after the linguistic stimuli
were taken away [39]. In addition, several studies have shown that both chanting [60]
and conversational speech [37] activate neural markers associated with social bonding:
specifically, the temporoparietal junction (TPJ), associated with mentalizing, as well as
the hypothalamus and amygdala, associated with social reward and motivation. Addi-
tional studies have revealed that self-disclosure—an important aspect of social bonding
in humans—is intrinsically self-rewarding, due to activation of the mesolimbic dopamine
system in the brain [38].

4. The Social Brain and First Language Acquisition

Historically speaking, traditional social learning theories, including those mooted by
Vygotsky, Bruner, and others, have often highlighted the significance of social interaction
experiences for facilitating children’s acquisition of language [61,62]. Recent empirical
studies further indicate that, learning language often depends on children’s attunement to
others’ responsiveness to joint visual attention, intention to communicate, and imitative
impulses [61,63–67]. Developmental psychologists have even more recently extended
these same theories and models to even earlier speech learning [68]. In particular, it
has been argued that the earliest stages of language learning require social interaction;
in other words, the social brain ‘gates’ the computational processes necessary for the
acquisition of language [68–71]. Interestingly, randomized clinical trials appear to support
this view, in finding consistent improvements in children’s expressive linguistic abilities
with increases in child-to-parent interactions [72–75]. But perhaps most intriguingly, recent
meta-analyses have shown that children with secure attachment to both their mother and
father have greater language capabilities compared to children with one or no securely
attached relationships [76].

4.1. Social Signals That Facilitate Early Language Acquisition

Social interaction skills, including play, reading, reference, or joint attention between
an infant or child and parent or guardian to an outward thing, and the face-to-face inter-
actions involved in speaking in natural language environments, crucially aid the early
acquisition of language (see Figure 5; [36,68,72,77–80]). In particular, infant-directed speech
(IDS) and child-directed speech (CDS), or the face-to-face communication cues between
an infant or child and parent or guardian, aid language acquisition by delivering relevant
social signals (e.g., gestures, facial and emotional expressions, and directed eye-gaze),
provoking infant attention, and emphasizing important pragmatic signals. Crucially, social
interaction appears to impact the development of both speech perception and compre-
hension [81], as well as speech production learning [82–84]. For instance, in one study
on speech perception, the efficacy of a live foreign-language learning social interaction
was compared to the language learning efficacy of televised and audio-only presentations.
Accordingly, the findings indicated a social context effect in that youngsters exposed to
foreign-language learning interactions with a live human being showed robust learning
effects, while linguistic stimuli delivered to infants via audio or television displayed no
evidence of language acquisition [81]. In another study on speech production, infants
exposed to mothers who reacted instantly to babbling by touching, smiling, and moving
closer, generated more babbling than youngsters in a similarly matched control group [84].
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Several important developments accompany the capacity to understand reference and
joint attention of an infant and parent to an outward thing or object [68]. By 9 months
of age, youngsters start to participate in individual–object–individual triadic activities
in which interest is devoted to objects using gaze, which provokes attention from other
individuals, also known as joint attention [65,66]. This shared perception of communicative
intentions is likely to be critical for the infant’s learning of language [65,66,85], as well as
understanding others as intentional agents [65,86]. Crucially, the developmental trajectory
of these important social skills generally occurs simultaneously with the start of attention
to linguistic units, such as phonemes, as well as later word perception, comprehension, and
production (see Figure 5).

In addition, the quality and quantity of speech stimuli (e.g., vocabulary diversity,
amount of word units, and mean length of utterance (MLU)) are further associated with
infant vocabulary growth [87–89]. Unfortunately, while most language acquisition research
has been conducted on families of high socioeconomic status (SES), infants raised in
poorer communities with multiple challenges can affect caregiver interactions, leading to
greater variability in language abilities [90,91]; although, see [92] for a recent alternative
perspective.

