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Abstract: Parkinson’s disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS)
are examples of neurodegenerative movement disorders (NMDs), which are defined by a gradual
loss of motor function that is frequently accompanied by cognitive decline. Although genetic
abnormalities have long been acknowledged as significant factors, new research indicates that
epigenetic alterations are crucial for the initiation and development of disease. This review delves into
the complex interactions that exist between the pathophysiology of NMDs and epigenetic mechanisms
such DNA methylation, histone modifications, and non-coding RNAs. Here, we examine how
these epigenetic changes could affect protein aggregation, neuroinflammation, and gene expression
patterns, thereby influencing the viability and functionality of neurons. Through the clarification of
the epigenetic terrain underpinning neurodegenerative movement disorders, this review seeks to
enhance comprehension of the underlying mechanisms of the illness and augment the creation of
innovative therapeutic strategies.

Keywords: epigenetics; neurodegenerative diseases; Parkinson’s disease; amyotrophic lateral
sclerosis; multiple sclerosis; DNA methylation; DNA histon modifications; miRNAs

1. Introduction

Neurodegenerative movement disorders (NMDs) are marked by neuronal degenera-
tion, often accompanied by abnormal protein aggregate buildup in the brain, leading to
motor symptoms and cognitive decline [1–5]. This category encompasses various diseases,
including Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and multiple scle-
rosis (MS), among others. While recent advancements have partially clarified the biological
mechanisms underlying the onset and progression of these diverse diseases, a complete
understanding of NMDs remains elusive [6].

In recent decades, genetics and epigenetics have led to a surge in neuroscience stud-
ies aiming to understand the intricate interplay of the physiological and pathological
mechanisms governing neurodevelopment and neurodegeneration. This approach led
to the identification of various epigenetic modifications, such as DNA methylation, hy-
droxymethylation, histone modification, histone variants, and noncoding RNA [7]. These
modifications dynamically regulate gene expression, playing crucial roles in shaping the
neuronal landscape (Figure 1). The intersection of epigenetics with neuronal cells, known
as “neuroepigenetics,” has become an area of intensified focus. Investigating the interrela-
tionship between these epigenetic mechanisms and the disruption of neuronal function is
crucial in unraveling the pathogenesis of neurodegenerative disorders [6,7]. The nuanced
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exploration of neuroepigenetics not only provides insights into the molecular underpin-
nings of neuronal development and degeneration but also illuminates potential therapeutic
strategies targeting epigenetic dysregulations. This holistic approach, bridging genetics,
epigenetics, and neuroscience, presents a comprehensive framework for understanding
and potentially intervening in the complex processes governing brain health across the
lifespan [6].
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Figure 1. The interconnection between epigenetic, genetic, biological, and environmental factors and
the onset of neurodegenerative diseases.

This narrative review aims to summarize recent advances in neuroepigenetic research,
focusing on DNA methylation and histone changes underlying PD, ALS, and MS onset.
Additionally, it examines the link between the aberrant expression of miRNAs and the
onset or progression of these NMDs. The literature research was conducted using the fol-
lowing databases: SCOPUS, PUBMED, and MEDLINE. We considered the most important
contributions in the field of epigenetic regulation in ALS, PD, and MS, considering the
most updated and/or fundamental research works in the field, in order to provide the most
comprehensive overview of the topic.

1.1. Epigenetics

Epigenetics refers to the investigation of inheritable alterations in gene expression or
cellular phenotype that occur without changes to the underlying DNA sequence. These
alterations can be influenced by diverse factors such as environmental cues, chemical
endocrine disruptors, lifestyle choices, developmental stages, and disease conditions [8–12].
Epigenetic mechanisms encompass DNA methylation, histone modifications, chromatin
remodeling, and regulation by non-coding RNA, all of which can regulate gene activation
or repression without altering the DNA sequence itself [13]. These modifications are
vital for governing gene expression, playing critical roles in normal development, cellular
differentiation, and the preservation of cellular identity. The disruption of epigenetic
processes has been implicated in various diseases, including neurodegenerative movement
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disorders (NMDs) [6,14]. In the following paragraphs, we will delve into some of these
epigenetic alterations and explore their associations with the initiation or progression
of NMDs.

1.2. DNA Methylation and Hydroxymethylation

In mammals, DNA methylation entails the transfer of methyl groups (CH3) from
S-adenosyl-L-methionine (SAM), the universal donor, to cytosines, predominantly occur-
ring within the dinucleotide context of 5′-CpG-3′ [15]. While CpG dinucleotides represent
only 1% of the mammalian genome, they tend to aggregate in CpG-rich regions, termed
CpG islands (CGIs), typically positioned near the transcription start sites (TSSs) of approxi-
mately 70% of human protein-coding genes [15]. The addition of methyl groups induces
conformational changes in the DNA structure, impeding the recognition of methylated
DNA by various transcription factors, particularly when situated in the gene promoter
region, resulting in transcriptional repression [16]. DNA methylation is catalyzed by a set
of proteins known as DNA methyltransferases (DNMTs), which can be classified into two
groups: those responsible for de novo methylation and those responsible for methylation
maintenance. For instance, DNMT1 is engaged in upholding DNA methylation patterns
by attaching methyl groups to newly synthesized DNA strands during replication. Con-
versely, de novo DNA methylation is orchestrated by DNMT3a and DNMT3b, which add
methyl groups to previously unmethylated cytosines [17]. The epigenetic significance of
5-methyl cytosine (5mC) has been extensively investigated and found to be integral to
various cellular processes and functions, including developmental gene regulation, differ-
entiation, and genomic imprinting [18]. Notably, Giallongo et al. elucidated the crucial role
of DNA methylation status in modulating brain function, particularly synaptic plasticity
and memory processes [19].

