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Abstract: Levodopa (L-DOPA) treatment represents the gold standard therapy for Parkinson’s
disease (PD) patients. L-DOPA therapy shows many side effects, among them, L-DOPA-induced
dyskinesias (LIDs) remain the most problematic. Several are the mechanisms underlying these
processes: abnormal corticostriatal neurotransmission, pre- and post-synaptic neuronal events,
changes in gene expression, and altered plasticity. In recent years, researchers have also suggested non-
neuronal mechanisms as a possible cause for LIDs. We reviewed recent clinical and pre-clinical studies
on neuroinflammation contribution to LIDs. Microglia and astrocytes seem to play a strategic role in
LIDs phenomenon. In particular, their inflammatory response affects neuron-glia communication,
synaptic activity and neuroplasticity, contributing to LIDs development. Finally, we describe possible
new therapeutic interventions for dyskinesia prevention targeting glia cells.
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1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease, char-
acterized by progressive dopaminergic neuron loss and α-synuclein aggregated clusters,
which affect movement circuits [1–3]. In recent years the prevalence and incidence of
PD has been increasing significantly, leading to an increase in disability and therefore
increasing costs for national health systems [4,5]. PD is a multifactorial disease caused
both by genetic modification and different environmental factors [6]. Moreover, PD is a
disorder characterized by a combination of motor symptoms (including tremor, rigidity,
gait abnormality, and bradykinesia) and non-motor symptoms [7].

The dopamine (DA) precursor l-3,4-dihydroxyphenylalanine (L-DOPA) remains the
most successful treatment, prescribed in conjunction with carbidopa [7,8]. Unfortunately,
the lifelong treatment needed involves several adverse reactions and side effects, among
which levodopa-induced dyskinesias (LIDs) are the most urgent problem to be solved. LIDs
are characterized by abnormal involuntary movements, such as stereotypic, choreiform,
and throwing movements, as well as dystonia [9,10] involving the head, neck, trunk, and
limbs [8,11]. About 80% of patients suffer from this inconvenience, which worsens their dis-
ability and their quality of life [8], after an average of 6.5 years of L-DOPA treatment [9,10].
However, in rodent PD models, exemplars did not manifest LID after 6-OHDA lesion and
L-DOPA treatment [12], and about 6–22% of PD patients did not ever suffer LID [9,13–17].

Thus far, research in dopamine-lesioned animals has discovered several mechanisms
underlying these processes, such as abnormal corticostriatal neurotransmission, pre- and
post-synaptic neuronal events, changes in gene expression, altered synaptic plasticity [18],
and dendritic spine reshaping [19].
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In recent years, researchers have also suggested non-neuronal mechanisms as a possi-
ble cause of LIDs [20]. Here, we review recent clinical and pre-clinical studies on neuroin-
flammation contribution to LIDs. Microglia and astrocytes seem to play a crucial role in
LIDs phenomenon. In particular, their inflammatory response affects neuron–glia commu-
nication, synaptic activity, and neuroplasticity, contributing to LID development. Finally,
we describe possible new therapeutic interventions for dyskinesia prevention targeting
glia cells.

2. Pathophysiology of LIDs
2.1. General Features

LIDs are characterized as three different types: “peak-dose dyskinesia or improvement-
dyskinesia-improvement” (IDI) dyskinesia, diphasic dyskinesia or “dyskinesia-improvement dysk-
inesia” (DID) dyskinesia, and early-morning dystonia or off-period dyskinesia (Figure 1) [8,21].
The most frequent dyskinesia kind is peak-dose dyskinesia IDI dyskinesia (about 75–80%
of patients experienced it), occurring during the so-called “on” time when the L-DOPA
blood levels reached the peak [8,21,22].
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respectively [23]. The alteration of direct and indirect pathways leads to a PD condition in 
which overstimulation of the internal globus pallidus (GPi) occurs with the consequent 
inhibition of the motor thalamus and the limitation of the activity of the corresponding 
motor area [24,25]. As described above, L-DOPA represents the main treatment for PD 
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lower, DA, obtained from L-DOPA oral administration, is stored in the presynaptic 

Figure 1. Different types of levodopa-induced dyskinesias. The figure accurately describes the
different types of levodopa-induced dyskinesias. Diphasic dyskinesias occur early in the effect of
levodopa treatment, before the peak of clinical benefit on motor symptoms is reached, and may recur
as the drug effect wanes until it disappears. Peak dyskinesias coincide with the full antiparkinsonian
benefit of levodopa during the “on” period, whereas “off” period dyskinesias occur when levodopa
is no longer effective.