Finally, though admittedly constituting a much smaller body of literature, at least some
recent studies have noted similar effects for deaf children learning American Sign Language
(ASL) [93–95]. For instance, at least one relevant study has noted that gaze patterns used
by sign language dyads in deaf children appear to promote joint attention social behaviors,
which are known from previous research to be integral for further facilitating emerging
language skills [96].
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4.2. Infant-/Child-Directed Speech and Face-to-Face Communication

Infant-directed speech (IDS) and child-directed speech (CDS) are intrinsically multi-
modal, and many nonverbal social signals are present during this sort of communication
(e.g., gestures, facial and emotional expressions, and directed eye gaze; see Figure 5). Previ-
ous research has shown that directed eye gaze is a key form of nonverbal communication,
as it facilitates language acquisition in several regards, including language processing, de-
velopment of vocabulary, and perceptual mapping of form-to-object [64,97,98]. For instance,
gaze following and directed eye contact provoke arousal and attention by emphasizing
important social stimuli and facilitating the infant’s or child’s social engagement [99,100].
Furthermore, the capacity and willingness to engage in this sort of sustained attention
predict future developments of cognition and general language skills [101–103]. For in-
stance, infants who visually attend longer than infants who engage in briefer attention
states demonstrate improved memory recall during object-naming tasks [104–107].

Directed gaze as a tool for language learning is typically distinguished by an early
developmental trajectory where infants display a proclivity for open eyes on upright faces, in-
volving the specialization of areas of the cortex associated with gaze processing [97,108–111].
Newborns develop the capacity for gaze following beginning from 3–4 months, becoming a
consistent communication signal from 6–8 months of age [108,110]. However, it is not until
9–12 months that directed gaze begins to become an important tool used for indicating refer-
ence, facilitating language acquisition by providing directed eye gaze signaling [64,112–115].
Moreover, gaze is an important facilitator of social bonding between a mother and infant,
with studies showing a positive association of maternal oxytocin to infant-to-mother gaze
duration [116–118]. Further, directed attention toward the mouth also occupies an important
part in language acquisition, delivering important cues of mouth shape and associated
interpretations of speech sounds [119]. Mouth attention becomes especially pronounced in
12-month-old infants when exposed to novel words [120], non-native sounds [121], or a bilin-
gual environment [122]. Attention to the mouth further occurs in infants from 14–18 months,
coinciding with the first burst of vocabulary [123].

Quality and quantity of speech during interactions are also significant factors in
language learning, especially the growth of vocabulary [124–127]. For instance, studies
have shown the quantity of child-directed speech at 18 months predicts vocabulary growth
at 2 years [89]. Parental engagement, namely, vocal reactions to infant vocalizations with
either words or vowels, quickly influences infant vocal productions, as newborns start to
assimilate phonological sound patterns spoken by the parent, facilitating the acquisition
of new vocalizations [128]. Additional instances of infant-/child-directed speech and
‘parentese’ (i.e., infant-/child-directed speech with higher prosody, an enlarged vowel space,
and shorter utterances [129–132]) enhance infant babbling from 6–14 months and facilitate
larger vocabularies at 14 months [72]. Lastly, dyadic infant/child-to-parent verbal and
non-verbal social engagement, underpinned by various social neurotransmitters, including
oxytocin, serotonin, and endorphins, appears to be critical for maternal attachment and
facilitating further dyadic social interactions and social bonding between a mother and an
infant [28,133,134].

Child–parent social interactions are further affected by a number of environmental
factors, like socioeconomic status (SES). More specifically, SES affects both the quantity and
quality of parental speech stimuli [124,135]; for instance, children of low-SES families tend
to display more sluggish real-time effectiveness of linguistic processing and subsequent
growth of vocabulary [91]. Indeed, low SES communities and families often display
significant variation in the amount of child–parent interactions, impacting the processing
capability of words that are familiar, and predicting later expressive vocabulary [89].
Several factors explain the effect of low SES on social and cognitive development, including
discrepancies in healthcare, sanitation, psychological and physical stress, nutrition, and
environmental pollution [136]. Variability in language acquisition, as a consequence of SES,
can manifest as early as 9 months of age and predict later performance in school [137,138].
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5. The Social Brain, Cognitive Neuroscience of Language, and First
Language Acquisition