On the other hand, DNA hydroxymethylation is a recently discovered DNA modifica-
tion, characterized by the substitution of a hydrogen atom (H) at the C5-position in cytosine
with a hydroxymethyl group (OH), resulting in the formation of 5-hydroxymethylcytosine
(5hmC) [18]. The transformation of 5mC to 5hmC is facilitated by the Ten–Eleven Translo-
cation (TET) family proteins, representing the initial phase in the DNA demethylation
process, as 5hmC is swiftly converted into unmethylated cytosine [20]. Consequently,
the presence of 5hmC is often transitory. Nevertheless, recent research has revealed that
certain genomic regions exhibit consistent hydroxymethylation, particularly in the brain
and central nervous system, indicating a fundamental role of 5hmC in the functionality,
development, and pathogenesis of neuronal cells. Indeed, unlike DNA methylation, DNA
hydroxymethylation is commonly linked with gene expression [21,22]. DNA methylation
and demethylation processes are summarized in Figure 2.
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Figure 2. Schematic overview of DNA methylation and demethylation processes. DNA
methyltransferases (DNMT1, DNMT3A/3B) catalyze the methylation of cytosine to 5-
methylcytosine, whereas the TET proteins catalyze the hydroxymethylation of 5-methylcytosine
to 5-hydroxymethylcytosine. Finally, the conversion into an unmethylated cytosine is due to the
activation of active or passive demethylation processes.

1.3. Histon Modifications

Histone modifications encompass the biochemical changes occurring on histone pro-
teins that contribute to the formation of chromatin [23] (Figure 3). These proteins possess
long, flexible tails extending from the nucleosome core, which are susceptible to vari-
ous chemical alterations like acetylation, methylation, phosphorylation, ubiquitination,
SUMOylation, and ADP-ribosylation [23]. These modifications influence histone–DNA
interactions and the recruitment of other proteins to chromatin, thereby impacting gene
transcription, DNA repair, replication, and cell cycle progression. Consequently, histone
modifications serve as a vital mechanism for regulating chromatin dynamics and gene
expression patterns in response to developmental cues, environmental signals, and cellular
stresses [24], playing a significant role in the epigenetic regulation of gene expression, and
are implicated in various diseases, including neurological disorders [25].

Among these modifications, histone acetylation is notable and well-understood through
the activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs
transfer an acetyl group to the ε-amino group of lysine side chains of histones, neutralizing
the lysine’s positive charge. This action weakens histone–DNA interactions, facilitating
gene expression by enabling the binding of the transcriptional machinery to the promoter
region. Conversely, HDACs have an opposing effect, erasing lysine acetylation and restor-
ing the positive charge. This potentially stabilizes chromatin architecture and represses
transcription [26,27].
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Figure 3. Post-translational modifications of histones H2A, H2B, H3, and H4. The figure shows the
four major modifications: methylation, acetylation, ubiquitination, and phosphorylation.

1.4. miRNA Regulation

Non-coding RNAs (ncRNAs) fulfill a variety of functions in gene expression regulation
and epigenetic processes (Figure 4). While much emphasis has traditionally been placed on
protein-coding genes, it has become increasingly apparent that the majority of the genome
undergoes transcription into ncRNAs, which do not code for proteins but are crucial for
numerous cellular functions, including epigenetic regulation [28]. Based on their length
or structure, ncRNAs can be categorized into long non-coding RNAs (lncRNAs), short
non-coding RNAs (siRNAs), and circular RNAs. Studies have revealed that lncRNAs
can serve as scaffolds, recruiting chromatin-modifying complexes to specific genomic loci,
thereby influencing chromatin structure and gene expression [28]. For instance, lncRNAs
like TARID and TETILA recruit TET proteins to the promoter region of target genes, leading
to locus demethylation [29,30]. Conversely, ecCEBPA interacts with DNMT1, inhibiting its
catalytic activity and preventing CEBPA methylation, a pivotal gene in myelopoiesis and
granulopoiesis [31]. Additionally, short non-coding RNAs such as siRNAs and microRNAs
(miRNAs) take part in RNA interference (RNAi) pathways, which can induce transcrip-
tional gene silencing via heterochromatin formation or post-transcriptional gene silencing
through mRNA degradation or the inhibition of translation [32,33]. Furthermore, certain
ncRNAs function as sponges for miRNAs, sequestering them and hindering their targeting
of mRNA transcripts. By modulating miRNA activity, these ncRNAs indirectly influence
epigenetic regulation and gene expression [34]. Overall, ncRNAs exhibit diverse and critical
roles in epigenetic regulation, contributing to the dynamic modulation of gene expression
and cellular functions [28]. Understanding the functions and mechanisms of ncRNAs in
epigenetic regulation is essential for unraveling the complexity of gene regulatory networks
and their implications in health and disease.
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Figure 4. Schematic overview of miRNA biosynthesis and action mechanisms. pri-miRNAs are
transcribed from miRNA genes encoded in exonic, intronic, or intergenic regions, and they are
subsequently processed by Drosha/DGCR8 into pre-miRNAs. Once exported into the cytoplasm,
pre-miRNAs are cleaved by Dicer cleavage and unwound via Argonaute (AGO) and loaded into
the RNA-induced silencing complex (RISC) via TRBP. The binding of target mRNAs to miRNAs in
RISC is followed by the inhibition of translation and/or mRNA degradation within p-bodies in the
cytosol. The transport of RLC and RISC into the dendritic and axonal compartments occurs via a still
unknown mechanism.

2. Parkinson’s Disease

PD is a progressive neurodegenerative condition that encompasses a variety of factors
contributing to its onset and progression, including genetic, environmental, and epigenetic
elements and polymorphisms [35–39]. The hallmark of PD involves the degeneration of
dopaminergic neurons in the substantia nigra pars compacta (SNpc) [36,40]. Despite exten-
sive investigation, many of the pathogenic mechanisms underlying PD remain unclear [41].
Various molecular mechanisms have been proposed to contribute to PD development,
including mitochondrial dysfunction, α-synuclein (α-syn) misfolding, accumulation, and
aggregation, oxidative stress, and impaired protein clearance [35].