Dopaminergic system and motor circuits depend on a correct equilibrium between
direct and indirect pathways through DA binding to dopaminergic D1 or D2 receptors,
respectively [23]. The alteration of direct and indirect pathways leads to a PD condition
in which overstimulation of the internal globus pallidus (GPi) occurs with the consequent
inhibition of the motor thalamus and the limitation of the activity of the corresponding
motor area [24,25]. As described above, L-DOPA represents the main treatment for PD
patients, which has different consequences depending on disease stage (early or late
stages). In particular, during the earlier stages of PD when dopaminergic denervation
is lower, DA, obtained from L-DOPA oral administration, is stored in the presynaptic
vesicles, maintaining stable levels in these patients [26]. In contrast, when the majority
of dopaminergic terminals on striatal brain region are lost, dopaminergic transporters
are not able to store exogenous DA, resulting in the overstimulation of receptors due the
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high synaptic DA levels [27]. In fact, LID phenomena are associated with plasma L-DOPA
concentration fluctuations [28] due to the short half-life of this drug [29,30].

2.2. Principal Mechanisms Involved

Many other factors are involved in the LID mechanisms [8,20]. Indeed, L-DOPA is
usually processed by the enzyme aromatic L-amino acid decarboxylase (AADC), and de-
carboxylated to DA in the nigrostriatal dopaminergic fibers [31,32]. However, exogenous L-
DOPA metabolism can occur both in serotonergic and noradrenergic terminals, due to their
expression of the enzyme aromatic L-amino acid decarboxylase (AADC) [26,33]. Striatal
synaptic plasticity is regulated by the interaction between dopaminergic and serotonergic
systems [34]. Moreover, as described previously, the serotoninergic system contributes to
L-DOPA metabolism. Unfortunately, serotoninergic 5-HT fibers do not show the capacity
to regulate DA release due to the deficiency of D2 autoreceptors and DA transporters [33].
Thus, the effect is the fluctuations of DA levels in the synaptic cleft and an aberrant stim-
ulation of striatal projection neurons (SPNs) [35–38]. A similar phenomenon happens in
the noradrenergic terminals with the synthesis of L-DOPA into DA thanks to the AADC
enzyme, also causing variable DA levels in the striatum [39].

Additionally, during the period of L-DOPA intake, D1 receptors are overstimulated
with overactivity of the direct pathway [40,41] and strong activation of the cyclic adenosine
monophosphate (cAMP) signaling pathway [18,42,43]. This activation in turn involves
the stimulation of other downstream factors, such as cAMP-dependent protein kinase A
(PKA), the dopamine- and cAMP-regulated protein 32 kDa (DARPP-32), the extracellular
signal-regulated kinases (ERK), and the mammalian target of rapamycin (mTOR) path-
ways [33,42–44]. Moreover, phosphodiesterase 10 (PDE10) is involved in DA signaling,
controlling PKA/DARPP-32 and cAMP signaling cascades [45]. PDE10A levels in the
caudate putamen striatal region of PD patients are reduced, confirming their possible role
into LID symptoms’ onset [46].