In light of the significance of child–parent interactions for acquiring language, neu-
roimaging research has recently begun to investigate how just this sort of communication
may impact the developing brain. As previously discussed, studies have found that, during
early maturation, the quantity of linguistic information, as calculated by infant exposure
to the number of adult words, is strongly predictive of myelin in white matter association
tracts related to adult language abilities—especially the left arcuate fasciculus (AF) and
superior longitudinal fasciculus (SLF) in younger children at 30 months of age—as well as
youngster’s developing linguistic abilities [139]. On the other hand, the quality of linguistic
information—word richness, dialogue experience, and mean length of utterance (MLU)—
appears to be more crucial for older youth 4–6 years of age, who show greater white matter
connectivity involving left AF and SLF [140,141] and greater cortical volume in the left
inferior frontal gyrus (IFG) and supramarginal gyri [142], as well as older children 5–9 years
of age, who show increased cortical areas in the left perisylvian areas [143]. Additional
social cognitive neuroscience studies have revealed that the neural circuits underpinning
the discrimination of a mother’s voice—also known as ‘motherese’, as an important com-
ponent of social bonding—include voice-perception and auditory areas of the temporal
lobe, reward circuit areas in the orbitofrontal cortex (OFC), nucleus accumbens (NAc), and
ventromedial prefrontal cortex (vmPFC), affective processing areas, especially the amyg-
dala, and areas related to visual face processing, especially the fusiform cortex, predict the
communication and linguistic function capacities in older youth at 7–12 years of age [35].
Undoubtedly, these physiological mechanisms, also including social neurotransmitters such
as oxytocin, dopamine, serotonin, and endorphins, facilitate further dyadic interactions,
maternal attachment, and social bonding between a mother and infant [28,133,134].

That said, functional magnetic resonance imaging (fMRI) work on social interactions in
youngsters has, until recently, primarily centered on brain activation in infants or children
in reaction to a one-way social signal. However, a newly utilized technique, known as
‘hyperscanning’, allows for concurrent data collection of brain activation from multiple
individuals at once, concurrently taking part in social interaction [144]. More specifically,
real-time social interactions between a child and parent can be correlated with the temporal
alignment of their brainwaves during such interactions. In particular, as a consequence
of non-verbal and verbal signaling during social interaction, neural synchronization can
occur [145,146]. Further, in at least one recent neuroimaging study, of a live two-way
social interaction involving differences in speech prosody, eye gaze, and joint attention
between adults and infants 9–15 months of age, distinctive paired activation occurred in
infant and adult brains as a function of their social importance. For instance, activity in the
prefrontal cortex in both adult and infant brains was substantively paired to the time course
of two-way gaze, suggesting that agents expected joint eye contact. Greater prefrontal
activation in the infant was further accompanied by variation in pitch from adult utterances,
probably as a consequence of the adult’s generation of radical pitch contours in reaction to
a spectrum of behaviors in youngsters, like emphasizing a particular word [147]. In short,
hyperscanning imaging research presents new avenues for studying the maturation of the
infant in dyadic social interactions and how a youngster’s cognitive and linguistic learning
abilities may change over time.

6. The Social Brain and Second Language Acquisition

A relatively more recent aggregation of work has further explored the influence of
bilingualism on mentalizing or perspective-taking, as well as empathy, on language pro-
cessing in young children. For instance, at least one recent study found bilingual-speaking
youngsters to be more accurate than monolingual speakers in a task that required analyzing
an observer’s perspective from different positions [148]. Moreover, a recent meta-analysis
appears to indicate these general findings are robust [149]. Though it is not fully under-
stood how bilingualism provides this advantage, it has been suggested that bilingualism



Brain Sci. 2024, 14, 166 11 of 24

perhaps allows for additional occasions to develop executive function, metalinguistic
comprehension, and improved sensitivity to the nuances of typical sociolinguistic interac-
tions [148,149]. Further studies have suggested that empathy appears to be associated with
second language learning, including pronunciation accuracy [150–152]. Although difficult
to predict the sociological impact of this work at such an early stage in scientific develop-
ment, further studies on the effects of bilingual education in young children could have
important implications for academic achievement in linguistic as well as non-linguistic
social cognitive areas.