α-syn, a presynaptic neuronal protein, plays diverse roles in vesicle transport, neu-
rotransmitter release, and other functions, although its complete functions are not yet
understood [35]. Studies employing α-syn knockout mice suggest that PD results from
a gain of toxic function, wherein overexpression, mutations, and misfolding lead to the
formation of proteinaceous cytoplasmic inclusions called Lewy bodies (LBs), compromis-
ing neuronal health [41]. These LBs, mainly comprised of misfolded α-syn, along with
other significant protein-based aggregates, are termed Lewy neurites (LNs), with research
suggesting that LBs may evolve from LNs [42].
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Under normal conditions, α-syn exists in three forms: unfolded monomers, membrane-
bound species, and tetramers. Disruption of this balance leads to the misfolding and
aggregation of α-syn into oligomers, amyloid fibrils, and Lewy bodies [43]. Recent studies
highlight the role of neuromelanin (NM) in Lewy bodies, with NM being a pigment derived
from catecholamines found in human dopaminergic and noradrenergic neurons. These
neurons are subject to oxidative stress due to the catecholamine metabolism, elevated
unsaturated fatty acids, iron (III) ions, and insufficient mechanisms to counteract damage
from reactive oxygen species (ROS) [44]. NM, acting as a metal chelator, exhibits both
neuroprotective and neurodegenerative properties, with its effectiveness determined by
the balance between iron and NM [45].

PD is categorized into familial PD, associated with genetic mutations, and sporadic PD,
resulting from interactions between environmental and lifestyle factors [36]. Both genetic
and environmental factors play critical roles in PD pathophysiology [46]. Several genetic
mutations underlie PD, including the α-syn coding gene (SNCA), Parkin (PRKN), human
leucine-rich repeat kinase 2 (LRRK2), and glucocerebrosidase (GBA) [35]. Environmental
risk factors for PD include exposure to heavy metals, pesticides, head injuries, dairy product
consumption, and type 2 diabetes [35,46]. Conversely, protective factors include coffee
and tea consumption [35,47]. Also, epigenetic alterations can play a significant role in the
pathogenesis of PD through diverse mechanisms, including DNA methylation, histone
modifications, and miRNAs [36].

2.1. DNA Methylation and Hydroxymethylation in PD

Genome-wide analyses have revealed dysregulated CpG DNA methylation patterns
in both the brain and blood of PD patients, suggesting a potential systemic impact by both
gene gain and loss of function [36]. Notably, PD patients exhibit reduced methylation levels
in SNCA promoter and first-intron regions, which harbor transcription-factor-binding
sites, indicating that alterations in DNA methylation may influence α-syn expression [48].
The resultant increase in α-syn levels due to epigenetic modifications could contribute
to the accumulation of misfolded proteins, mitochondrial dysfunction, reactive oxygen
species (ROS) generation, proteasome dysfunction, and the sequestration of transcription
factors, ultimately leading to general abnormal gene expression [49,50]. Additionally, α-syn
has been found to sequester DNMT1 in neurons, further impacting the balance of DNA
methylation in the genome [51].

Furthermore, in addition to the aberrant DNA methylation of α-syn, Rasheed et al.
also reported hypomethylation of the tumor necrosis factor alpha (TNFα)-promoter gene
in the SNpc compared to the cortex of PD patients, highlighting the potential suscepti-
bility of SNpc neurons in PD pathogenesis due to increased proinflammatory cytokine
expression [52,53].

Additional investigations have identified modifications in the DNA methylation
profile of other genes implicated in PD pathogenesis. These include the hypomethylation
of Nitric Oxide Synthase 2 (NOS2), adenosine A2A receptor (ADORA2A), Cytochrome
P450 Family 2 Subfamily E Member 1 (CYP2E1), and the hypermethylation of dopamine
transporter (DAT), suggesting a pivotal role of DNA methylation in the onset or progression
of PD [54,55].

More interesting, Kochmanski et al. reported that there are sex-specific PD-associated
genes that showed a different gene methylation level in male and female subjects. More
specifically, performing a genome-wide analysis of DNA methylation in an enriched
neuronal population from the PD post-mortem parietal cortex, they reported sex-specific
PD-associated methylation changes, such as Parkinsonism-associated deglycase (PARK7),
Solute Carrier Family 17 Member 6 (SLC17A6), Protein Tyrosine Phosphatase Receptor
Type N2 (PTPRN2), and nuclear receptor subfamily 4 group A member 2 (NR4A2) genes,
suggesting that epigenetics could affect males and females differently in terms of PD onset
and progression [56].
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Very recently, Min et al. reported the presence of aberrant hydroxymethylation in the
substantia nigra of PD patients, identifying 4119 differentially hydroxymethylated regions
with respect to healthy donors. Subsequent analyses revealed that the altered profile in
genes was involved in many signaling pathways, such as phospholipase D, cAMP, and the
GTPase Rap1 [57].

2.2. Histone Posttranslational Modifications in PD

In PD, the specific implications of histone modifications and their underlying mecha-
nisms remain unclear. The research showed higher levels of histone acetylation in dopamin-
ergic neurons from PD patients compared to controls. Exposure to environmental toxins
like MPP(+) and MPTP has been shown to disrupt histone acetylation levels, suggesting
their involvement in PD pathology. Moreover, the accumulation of α-syn leads to H3
hypoacetylation through histone-masking, which represents a mechanism of chromatin
remodeling that could impede the expression of genes crucial for cell survival [58]. For
example, interactions between α-syn and histones H1 and H3 in the nucleus form stable
complexes, with α-syn binding to the PGC1α promoter, resulting in hypoacetylation and
the reduced expression of PGC1α. Given its role as a mitochondrial transcription factor, in-
adequate levels of PGC1α contribute to mitochondrial dysfunction and neurodegeneration,
accompanied by α-syn-induced oxidative stress and the loss of dopaminergic cells [58].