Additionally, increased glutamatergic neurotransmission, from the cortex to the stria-
tum, occurs after dopaminergic cell loss and DA replacement therapy. Indeed, the NMDA
(n-methyl-d-aspartate) and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic
acid) receptors undergo cellular changes such as localization, post-translational modifica-
tions and changes to the subunit structure, contributing to LIDs’ progress [47–52]. NMDAR
is an ionotropic glutamate receptor that is specifically involved in synaptic and neuroin-
flammatory processes. As a voltage- and ligand-gated cation channel, NMDAR presents a
composition with different subunits. GluN1 and GluN2 are the most available isoforms,
although we can also find GluN2A, GluN2B, GluN2C, and GluN2D [10,53–55]. These
subunits will affect channel functions through their composition, distribution, and phos-
phorylation. Experience-generated neural activity can alter brain function by modifying
synaptic transmission, known as synaptic plasticity. Altered synaptic plasticity is frequently
observed in neurodegenerative diseases and can contribute to neurophysiological disorders.
Synaptic plasticity can exist in several forms, both short- and long-term, and can have
a depressor or potentiating effect. Synaptic plasticity is the mechanism that allows the
realization of learning and memory processes. It is closely dependent on glutamatergic
excitatory transmission through the modulation of NMDA receptors, which are controlled
by dopaminergic pathways via binding to D1 and D2 receptors. The forms of synaptic
plasticity that will be evaluated here are LTP (long-term potentiation) and LTD (long-term
depression), which can be directly altered by inflammatory processes [1,2]. Indeed, synaptic
plasticity and the induction of LTP and LTD are controlled by the phosphorylation grade
of NMDAR isoforms, which in turn trigger learning and memory processes [10,18,56,57].
Motor signals, which reach the basal ganglia from the cortex, depend on the bidirectional
control of synaptic plasticity by LTP and LTD. In the PD condition, even if the cortex sends
information to the basal ganglia, the striatum loses the capacity to export appropriate
signals; this phenomenon is amplified during LID onset [10,58]. In LID pathology, NMDAR
can induce an overactivation of LTP which, with the contemporary lack of LTD, leads to
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redundant movements due to the abnormal motor information, as demonstrated in rat
models [10].

Ultimately, it seems that not only drug factors are involved in LID onset but also PD pa-
tients’ own characteristics, such as oxidative-inflammatory marker genetic panels [59–61].

3. Neuroinflammation and Its Role in LID Development

As recently reviewed by our group, neuroinflammation contributes actively to the
pathophysiology of PD [1,2,62]. As noted above, PD is a multifactorial disorder, character-
ized by synaptic damage, dopaminergic neuronal death, misfolded α-syn aggregation, and
an altered immune response [1,2]. In summary, gradual dopaminergic cell death prompts
the alteration of long-term potentiation (LTP) modifying the excitability of SPNs. While the
degeneration continues, other processes affect it, producing a vicious cycle. Among the
symptoms is the well-known inflammatory response present in the brain of PD patients by
means of microglia and astrocyte reactions, the gene expression of pro-inflammatory species,
and the activation of adaptive immune factors from the periphery [1,2,63–67]. Indeed, cy-
tokines, when secreted in excess by microglia, are involved in LID development, affecting
corticostriatal synaptic plasticity and glutamatergic transmission [68–70]. Interestingly, the
activation of inflammation already occurs when dopaminergic terminal death and plasticity
alteration arise, but long before the death of dopaminergic neurons [1,2,71,72]. Moreover,
as previously described by our group, extracellular α-syn, acting as damaged-associated
molecular patterns (DAMPs), elicits an inflammatory cascade inducing chemokine and
cytokine production from microglia [1,2]. Indeed, a number of studies have indicated that
the dorsal striatum of dyskinetic rats has a higher rate of glia cell reactions [73].

Thus, neuroinflammation represents a well-known altered process in PD pathol-
ogy. Numerous pre-clinical studies have identified the quality and quantity changes of
microglial and astrocytes’ population with releasing of immune system agents such as
interleukin-1β (IL-1β), inducible nitric oxide (NO), nitric oxide synthase (iNOS), tumor
necrosis factor-a (TNF-a), cyclooxygenase-2 (COX-2) enzyme, and chemokines. Indeed,
treatment with anti-inflammatory drugs, such as ibuprofen (a non-selective COX inhibitor)
or glucocorticoid corticosterone [74], seems to be able to fight the immune response and to
decrease dyskinesia symptoms in PD animal models, significantly enhancing the efficiency
and tolerance of L-DOPA treatment [73,75–77].

In the past decade, studies have focused on a possible role for inflammatory outbreaks
in the LID pathological mechanism. The inflammatory response caused by daily treatment
with L-DOPA and LIDs can be attributed to a variety of reasons, which are listed below
(Figure 2).