7. The Social Brain, Developmental Dysfunctions, and Psychopathologies

Over the last few decades, increasing numbers of psychologists and neuroscientists
have come to understand that many psychopathologies and developmental disorders can
be largely attributed to dysfunctions of the evolved social brain [153]. In the majority of
cases, such dysfunctions typically involve substantive deficiencies in social cognition, social
communication, and linguistic abilities. In particular, autism spectrum disorder (ASD) is
a heterogeneous disruption of social cognition, generally entailing various social deficits,
such as dysfunctions in social communication (e.g., atypical facial expressions and vocal
tone), social interactions (e.g., joint attention, eye gaze, and gesture), imitation and social
norms, mentalizing, empathy, analogies (e.g., sarcasm and jokes), unfamiliar situations,
imagination (e.g., make believe or play), and planning for or predicting future events [150].
Intriguingly, due to the profound neurogenetic and neurodevelopmental causes, as well as
serious dysfunctions in social cognition that define ASD, ASD presents the occasion for
neuroscientists, anthropologists, and psychologists to investigate the biological genesis of
social cognition and social behaviors inherent to human nature. Additionally, numerous
other psychopathologies and developmental disorders have been similarly intimated as
distinct dysfunctions of social cognition and social behavior, such as borderline personality
disorder, social isolation and depression, narcissistic personality disorder, bipolar disorder,
schizophrenia, psychosis, and dementia.

8. The Social Brain and Autism Spectrum Disorder

Autism spectrum disorder (ASD) is a neurodevelopmental dysfunction characterized
by chronic deficits in social interaction, non-verbal and verbal communication, and social
cognition, including deficits in mentalizing or the ability to understand the mental states
of another individual [154,155]. Intriguingly, the complex interrelated genetic, social, and
neurodevelopmental pathways and deficits found in ASD, present perhaps one of the clear-
est and most compelling connections between the social brain, language function, social
cognition, and social bonding [19]. As the name suggests, autism is situated on a spectrum,
with some individuals whose verbal capacities exist along the typical spectrum of abilities,
while others never learn to speak [156]. Interestingly, in those with adequate language and
cognitive capacities, such as those with Asperger’s syndrome and high-functioning autism
(HFA), specifically social communicative capacities ostensibly remain impaired. In other
words, communication is typically unidirectional and used instrumentally and non-socially
instead of for socially related functions [157]. Neurological studies on cortical development
in language-related areas of the frontal and temporal lobes of the brain have been further
correlated with linguistic impairments in ASD, including asymmetrical turnaround of
the frontal lobes [158–160], superior and anterior shifting of the left cerebral hemisphere,
superior temporal sulcus, and inferior frontal sulcus [161], bilateral decreases of gray
matter volume in the superior temporal sulcus [162], and apparently overall reduced left
hemispheric dominance. Intriguingly, though challenging to disentwine the respective
contributions of social cognition deficits in autism to linguistic deficits in autism, several
recent studies in both autistic and neurotypical adults and children appear to suggest that
mentalizing, which is impaired in autistic individuals, may be integral for the cognitive
and linguistic ability to build subordinate and recursive embedded clauses (e.g., “Mary
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thinks that Sandra believes the broom is in the closet”) (see Figure 6; [163–165]), suggesting
another direct link between social cognition and language ability.
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As previously noted, neurotypical infants and children must be attracted to and
interested in infant/child-to-parent directed speech (IDS/CDS) in order to reliably acquire
language. Curiously, however, youngsters with ASD generally do not prefer IDS or CDS.
For instance, in one recent study, neurotypical and ASD toddlers were permitted to pick
between brief ‘motherese’ spoken samples or non-spoken analogs of these same cues;
however, it was solely toddlers with autism that appeared to show a preference for the
nonspeech signals [166]. Moreover, the severity of ASD symptoms and the level of delay
of verbal scores predicted the level of preference for nonspeech signals in children with
ASD [166]. Intriguingly, this lack of interest or attention in social engagement, typical of
autism, has been noted to have a profound influence on the acquisition of language, even in
neurotypical cases. Among rare documented cases in which youngsters have been reared
in complete isolation from social stimulation, such circumstances have had a significantly
negative influence on the acquisition of language, where normal language abilities are
not fully acquired [167]. Accordingly, the upshot of these studies, in neurotypical and
neuroatypical adults and children, suggests that language acquisition crucially depends
upon social attention to others and the social cues they generate.
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9. Early Biomarkers of Language-Related Abilities and Relevant Clinical Applications