Dysfunction in mitochondrial respiratory complex 1 induces histone hyperacetylation
due to a decline in the NAD+/NADH ratio, leading to a compromised functioning of
sirtuins, NAD+-dependent histone deacetylases [59].

An analysis of histone acetylation changes within the primary motor cortex of PD
patients revealed an increase in the acetylation of histone H3 lysine 14 (H3K14) and H3
lysine 18 (H3K18), while histone H3 lysine 9 (H3K9) acetylation showed a decrease [60].

2.3. MicroRNA Regulation in PD

The 3′UTR sequence of SNCA mRNA has the ability to bind multiple miRNAs, such
as miR7, miR153, and miR34b/c. These noncoding RNAs decrease the translation of SNCA
mRNA in various brain regions. The decreased expression of miR7 and miR153 suggests
a potential association with the elevated α-synuclein levels in PD patients [49,61]. Kim
et al. reported a downregulation of miR-133b, which is specifically expressed in midbrain
dopaminergic neurons, in PD patients, implying its involvement in disease onset [25]. Fur-
ther studies have revealed that miR-133b targets Paired-Like Homeodomain Transcription
Factor 3 (PITX3), a critical transcription factor crucial for the maturation and function of
midbrain dopaminergic neurons, leading to its post-transcriptional downregulation [62].
PITX3, in turn, contributes to the expression of tyrosine hydroxylase (TH), the enzyme
crucial for dopamine biosynthesis [3,63].

Furthermore, Zhang et al. documented an upregulation of miR-17 in the substantia
nigra of a PD mouse model and in serum samples from PD patients. This miRNA targets
DNMT1, resulting in the downregulation of its protein expression, and consequently
leading to abnormal DNA methylation levels in PD patients [64].

3. Amyotrophic Lateral Sclerosis

ALS, also known as Charcot’s disease, was first observed by the eponymous scientist
150 years ago. This neurodegenerative condition is rare, with a prevalence of 10–15 cases
per 100,000 individuals, and typically manifests around the age of 60, leading to fatal
progression within five years of diagnosis [65]. Despite its long history, the underlying
causes of ALS remain poorly understood. A defining feature of the disease is the pres-
ence of protein aggregates in the upper and lower motor neurons located in the motor
cortex and spinal cord, respectively, which contribute to the gradual loss of axons from
neuromuscular junctions to motor neuron cell bodies. ALS presents with both motor and
cognitive impairments, including muscle wasting, spasticity, cardiac comorbidities, diffi-
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culty swallowing, respiratory insufficiency, and cognitive symptoms like speech difficulties,
irritability, obsessive behavior, and depression [66–69].

Despite extensive research, the precise pathological mechanisms underlying ALS are
not fully elucidated. The evidence suggests a distinction between sporadic and familial
forms, linked by common primary mutations in genes such as superoxide dismutase 1
(SOD1), TAR DNA-Binding Protein 43 (TARDBP), FUS, and C9orf72 [70]. These mutations
contribute to the multifaceted features of ALS, resulting in disruptions to protein home-
ostasis, aberrant RNA metabolism, impaired DNA repair, excitotoxicity, compromised
endosomal/vesicle transport, and neuroinflammation [71,72].

The SOD1 gene, long implicated in oxidative stress and the transcription of elements
within the ubiquitin–proteasome system, is associated with ALS through loss-of-function
mechanisms, hindering the degradation of misfolded proteins and promoting their aggre-
gation [73]. Autophagy regulators like C9orf72 and OPTN are frequently mutated in ALS.
The hexanucleotide repeat expansion (GGGGCC) in the promoter region of the C9orf72
gene is linked to toxic gain-of-function mechanisms and RNA splicing effects [74,75]. An-
other mechanism implicated in ALS onset involves the dysregulated RNA metabolism.
Mutations in the TARDBP gene, encoding for the TAR DNA-binding 43 (TDP43) protein
and also found in other neurodegenerative diseases like PD, are associated with impaired
RNA processing, transcription, posttranscriptional modification, and microRNA biogenesis.
This leads to a toxic gain of function, culminating in the aggregation of mutant proteins
in the cytoplasm [76,77]. A common feature observed in ALS is glutamate excitotoxicity,
stemming from the impaired reuptake transporter in glial cells or defective transport mech-
anisms. This results in an excessive influx of calcium ions, triggering neuronal activation,
mitochondrial dysfunction, and increased oxidative stress [78]. The dysregulation of endo-
somal and vesicle transport, associated with mutations in C9orf72 and TARDBP, further
complicates ALS pathophysiology, given their critical role in endosomal trafficking [75,79].
The onset and progression of ALS likely result from a combination of these mechanisms,
culminating in the loss of axonal projections of motor neurons and neuronal networks.
The high susceptibility of motor neurons remains unclear, with hypotheses ranging from
metabolic alterations to the expression of specific metalloproteinases and the decrease
in insulin-like growth factor 2 (IGF2), affecting neuronal sprouting. Some authors have
reported the primary degeneration of fast-fatigable motor units in ALS samples, although
the causes remain unknown [80].

Emerging evidence suggests that lifestyle or occupational exposures may contribute to
ALS etiology, with factors such as smoking, alcohol consumption, and infectious diseases
potentially playing a role. These epigenetic changes may influence the onset and severity
of ALS cases and could potentially serve as early markers for diagnosis and therapeutic
targets [81–83].