First of all, neuroinflammation seems to affect NMDAR function and expression,
even during the LID phenomenon. Importantly, cytokines (TNF-α, IL-1β, NO, iNOS)
and chemokines control the release of glutamic acid (Glu) from presynaptic neurons and
the expression of Glu receptors in postsynaptic neurons [10,78,79]. As noted above in
this review, GluN1 and GluN2 are the most expressed subunits of the NMDAR, whose
phosphorylation contributes to dysregulation of synaptic plasticity and the trigger of LIDs.

Second, astroglia seems to transport and distribute L-DOPA from the blood to brain
tissues. As is well-known, the blood–brain barrier (BBB) is composed of astrocytic end-
feet [20,68,80,81]. Indeed, astrocytes take up L-DOPA through an amino acid transporter,
named L-type amino acid transporter 1 or sodium-independent neutral amino acid trans-
porter (LAT1) [82]. Astrocytes appear to act as a DA storage facility and to release it
only based on its extracellular concentration [68,83]. Additionally, astroglia presents as
a DA transporter, able to internalize DA derived from L-DOPA metabolism [84]. Indeed,
astrocytes also possess monoamine oxidase (MAO-B) and catechol-O-methyltransferase
(COMT) and thus participate in L-DOPA metabolism [85].
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Figure 2. The involvement of neuroinflammation in LID. LIDs are abnormal involuntary movements
due to the daily treatment with L-DOPA. Several are the mechanisms underlying these processes:
abnormal corticostriatal neurotransmission, pre- and post-synaptic neuronal events, changes in gene
expression, and altered plasticity. In recent years, researchers have also suggested non-neuronal
mechanisms as a possible cause for LID. Indeed, cytokines, when secreted in excess by microglia,
are involved in LID development affecting corticostriatal synaptic plasticity and glutamatergic
transmission [68–70]. Among the causes of the inflammatory response are the increased oxidation
due to excessive DA concentration, and astroglia transport and distribution of L-DOPA from the
blood to brain tissues. Indeed, astrocytes take up L-DOPA through an amino acid transporter, named
L-type amino acid transporter 1 or sodium-independent neutral amino acid transporter (LAT1).
Astrocytes appear to act as a DA storage facility and to release it only based on its extracellular
concentration. Additionally, astroglia presents as a DA transporter, able to internalize DA derived
from L-DOPA metabolism. Indeed, astrocytes also possess monoamine oxidase (MAO-B) and catechol-
O-methyltransferase (COMT) and thus participate in L-DOPA metabolism [68,82–85] (Figure created
in BioRender.com). GLU: glutamatergic neuron and glutamate; SPNs: striatal projection neurons.

Accumulating research evidence has demonstrated the inflammatory response contri-
bution to LIDs by the contribution of microglia and soluble pro-inflammatory cytokines
(TNF-α, Il-1β, iNOS) [20,86]. As demonstrated by Mulas and co-workers in 2016, a dyski-
netic L-DOPA treatment also induced microglial reactivity with increased TNF-α expres-
sion in contrast to a different L-DOPA administration, defined non-dyskinetic, through
continuous subcutaneous infusion [20,87]. Recently, Morissette and collaborators have
demonstrated the correlation between increased inflammatory markers and LID scores in
dyskinetic monkeys compared to that of vehicle-treated MPTP monkeys, not only in the
basal ganglia but also in other downstream basal ganglia nuclei including the GPe and GPi.
Moreover, treatment with MPEP (a metabotropic glutamate receptor 5 antagonist) reduced
both the development of LID in de novo MPTP-lesioned monkeys and the inflammatory
reaction measured by means of IBA1, CD68, and GFAP markers [88]. As is well known,
PD is closely associated with advancing age and at the same time also affects the LID
onset. In particular, there is an increased risk of developing LIDs when juvenile PD onset
occurs [89–91]. A recent work has demonstrated this issue, by conducting experiments
in both adult (3 months) and juvenile (18 month) male Fischer rats, bearing unilateral
6-hydroxydopamine (6-OHDA)-lesions of the medial forebrain bundle. The animals were
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treated acutely with a vehicle or L-DOPA (6 mg/kg) [89]. The research group has investi-
gated the relationship between LIDs and aging-derived neuroinflammation. The outcome
of this study showed the increase of IL-1β gene expression in the striatum ipsilateral and
lesions only in the group of 18-month-old rats, confirming a previous study in mice [89,92].
Indeed, an IL-1β receptor antagonist infusion in the striatum effectively decreased LIDs
in the 6-OHDA model [75]. Recently, a study in a rodent model of PD, chronically treated
with L-DOPA to provoke abnormal involuntary movements (AIMs), revealed via transcrip-
tomic analyses the involvement of the following factors as key molecular mediators of LID
advancement: transforming growth factor beta type 1 (TGFβ1), interleukin 1 beta (IL1β),
and tumor necrosis factor alpha (TNFα) cytokines as key mediators of chronic inflamma-
tion [93]. Additionally, TGFβ1, IL-1-β, and TNFα alterations were found in cerebrospinal
fluid (CSF) and cerebral tissues of PD patients [93].