Describing the early development of neurotypical and neuroatypical language neuro-
biology is critical for the early identification and potential treatment of clinical language
disorders. Crucially, delays in language and speech in infants and children can nega-
tively affect important social and academic skills such as attention, reading, writing, social
interactions, and, of course, later educational outcomes [168]. For instance, delays in lan-
guage acquisition from 2–5 years are implicated in substandard reading comprehension
in the classroom [169,170]. If such language delays persist after 5 years, related chal-
lenges often persist in the consequent maturation of attention, directed eye gaze, and
socialization [168,171]. The majority of language delays are often noticed during parental
observations or clinical check-ups when an important developmental landmark does not
appear to be present, like syntactic challenges or speech onset delays. As a consequence
of this rather crude ‘sit-and-wait’ approach, most youngsters are unfortunately not char-
acterized as having had a disorder or delay of language until 2–3 years of age, which is
often noted by the absence of combinatorial speech, or the capacity to formulate words
into complete thoughts and sentences [168,172]. Therefore, by the time a diagnosis has
been made, language delays or disorders may be magnified due to the combined effects of
accumulating negative experiences, resulting in atypical development within a substandard
physical and social environment. Crucially, by 3 years of age, critical neurodevelopmental
milestones that support language acquisition have essentially occurred, thereby missing
any opportunities for early identification and clinical intervention. Although most children
eventually do come around to their age group before entering school, roughly 7–10% of
children enter the classroom with chronic impairments in language development [173].

An alternative approach emphasizes the emergence of early indications, or biomark-
ers, of ultimate language capacities, early enough in development, to establish that any
clinical interventions into speech and language delays and disorders might provide the
greatest benefits. Perhaps surprisingly, there are currently no standardized or univer-
sally agreed-upon criteria in screening for language and speech deficiencies. Nonetheless,
the most promising clinical interventions will most likely depend upon the very earliest
identification of particular cognitive or behavioral traits, presumably underpinned by the
hopeful discovery of critical neural or genetic biomarkers, which may allow for the early
characterization and potential treatment of ultimate language capacities, prior to the devel-
opment of language-related neurodevelopmental disorders. Biomarkers produce objective
indicators of a clinical condition, evaluated reliably and accurately [174], contributing to
the timely recognition of abnormal neural or behavioral patterns related to a later clinical
condition. For instance, a particular pattern of brain activation at 6 months of age, could
perhaps present as an informative biomarker of later pragmatic and social challenges, at a
later stage of development. More broadly, biomarkers could potentially exploit the broad
heterogeneity noted in ultimate language abilities, and act as reliable metrics indicative of
later abnormal patterns of development.

As might be expected, the diagnosis of language delays and disorders is usually
grounded in comparable maturational landmarks observed in neurotypical language learn-
ing [175]. Children with language delays typically adhere to a normal maturational trajec-
tory, albeit at more sluggish rates than would be expected [176], whereas children with
language disorders tend to display regressions in language development (e.g., word loss
from 14–21 months of age in ASD), serious and persistent delays in language learning (e.g.,
challenges with syntax in youngsters with specific language impairment (SLI), or impair-
ments in at least two domains of development (e.g., such as motor function and language
impairments in global developmental delay (GDD) [175,177,178]. As a general rule-of-
thumb, language delays typically require clinical intervention when the development rate
drops beneath 3/4 of the rate expected, for example, when a standard developmental
landmark typically observed at 2 years of age fails to be met in a youngster at 30 months
of age [179]. In fortunate cases, comprehensive social and language evaluations are then
administered to determine whether the delayed maturational pattern(s) are associated with
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a primary disorder specific to language, such as SLI, or a secondary maturational disorder,
like GDD or ASD.