3.1. DNA Methylation and Hydroxymethylation in ALS

Numerous studies have documented an aberrant DNA methylation profile in indi-
viduals with ALS. For instance, Figueroa-Romero observed a widespread alteration in
DNA methylation and hydroxymethylation levels in post-mortem spinal tissue from ALS
patients, whereas such alterations were not detected in blood samples, indicating a neu-
ronal tissue-specific effect [84]. Particularly noteworthy is the identification of 112 genes
exhibiting hyper- or hypomethylation. Many of them are associated with immune and
inflammatory responses. These changes were also reflected at the gene expression level [84].
Similarly, an investigation conducted on blood cells revealed additional genes exhibiting
aberrant methylation patterns, particularly those involved in metabolism and cholesterol
biosynthesis [85]. Moreover, studies have implicated a correlation between Dnmt3a and
the ALS phenotype. Specifically, mice lacking Dnmt3a displayed a reduced number of
motor neurons, like Sod1 mutant mouse models, along with compromised neuromuscular
function [86]. Intriguingly, in vitro experiments have highlighted the significant role of
Dnmt3b in the development of motor neurons [87].
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Similarly to PD, ALS was also reported to show an aberrant hydroxymethylation
profile. Ozyurt et al. reported an increase in 5hmC levels in corticospinal motor neurons
(CSMN) showing the accumulation of misfolded SOD1, but these levels were decreased in
CSMN that degenerated due to the aberrant accumulation of TDP-43 [88].

3.2. Histone Posttranslational Modifications in ALS

In the field of epigenetic modifications implicated in ALS, researchers have observed
changes in the acetylation pattern of histone proteins, potentially stemming from the dys-
regulated expression of HDACs, which, in turn, affect gene expression. Among these, the
involvement of HDAC6 in epigenetic remodeling in ALS has garnered considerable atten-
tion. HDAC6 is known for its role in deacetylating alpha-tubulin, thereby impacting vesicle
transport along axons and the clearance of misfolded proteins [89,90]. Notably, studies
have indicated a decline in HDAC6 expression in the later stages of the disease, correlating
with the neurotoxic effects of aggregates due to impaired autophagy processes [91].

However, it is worth noting that, at the advanced stage of the disease, increased HDAC
expression may be considered a potential strategy for restoring the ubiquitin–proteasome
system and overall protein homeostasis [73]. The intricate involvement of HDACs in ALS
progression underscores the necessity for further investigations to elucidate the precise
mechanisms and potential therapeutic implications of targeting these epigenetic regulators
in the context of the disease.

Similarly, alterations in histone acetylation have also been linked to the onset or
progression of ALS [86]. In a cell model overexpressing FUS, FUS was found to inhibit
CBP/p300 HAT activity, leading to the hypoacetylation of the cyclin D1 (CCND1) gene,
which is crucial for cell cycle progression [86]. Furthermore, in an association study, ELP3,
possessing HAT activity in acetylating Lysine 14 on Histone H3 (H3K14) and Lysine 8 on
Histone H4 (H4K8), was implicated in motor neuron degeneration and ALS onset. These
findings were corroborated in animal models [86].

3.3. microRNA Regulation in ALS

The dysregulation of miRNAs has been implicated in various degenerative diseases,
including ALS. Figueroa-Romero identified the dysregulated expression of 90 miRNAs
in post-mortem spinal cord samples from ALS patients. These miRNAs are involved in
immune response regulation, cell death, and brain development, suggesting their potential
involvement in ALS etiology [92]. Notably, among them, miR-155 and miR-142 target
ubiliquin 2, RNA-binding protein Fox1, and reelin; alterations in these are typically associ-
ated with neurodegeneration. Other studies have revealed the upregulation of miRNAs
targeting neurofilament and Gria2 genes. These alterations are linked to motor neuron
degeneration [86].

TDP43 is also intricately involved in miRNA biogenesis and the metabolism, and
it has been reported that, in ALS, TDP43 is redistributed from the nucleus to cytoplasm,
where it forms unfunctional aggregates. In physiological conditions, TDP43 regulates the
production of miR-27b-3p and miR-181-5p, which, in turn, suppress the expression of
TDP43 [77]. This negative feedback is inhibited when TDP43 localizes into the cytoplasm.
ALS patients showed reduced levels of miR-27b-3p and miR-181-5p and an upregulation
of cytoplasmic TDP43, suggesting that the alteration in the negative feedback between
miRNAs and TDP43 may have a role in the onset and progression of ALS [93].

On the other hand, recent studies have shown that dysregulation in the skeletal muscle
system is also involved in the pathogenesis of ALS. MicroRNAs specifically expressed in
skeletal muscles, known as myomiRs, including miR-1, miR-23a, miR-133a/b, and miR-206,
play crucial roles in controlling myogenesis [94]. Particularly, miR-206, expressed in skeletal
muscles under physiological conditions, contributes to the maintenance of neuromuscular
junctions and synapses, regulating myoblast differentiation [95]. Additionally, it has
been discovered that miR-206 downregulates the expression levels of muscular histone
deacetylase 4 (HDAC4), an inhibitor of neuromuscular junction re-innervation via fibroblast
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growth factor binding protein 1 (FGFBP1), suggesting the role of miR-206 in promoting re-
innervation post-injury [95]. Building upon these findings, additional studies have shown
that all the myomiRs are dysregulated in ALS patients. In particular, miR-1 and miR-133a/b
are downregulated, suggesting their role in the onset and progression of ALS [96].

4. Multiple Sclerosis

MS is a chronic inflammatory demyelinating disease of the central nervous system
(CNS), typically afflicting adults [97]. It is characterized primarily by inflammatory pro-
cesses within the brain and spinal cord, where focal lymphocytic infiltration results in
myelin and axonal damage. Initially, there is a transient inflammatory response, followed
by remyelination, although this process is not durably sustained. Consequently, the early
stage of the disease is marked by episodes of neurological dysfunction, often accompanied
by recovery. However, as the disease advances, widespread microglial activation becomes
predominant, leading to extensive and chronic neurodegeneration, ultimately resulting
in progressive disability accumulation. The clinical spectrum of MS encompasses motor,
sensory, visual, and autonomic system impairments [98,99].