Indeed, TNF-α represents another proinflammatory cytokine that affects dyskinesia
pathophysiologic machinery [94,95]. In particular, TNF-α is an effective activator of resting
microglia and a modulator of LTP by the modulation of AMPA glutamate receptor subunit
1 (GLUR1) expression, which is implicated in LIDs [96–99]. Furthermore, TNF-α controls
neuronal excitability and synaptic plasticity, through TNF receptor 1 and 2 (TNR1 and
TNFR2) [68,96,100,101]. In addition, TNF-α affects the synaptic activity altering AMPA
receptor [68,100]. The inhibition of TNF-α through thalidomide (TLD) and its derivative
3,6’-dithiothalidomide (DTT) in the 6-OHDA rat model of PD attenuated LID scores via an
anti-angiogenic activity in basal ganglia and an overexpression of GLUR1 [102–109].

Another important player in the molecular inflammatory mechanisms is represented
by IFN-γ, a pro-inflammatory cytokine involved in the iNOS transcription [110]. Moreover,
IFN-γ stimulates glial cells, and PD patients present augmented levels in the brain and in the
plasma; thus, this cytokine could have a key role in the PD pathology [111]. Investigators
showed astrocyte and iNOS reactivity in IFN-γ/KO parkinsonian mice without affecting
the dopaminergic cells death or LID onset, suggesting that neuroinflammation could be
arising by L-DOPA in a different pathway, aside from IFN-γ signaling [111].

Another key role in the neuroinflammation could be that of increased oxidation due
to excessive concentration and metabolism of DA, following the long-term use of the
L-DOPA drug. Interestingly, L-DOPA, as the chemical precursor of dopamine, prompts
the production of free radicals, which worsens the oxidative damage and alteration char-
acteristic of Parkinson’s disease pathology. Indeed, some authors support the idea that
some L-DOPA quantity is converted into dopamine, despite the medical prescription of
DOPA-decarboxylase inhibitors. The increment of free radicals and the consequent oxida-
tive stress could be able to induce the occurrence of dyskinesia pathology. In addition,
specific experimental studies have drawn attention to the potential effects of synthetic
anti-oxidants on the amelioration of hyperkinetic movements in LID animal models. In
the context of inflammatory oxidative pathophysiology of PD, Sarkar and his collaborators
have conducted a study on PD patients presenting or not with dyskinesia, compared to
healthy-matched people [112]. They found a different oxidative profile and inflammatory
response in PD with or without LID. In particular, reduction of antioxidant activity, and
TOLLIP (toll interacting protein) and IL-1β upregulation were found in LID patients com-
pared to controls. TOLLIP is an inhibitory adaptor protein of the TRL pathway, involved
in the endo-lysosomal degradation of IL-1R, and its overexpression inhibits inflammatory
processes. Other investigations have highlighted the involvement of the nitric oxide (NO)
signaling pathway. NO is a neurotransmitter synthesized from its precursor L-arginine.
Furthermore, NO seems to be involved in inflammatory events of PD. Indeed, neuronal
NOS (nNOS) mRna [113], nNOS, and inducible NOS (iNOS) protein [76,114] presented
an increased concentration level in L-DOPA-induced dyskinesia model rats. Of note, the
nNOS inhibitors were effective in preventing dyskinesia manifestation and COX2 increased
expression, which is also involved in LID development [112].
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4. Therapeutic Interventions