Nonetheless, speech and linguistic interventions should arguably begin even earlier
in development. In fact, speech processing already begins in utero, in spite of the fact
that the more observable first 24 months are distinguished by more obvious mappings of
form-to-meaning at 5–7 months of age and proficiency at distinguishing native sounds
from 6–12 months of age [180]. Unfortunately, even pediatricians and speech and language
therapists with the best of intentions typically miss crucial maturational opportunities
where the brain is most plastic and malleable in reaction to the environment and experience,
and where the administration of targeted clinical applications could potentially deliver the
most impactful therapeutic advantages.

10. Discussion
10.1. Early Biomarkers of Probable Language Outcomes and Clinical Interventions

Though biomarker approaches to language delays and disorders research remain in
the earliest phases of development, recent studies in language acquisition research have
pinpointed particular behavioral, cognitive, and brain metrics in first language learning
utilized to evaluate ultimate language capabilities. For instance, metrics of real-time
language processing abilities, especially when used in conjunction with vocabulary growth
measures, appear to be a potentially promising method for recognizing ‘late talkers’ more
likely to come around to normal developmental trajectories, compared to those with
continual delays. For example, at least one recent study of infants 18 months of age found
that both accuracy and speed metrics in a word recognition experiment predicted later
variability in vocabulary learning (i.e., acceleration and rate of acquisition) in both ‘late
talkers’ and typically developing children from 18–30 months of age [87]. Interestingly,
this same technique further permitted the recognition of ‘late talkers’ as more probable of
experiencing faster growth of vocabulary during the following 12 months. Moreover, the
speed of linguistic processing efficiency, measured in 18-month-old youngsters, further
appeared to predict later development in children 54 months of age on particular language
measures, namely, non-verbal intelligence, receptive vocabulary, and global language
abilities [181]. In a similar fashion, in high-risk SLI newborns, distinguishing particular
tones at 7 months of age seems to be a significant predictor of language acquisition for
language outcome measures from 1–3 years. At 3 years of age, this particular audition
task, in conjunction with gender, predicts an even greater degree of performance on later
language outcome metrics [182].

Additional biomarkers further demonstrate the promise of the early diagnosis, prog-
nosis, and execution of crucial clinical mediations. In particular, neurological biomarkers
of early language dysfunctions can be important for permitting clinical prognosis before
relevant cognitive and behavioral symptoms emerge. For example, at least one recent
study was able to use event-related potentials (ERPs: tiny voltages produced in the brain in
reaction to specific events or stimuli) related to word processing in ASD children 2 years
of age, to isolate early neural markers capable of indicating probable language capabil-
ities from 4–6 years [183]. More specifically, ERP signals related to familiar words were
found to be a significant indicator of adaptive behavior, cognitive ability, and receptive
language measures. Perhaps surprisingly, the predictive accuracy of this metric even esca-
lated over time, further explaining abilities at 6 years of age. Additionally, neurological
biomarkers related to distinguishing native sounds are further explanatory of unique dif-
ferences in later linguistic abilities; in particular, ERP signals have been found to index
neural speech discrimination in infants 7 months of age, accurately predicting later lan-
guage growth rates [184,185]. Moreover, these same neural patterns at 12 months further
predict unique differences in spoken syntactic abilities at 6 years of age, as well as the
likelihood of acquiring a more serious language or speech disorder [186]. Ultimately, the
accurate recognition and isolation of early neurological biomarkers, predicting linguistic
abilities, requires a deeper knowledge of the processes underpinning associations between
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a particular biomarker and various later language capacities. Future studies on the cog-
nitive neuroscience of language and speech impairments should structure large sample
longitudinal studies to ensure that previously identified biomarkers are consistent and
reliable indicators of relevant language outcomes. In particular, studies conducted in the
crucial first 24 months have the promise of isolating important neurological biomarkers
and potentially predicting language disorders, delays, and abnormal neurodevelopmental
trajectories. At best, this strategy can potentially promote the execution of relevant me-
diations at the earliest phases of development, during which language and social skills
have been less impacted by experience and the brain is more moldable to crucial social and
clinical mediations.