Although much of the data suggest an autoimmune origin, the precise etiology of MS
remains undefined.

Demyelinated areas in MS give rise to sclerotic plaques, focal points of inflammation
characterized by oligodendrocyte destruction, astrocytosis, and axon degeneration. The
reduction in trophic support from oligodendrocytes and the myelin sheath significantly
contributes to neuronal and axonal damage [98,100]. The onset and progression of MS are
intricate processes influenced by genetic, epigenetic, and environmental factors, each play-
ing a distinct role in the pathogenesis of this debilitating neurological condition [101]. The
multifaceted nature of MS underscores the importance of comprehensively understanding
the diverse factors contributing to its onset and progression, informing the development of
targeted therapeutic strategies for effective disease management.

Numerous genes have been implicated in the pathogenesis of MS, involved in immune-
mediated mechanisms, signal transduction, and even vitamin D metabolism [97,101].

Beyond genetic factors, viral infections, particularly the Epstein–Barr virus (EBV),
have been identified as influential elements in the onset of MS, increasing the risk of MS
onset [102]. Environmental factors such as smoking, low levels of vitamin D, and exposure
to environmental and microbial toxins are also recognized as pivotal contributors to the
onset of MS [100,103,104]. In addition, these environmental factors may influence the
plasticity of the epigenome and contribute to epigenetic dysregulation [105].

4.1. DNA Methylation and Hydroxymethylation in MS

Differential methylation patterns have been observed in genes associated with the
regulation of autoimmune responses (IL2RA, PTPN6, and SOCS1) [92–94] and CNS func-
tion (PADI2, CDKN2A, RUNX3, NEUROG1, and BDNF) [92,94,95] in both whole blood
and various leukocyte populations of remitting–relapsing MS patients. This suggests a
significant role of epigenetics in modulating inflammatory responses in the human brain.
Moreover, genes encoding myelin-related proteins were found to be aberrantly methylated
in MS patients. Olsen et al. reported the increased methylation of the Myelin Oligoden-
drocyte Glycoprotein gene (MOG) in the serum of remitting–relapsing MS patients [96].
Similarly, brain tissue analysis revealed decreased methylation in the promoter region of
the peptidyl arginine deiminase type 2 (PAD2) gene in the white matter of MS samples
compared to the control group [97]. PAD2 regulates the post-translational citrullination of
myelin basic protein (MBP), which is crucial for the myelinization process [97]. The exces-
sive citrullination of MBP affects myelin integrity, leading to its breakdown. Furthermore,
PAD2 was found to be upregulated before any clinical signs of demyelination, suggesting
that the aberrant hypomethylation of PAD2 could elevate PAD2 transcript levels, resulting
in increased citrullinated MBP [97].
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A genome-wide analysis, examining the DNA methylation patterns of repetitive
elements such as ALU, LINE1, and SATα, revealed significant hypermethylation in the blood
samples of MS patients compared to healthy controls [98,99]. Studies have demonstrated the
downregulation of Protein Tyrosine Phosphatase (SHP1) in the peripheral blood leukocytes
of MS subjects [93].

Investigations into normal-appearing white matter (NAWM) in MS patients have
identified the hypermethylation of genes such as BCL-2-LIKE PROTEIN 2 and NDRG1,
involved in oligodendrocyte survival and neuronal activity, resulting in reduced protein
expression compared to controls [100]. Additionally, hypermethylation was observed in
genes encoding oligodendrocyte proteins (MBP, SOX8, and GJB1), while hypomethylation
occurred in Cathepsin Z (CTSZ) and legumain (LGMN), leading to increased transcript
expression. CTSZ and LGMN are cysteine proteases with diverse functions, including
the proteolysis of myelin basic protein (MBP) [100]. Additionally, as expected from its
inflammatory etiology, MS patients exhibit an aberrant methylation of HLA genes [101].
Moreover, changes in DNA methylation were found in other inflammatory pathways.
Specifically, over 30% of MS patients exhibited hypermethylation of the promoter of the
Src homology region 2 domain-containing phosphatase-1 (SHP1), resulting in its reduced
expression [93,102]. The deficiency of SHP1 has broader implications, leading to the over-
activity of signaling pathways involving STAT6, STAT1, and NFκB in MS patients. These
transcription factors, known regulators of cell proliferation and survival, have been impli-
cated in proinflammatory mechanisms, potentially contributing to the pathophysiology
of MS [103]. The suppressor of cytokine signaling 1 (SOCS1) is also hypermethylated and
its consequently reduced expression may aggravate the progression of MS through the
hyperactivation of the immune-mediated response [101]. Additionally, MS patients exhib-
ited higher methylation levels of ICAM5, which, when secreted in the cerebrospinal fluid,
stimulates the secretion of anti-inflammatory cytokines, reducing T cell activation [104].

Regarding hydroxymethylation, Tang et al. reported TET1 and 2 levels in the spinal
cord tissues of mice model of MS, altering the global level of 5hMC. This aspect may
represent a critical target involved in myelin damage [106].

4.2. Histone Modification in MS

In the complex realm of multiple sclerosis (MS), the regulation of histone modifi-
cations emerges as a critical factor, as demonstrated by the heightened levels of histone
H3 acetylation observed in oligodendrocyte-lineage cells within chronic MS lesions and
in older patients. This surge in acetylation is associated with the increased expression
of inhibitor genes linked to oligodendrocyte differentiation, potentially contributing to
impaired remyelination in MS patients [107]. Interestingly, a contrasting pattern of signifi-
cant deacetylation was identified in initial MS lesions, underscoring the delicate balance
between acetylation and deacetylation processes [108].

SIRT1, a member of class III HDACs that rely on NAD+ for activity, emerges as a
significant regulator in these modifications. Acting as a histone deacetylase, SIRT1 governs
various cellular processes, including metabolism, aging, DNA repair, and inflammation.
Notably, SIRT1 has been observed to be downregulated in MS relapses compared to controls,
suggesting its potential involvement in the dynamic epigenetic landscape of MS [109].