As previously mentioned, LIDs represent the most frequent adverse effect of daily
treatment with L-DOPA. As is known, PD prevalence is increasing due to many factors
and in particular the aging world population. Furthermore, all these lead to an increase in
socioeconomic costs and deterioration in the quality of life of PD-affected people, impairing
daily activities (such as eating and drinking) and enhancing anxiety and depression as well
as the risk of falling [115–119]. Currently, the only treatment approved and the most efficient
drug for the management of LIDs is Amantadine, a low-affinity non-competitive NMDA
receptor antagonist, as reported by several clinical studies [7,11,115,120]. Amantadine
is available in two formulations, only one approved, and one used off label [121]. The
latter formulation of Amantadine was approved by the FDA in 2017 and presents an
extended release [115]. However, Amantadine presents side effects such as confusion and
hallucinations [122]. Indeed, Amantadine acts by reducing the inflammatory response
induced by microglia [93,123]. This supports the role of neuroinflammation and its use
as a therapeutic target in the fight against LIDs. In this way, corticosterone, a hormone
with potent immunomodulatory properties, seemed to reduce LIDs development when
administered prior to L-DOPA treatment [75]. As described above, treatment with MPEP
(a metabotropic glutamate receptor 5 antagonist) reduced the onset of LIDs in de novo
MPTP-lesioned monkeys through decrease of inflammatory reaction by means of IBA1,
GFAP, and CD68 in the basal ganglia without effects in the nucleus accumbens and motor
cortex M1 [88]. An alternative treatment for LIDs in PD could be the use of doxycycline
(doxy), a semisynthetic tetracycline antibiotic with anti-inflammatory characteristics able
to pass the BBB [124]. Doxycycline triggered the reduction of LIDs in L-DOPA-treated
dyskinetic mice by decreasing Fos-B and COX-2 expression and lowering PGE2, TNF-α,
and IL-1β levels in the dorsolateral striatum [124,125].

Among anti-inflammatory compounds, there is methylene blue (MB), a non-selective
inhibitor of the soluble enzyme guanylyl cyclase (sGC) involved in the signaling pathway
for nitric oxide (NO) transmission [98,126,127]. Bariotto-Dos-Santos and collaborators
have demonstrated that co-administration of MB with L-DOPA reduced the risk of LID
development, probably due to its anti-inflammatory properties, leading to a decrease in
microglia reaction and expressions of pro-inflammatory cytokines [125,128–130].

From the point of view of prevention, in this review, we should mention nutraceutical
products tested in animal models to support pharmacological therapy. Among them,
resveratrol (trans-3, 4, 5-trihydroxystilbene, RES) seems to have many beneficial effects.
In fact, it has anti-oxidative, anti-aging, anti-inflammatory, anti-cancer, and anti-microbial
properties, and the ability to cross the blood–brain barrier (BBB), acting on the central
nervous system. Moreover, research on PD animal models has demonstrated that RES
could rescue Da neurons and reduce L-DOPA side effect, such as severity of dyskinesia,
probably due to its anti-inflammatory characteristics [131]. Ultimately, preclinical studies
have shown that cholecalciferol (VD3) treatment ameliorates motor impairments and
diminished IL-1β and CD11b inflammatory expression [132]. Indeed, VD3 deficiency has
been found in various neurological disorders [133], including PD. VD3 is a steroid involved
in gene expression, whose receptor is largely concentrated in striatum [134]. Moreover, VD3
demonstrated anti-dyskinetic properties by mitigation of dyskinetic abnormal involuntary
movements (AIMs), due to its ability to modulate the microglia reaction, generation of
ROS, inflammation, and apoptotic pathways, not involving dopaminergic modulation. All
treatments are noted in Table 1.

The current presented review supports the urgent need for further studies to deepen
understanding of the inflammatory mechanism in LIDs. Drug repurposing could be a
crucial strategy to investigate various drugs available for LID treatment.
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Table 1. Anti-inflammatory drug treatments in LID.