10.2. The Social Brain and Cognitive Neuroscience of Language

Though many behavioral studies have demonstrated the importance of synchronous
speech (i.e., chanting) and other synchronous activities [187], as well as conversational
dialogue for facilitating social bonding [14,188], the tools used in behavioral research are
inadequate for providing a detailed understanding of the neural regions and functional
brain areas underpinning synchronous speech or conversational discourse. Moreover,
though chanting has been observed in every human culture, less than 5% of speech involves
joint speech, and there are reasonable expectations that chanting engages additional, or even
different, cortical systems than conversational speech [6,189]. Indeed, this issue is crucially
important, as the mechanisms by which such vocalizations, in general, shape the developing
brain are not fully understood [190]. In particular, this includes the manifestation of both
pathological and healthy social development, such as autism and other disorders of social
cognition, where the discernment of and social bonding to socially salient voices may be
impaired. In summary, the neural mechanisms associated with social bonding during
conversational speech are not well understood.

Intriguingly, Rauchbauer et al. [37] have recently shown that conversational speech
activates neural markers associated with social bonding: specifically, the temporoparietal
junction (TPJ), which is associated with mentalizing, as well as the hypothalamus and
amygdala, which are associated with social reward and motivation. However, these re-
sults remain incomplete as they did not control for the well-documented social bonding
effects of (1) conversational content, (2) eye gaze, facial expressions, and body language,
(3) joint attention, and (4) voice inflection, prosody, and other emotion-related aspects of
speech [6,117,191]. Although a recent study by Jasmin et al. [60] avoided many of these
pitfalls, these results also remain incomplete as they primarily focused on chanting and
not conversational speech. Moreover, neither Rauchbauer et al. [37] nor Jasmin et al. [60]
included crucial measures of social bonding, thereby creating problems of reverse infer-
ence [192]. It thus remains unclear whether conversational speech, in general, actually
facilitates social bonding or whether the social bonding effects of speech can be explained
by these aforementioned potentially confounding variables. In summary, it is not well
understood whether the social neuroscience of conversational discourse involves the acti-
vation of specific neural regions of interest (ROIs) related to social reward, empathy, and
social bonding. Future studies on the social cognitive neuroscience of speech and social
bonding should address these aforementioned concerns, as well as specifically compare
neurotypical and neuroatypical participants, infants and children with adults, and male par-
ticipants with female participants to determine the specific neurological profile in healthy
neurotypical adults and how it varies, with specific focus on various neuroatypical social
and linguistic deficits.

10.3. The Social Brain and Social Complexity Hypotheses as Novel Theoretical Frameworks for
Understanding the Evolution and Function of the Human Mind

In summary, important theoretical developments stemming from recent work on the
social brain hypothesis (thesis of the evolution of brain size and intelligence), the social
complexity hypothesis (thesis of the evolution of communication), and empirical research
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from comparative animal behavior, human social behavior, language acquisition in children,
social cognitive neuroscience, and the cognitive neuroscience of language form a compelling
framework arguing that social cognition and language are two significantly interconnected
capacities of the human species, conventionally having been investigated as two separate
disciplines [6]. As such, the preceding discussion has reviewed (1) recent developmental
studies on language learning in infants and young children, pointing to the important
crucial benefits associated with social stimulation for youngsters, including the quality
and quantity of incoming linguistic information, dyadic infant/child-to-parent non-verbal
and verbal interactions, and other important social cues integral for facilitating language
learning and social bonding; (2) studies of the adult human brain, suggesting a high
degree of specialization for sociolinguistic information processing, memory retrieval, and
comprehension, suggesting the function of these neural areas may connect social cognition
with language and social bonding; (3) developmental deficits in language and social
cognition, including autism spectrum disorder (ASD), illustrating a unique developmental
profile, further linking language, social cognition, and social bonding; and (4) neural
biomarkers that may help to identify early developmental disorders of language and social
cognition. Accordingly, if the current state-of-the-art in this field is any reliable indicator,
additional work in this domain will likely lead to further novel, innovative, and valuable
scientific developments beyond those already discussed here.