Another crucial histone post-translational modification is methylation, notably evi-
denced by diminished levels of histone H3 methylation in MS lesions, including a decrease
in histone H3 trimethylation (H3K4me3). This decline is attributed to reduced methyl
donors in the grey matter neurons of MS patients, leading to disruptions in the mitochon-
drial metabolism. H3K4me3 is intricately linked to the expression of the mitochondrial
electron transport chain (ETC), and the metabolite N-acetylaspartate (NAA) is associated
with ETC activity in neurons, influencing neuroaxonal metabolism [110,111]. Deficiencies
in these processes could anticipate neuronal deterioration in MS [110]. Moreover, NAA
emerges as a pivotal factor in sustaining myelination through epigenetic mechanisms in
oligodendrocytes, particularly those involving H3 methylation [108]. The intricate net-
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work of histone modifications further extends to the upregulation of PADI2 due to the
hypomethylation of its promoter. PADI2, in turn, enhances the expression of PADI4, an
enzyme implicated in the citrullination of H3 histone, which is responsible for initiating
apoptosis in oligodendrocytes [110].

4.3. microRNA Regulation in MS

An analysis of microRNA (miRNA) profiles has uncovered significant changes in
the expression of various miRNAs in both the brains and circulating blood of individuals
diagnosed with multiple sclerosis (MS) [107]. This review focuses on the investigation of
specific miRNAs, namely miRNA34a, miRNA155, and miRNA326 in brain white matter,
and miR155, miR338, and miR491 in brain white matter, along with the miR17/92 cluster
in whole blood. Within active MS lesions, miR34a, miR155, and miR326 show increased
expression, targeting CD47, a glycoprotein widely found in oligodendrocytes (myelin)
and astrocytes. CD47 plays a vital role in self-recognition and prevents phagocytosis by
macrophages [112]. The upregulation of these miRNAs results in the suppression of CD47
expression, leading to myelin destruction by macrophages [112].

MicroRNA155 and microRNA326 also contribute to T-cell differentiation, particularly
promoting the development of T-helper 17 (TH17) cells, which are abundant in MS le-
sions [107,112]. CD47 is significantly downregulated in active MS lesions compared to
controls, while its expression in inactive lesions is comparable to control white matter [112].
MiR326 targets Ets1 and Foxp3, two regulators inhibiting TH17 cell differentiation [113].

White matter miRNA profiling in brain autopsies of MS patients reveals elevated levels
of miR155, miR338, and miR491 compared to controls. These miRNAs target transcripts of
two isoforms of the aldoketo reductase family 1 C1 and C2 (AKR1C1 and AKRC2), primarily
expressed in the brain. These isoforms are involved in the synthesis of neurosteroids,
which play crucial roles in neural cell functions and various pathological conditions [114].
The upregulation of these miRNAs leads to a reduction in steroid-related enzymes and
neurosteroid levels, including the neuroprotective allopregnanolone that binds GABA
receptors [107,114–116].

The miR17/92 cluster, consisting of miR17, miR18a, miR19a, miR20a, miR19b1, and
miR92a1, has been implicated in immune, cardiovascular, and neurodegenerative diseases,
as well as normal development and aging [117]. Among these, miR17 and miR19b1 have
been studied as regulators of the immune response and promoters of CD4+ T-cell functions,
playing a pivotal role in TH17 cell differentiation by inhibiting IKZF4 and enhancing the
PI3K-AKT-mTOR pathway by repressing PTEN [118]. Contradictory results have emerged
regarding the expression of miR17/92, particularly miR17 and miR20a, in MS patients,
highlighting the complex and nuanced regulatory roles of these miRNAs in the context of
MS pathogenesis [119,120].

5. Epigenetic Therapy

For many years, the pursuit to understand the pathogenesis of neurodegenerative
diseases has been relentless. Although genetic and environmental factors have been
identified, effective treatment options remain limited, and they only are able to slow the
progression of the diseases, while an effective cure is still elusive [121]. Increasing evidence
highlights the crucial role of epigenetics in the development and progression of PD, MS,
and ALS, offering a theoretical foundation for the use of pharmacological and genetic tools
to modulate these neurodegenerative disorders. Indeed, since the processes leading to
alterations in epigenetics are reversible, several epigenetic marks have been proposed as
potential therapeutic targets to treat or delay neurodegeneration [122].

In the following sections, we summarize the most effective therapeutic tools targeting
epigenetics in PD, ALS, and MS.
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5.1. Epigenetic Therapy in PD

Epigenetic drugs targeting DNA methylases have shown promise in PD. One such
drug is epigallocatechin-3-gallate (EGCG), a natural compound from green tea, which
completed its Phase II clinical trial in 2009 [123]. EGCG has demonstrated neuroprotective
effects in PD models and in reducing the risk and progression of PD [124]. More specifically,
EGCG inhibits DNMT1 by forming multiple hydrogen bonds, preventing cytosine methy-
lation. EGCG also mitigates α-syn toxicity by remodeling toxic α-syn fibers and redirecting
their aggregation into non-toxic forms [124]. Additionally, EGCG binds with dysregulated
copper ions (Cu(II)) that are strongly connected with the formation of abnormal aggregates
of α-syn into a β-sheet structure, which displayed high toxicity [125]. In addition, EGCG
reduced Cu(II)-induced reactive oxygen species (ROS) that are commonly associated with
cellular toxicity [125]. Drug delivery studies have suggested that EGCG, when formulated
with specific lipids, can cross the blood–brain barrier, enhancing its therapeutic potential
for neurodegenerative diseases [126].