Drug Name Characteristics References

Amantadine
As a mild glutamate receptor antagonist, it is

used to treat Parkinson’s disease (PD), boosting
dopamine and preventing its reuptake

[7,11,115,120]

Corticosterone Hormone with potent immunomodulatory
properties [75]

Ibuprofen A non-selective COX inhibitor [74]

MPEP Metabotropic glutamate receptor 5 antagonist [88]

Doxycycline A semisynthetic tetracycline antibiotic [124]

Methylene blue (MB) A non-selective inhibitor of the soluble enzyme
guanylyl cyclase (sGC) [98,125–130]

Resveratrol (trans-3, 4,
5-trihydroxystilbene, RES)

Class of plant micronutrients called
polyphenols [131]

Cholecalciferol (VD3) Vitamin [132–134]

5. Conclusions

Currently, treatment with L-DOPA remains the gold standard therapy for PD patients
due to its efficacy. However, it is important to note that this treatment can lead to disabling
side effects, including motor and cognitive complications, which may contribute to the
onset of LID. This article reviews recent literature that highlights the correlation between PD
and neuroinflammation and how inflammatory processes are closely linked to the onset of
LID. It is clear that a potential area for research is the expansion of pharmacological methods
to delay the onset of LID or limit its impact, particularly in relation to neuroinflammation.
The multifactorial nature of PD requires the evaluation of new pharmacological strategies,
bearing in mind the potential risk of developing levodopa-induced dyskinesias (LID).
Therefore, we suggest that the reduction of side effects due to the activation of inflammatory
processes during the progress of PD should not be neglected, as they are likely to be
involved both in neurodegeneration itself and in the development of LIDs. As such,
neuroinflammation represents a new field of research and could be an excellent therapy
target both to slow down the progression of PD and to reduce LIDs, bettering the quality of
life of PD patients.

6. Limitations of the Studies

In this review, we wanted to analyze the literature on the non-neuronal mechanisms
involved in the dyskinesia onset. In this context, we also analyzed the possible drug targets
or treatments that could be used. However, there are several limitations in the use of these
novel drugs for several reasons:

- Could have serious adverse reactions;
- Could reduce the effectiveness of L-dopa;
- Have excellent results in pre-clinical practice but no evidence in medical use due to the

lack of clinical trials.

Therefore, in particular, it is urgent to link the pre-clinical studies to human trials on
anti-inflammatory protocols to assess evidence of beneficial effects for PD patients and to
associate them with the LID pharmacological treatments. Obviously, this urgency must also
be applied to the other non-neuronal mechanisms involved to amplify the effectiveness
of treatments.
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Abbreviations

AADC Aromatic L-Amino Acid Decarboxylase
AIMs Abnormal Involuntary Movements
BBB Blood–Brain Barrier
cAMP Cyclic Adenosine Monophosphate
CD68 Cluster of Differentiation 68
CSF Cerebrospinal Fluid
COMT Catechol-O-Methyltransferase
DA Dopamine
DARPP-32 Dopamine and Camp-Regulated Protein of 32 kDa
DAT Dopamine Transporter
DID Dyskinesia-Improvement Dyskinesia
ERK Extracellular Signal-Regulated Kinases
IBA1 Ionized Calcium Binding Adaptor Molecule 1
IDI Improvement-Dyskinesia-Improvement
GFAP Glial Fibrillary Acidic Protein
GPi Internal Globus Pallidus
Il-1β Interleukin-1 beta
iNOS Inducible NO Synthase
IFN-γ Interferon Gamma
LAT1 L-Type Amino Acid Transporter 1
LID L-DOPA-Induced Dyskinesia
L-DOPA l-3,4-Dihydroxyphenylalanine Levodopa
LTD Long-Term Depression
LTP Long-Term Potentiation
MAO-B Monoamine Oxidase
MPEP Metabotropic Glutamate Receptor 5 Antagonist
MPTP 1-Metil 4-Fenil 1,2,3,6-Tetraidro-Piridina
mTOR Mammalian Target of Rapamycin
SPNs Striatal Projection Neurons
PDE10 Phosphodiesterase 10
PKA cAMP-dependent Protein Kinase A
PD Parkinson’s Disease
TGFβ1 Transforming Growth Factor beta type 1
TNF-α Tumor Necrosis Factor
TNFR2 TNF Receptor 2
TNR1 TNF Receptor 1
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