Nonetheless, despite the clear potential of this steadily emerging area of investiga-
tion, it is important to note several key limitations of the preceding review: (1) due to
the relatively recent emergence of this novel, niche, and nascent discipline, the ultimate
contributions this field may make in the future remain unclear; (2) due to the radically
interdisciplinary nature of this area of study, consistent cross-talk and collaboration across
diverse research groups may be slow in coming, and have absent focused attention and
promotion, such as what the current review aims to provide; and (3) additional work
relevant to these themes represents an important dearth in the current literature, especially
the application of these themes related to bilingualism, sign language, and autism spec-
trum disorder (ASD), emphasizing the necessity of further targeted research in these areas,
including work relevant to the potential interplay of bilingualism, sign language, ASD, and
other neurodivergent conditions.

11. Conclusions

In conclusion, the human brain demonstrates a high level of specialization for social
perception, social communication, language, and social information processing, including
neural organization involving key brain networks and neurotransmitters, especially so-
cial neurotransmitters such as oxytocin, dopamine, serotonin, and endorphins [4,28–32].
Drawing on the theoretical underpinnings of the social brain hypothesis, social complexity
hypothesis, and empirical research from a variety of different domains, it has been argued
that social cognition and language are two significantly interconnected capacities of the
human species, conventionally having been investigated as two separate disciplines [6].
In particular, studies investigating the acquisition of language suggest that infants and
children benefit from many different aspects of social stimulation, depending on the specific
point in the developmental timetable and during various critical periods, including the ac-
quisition of the quality and quantity of linguistic information, dyadic infant/child-to-parent
non-verbal and verbal social interactions, and other social cues for facilitating language
learning and social bonding [68,80,127].

Detailed studies of comparative animal behavior, human social behavior, profound
deficits of social cognition like autism spectrum disorder (ASD), social cognitive neuro-
science, and the cognitive neuroscience of language in adults suggest a similar profile. In
particular, the human brain shows a high level of specialization and functional overlap of
neural areas dedicated to social and linguistic memory retrieval, information processing,
and comprehension, intimating the evolutionary function of these areas connects social
cognition with language and social bonding (see Figure 7). In effect, the social brain
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and social complexity hypotheses may help to explain how neurotypical children and
adults learn language, why autistic children and adults exhibit simultaneous deficiencies
in language and social cognition, and why nonhuman primates and other organisms with
significant computational capabilities do not develop the capacity for language [4,68]. This
and related research, in conjunction with studies of early development, will allow scientists
to generate a holistic profile, an understanding, and potential treatment of maladies and
deficits associated with the social brain.
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Figure 7. The human brain displays a high level of specialization for social and linguistic information
processing. Traditional areas of the social brain are highlighted in warm colors, areas of the language
brain in cool colors, pointing to substantive overlap and integration. Broca’s area (BA) is associated
with both speech and mirror neurons, as the ventral temporoparietal junction (TPJ) and lateral anterior
temporal lobe (lATL) are associated with social-semantic working memory, indicating the function
of these areas connect social cognition with language and social bonding. Also illustrated is the
inferior frontal gyrus (IFG), angular gyrus (AG), anterior cingulate cortex (ACC), action-perception
network (APN) and motor cortex (MC). For simplicity, not all areas included in the networks are
shown. Adapted image from the public domain.
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