Other DNMT inhibitors, such as curcumin derivatives, catechins, and bioflavonoids
(e.g., quercetin), discovered through high-throughput screening, or some existing drugs,
like hydralazine, procainamide, and procaine, approved for other conditions, may have
a potential therapeutic effect and could be repurposed for neurodegenerative diseases.
RG108, another promising DNMT inhibitor, has shown effectiveness in inducing DNA
demethylation without toxicity in vitro, making it a good candidate for future PD treat-
ments. Despite these advances, most DNMT inhibitors have not yet entered clinical trials
for PD, but their optimization continues to be a promising area for the development of new
treatments [127].

Similarly, HDAC inhibitors have been shown to have significant neuroprotective
effects. Sodium butyrate (approved by the FDA for various treatments) effectively inhibits
different classes of HDACs, leading to hyperacetylation and promoter activation. It crosses
the blood–brain barrier and protects dopaminergic neurons from oxidative stress and
α-syn toxicity, enhancing the expression of some neurotrophic factors, like GDNF and
BDNF, which are crucial for neuronal growth, survival, and synaptic plasticity [58,128]. In
addition, it has been shown to upregulate the neuroprotective heat shock protein 70 (Hsp70)
in rat astrocytes, reduce neuroinflammation and oxidative stress in 6-OHDA-induced PD
rat models, and prevent MPTP-mediated apoptosis in human-derived SK-N-SH and rat-
derived MES 23.5 cells. Sodium butyrate has also been found to restore the expression
levels of DNA repair genes such as FOXM1 and BRCA2, offering neuroprotection against
α-syn-mediated DNA damage.

Trichostatin A (TSA), a natural product from streptomyces hygroscopicus, was initially
an antifungal antibiotic. TSA is highly selective to HDAC3 and promotes histone H4
acetylation. It reduces α-syn neurotoxicity and early mortality in a PD drosophila model,
mitigates inflammatory cytokines secreted by activated microglia, and ameliorates motor
dysfunction [129].

Recent studies have highlighted that treatment of SH-SY5Y cells with LMK235, another
HDAC inhibitor, significantly increases the expression of acetyl histone H3-K9 and H3-K14,
promoting neurite outgrowth through the activation of the BMP–Smad signaling pathway,
thus protecting axons from degeneration [130].

Similarly, regulation of the activity of HATs could be an alternative epigenetic thera-
peutic approach.

CTPB, a selective small-molecule activator of p300/CBP, significantly activates p300
HAT activity, protecting neuronal cells from 6-OHDA-induced cell death, promoting their
survival and neurite growth. Garcinol, a p300/CBP HAT inhibitor extracted from Garcinia
yunnanensis, protects cells from MPP+-induced cell death. Other HAT inhibitors, such as
anacardic acid and curcumin, have been shown to improve L-DOPA-induced dyskinesia in
PD patients [131].
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Recently, miRNA-based therapeutic strategies have also been developed, utilizing
either miRNA mimics or an anti-miRNA to restore or to antagonize a miRNA target,
respectively [127].

In this scenario, Zhou et al. found that miR-7 mimics reduced MPTP-induced dopamin-
ergic degeneration in the striatum in a mouse model of PD, providing a neuroprotective
effect. MiR-7 was shown to downregulate the NLRP3 inflammasome in the midbrain,
inhibit caspase-1 activation, and reduce the proinflammatory cytokine IL-1β [132]. An-
other study demonstrated that miR-425 mimics attenuated necroptosis activation and
dopaminergic neuron loss, improving locomotor behavior [133]. Additionally, miR-29a
mimic therapy decreased cell death and ROS generation while enhancing protective en-
zymes in SH-SY5Y cells after MPP+ treatment [134]. The miRNA Let-7 regulated α-syn via
the autophagy–lysosome pathway, and its inhibition reduced α-syn expression without
affecting dopaminergic/acetylcholinergic neurons [135]. Moreover, inhibiting miR-155
reduced TNF-α-induced cell death in SH-SY5Y [136], and miR-421 inhibition protected
neurons against neurotoxicity in PD cellular and animal models [137].

5.2. Epigenetic Therapy in ALS

The effectiveness of HDAC inhibitors has also been tested in ALS models. More
specifically, Ryu et al. reported that the administration of 4-phenylbutryrate, starting
before or shortly after the beginning of symptoms, resulted in increased survival and
reduced clinical impairment in ALS mouse model [138]. Another study reported that the
administration of valproic acid in Sod1 mutant mice significantly reduced the death of motor
neurons, leading to a general neuroprotection. Despite this, the treatment was only able to
slightly delay the onset of motor symptoms and muscle atrophy and, more importantly,
it did not increase the mean survival of mice [139]. HDAC inhibition also rescued the
DNA repair response in iPSC-derived motor neurons carrying the ALS-associated FUSP525L

mutation [140]. Finally, the treatment of SOD-G93A transgenic ALS mice with TSA soon
after the onset of motor symptoms reduced neuron death, and ameliorated muscle atrophy
and neuromuscular junction denervation. More importantly, the treatment increase the
mean survival duration by 18% [141].

Similarly to PD, in ALS, therapeutic strategies have been developed using antisense
nucleotides (ASOs) that are designed to target and degrade a specific mRNA. This strategy is
particularly effective in ALS conditions with specific gene mutations [142]. At this moment,
there are several ASOs in clinical trials, such as Torfesen in patients with SOD1 mutations.
Indeed, Torfesen is designed to target mutant SOD1, reducing protein expression. More
interestingly, patients who received ASO during the earlier disease stages showed a smaller
decline in ALSFRS-R score [143].

5.3. Epigenetic Therapy in MS

In MS, different classes of epigenetic drugs have been tested, but the majority of the
work focused on DNMT and HDAC inhibitors [144].

In the field of DNMT inhibitors, Mangano et al. demonstrated that decitabine signif-
icantly improved clinical and histological outcomes in two mouse models of MS. More
specifically, decitabine raised the transcript levels of anti-inflammatory cytokines and
lowered mRNA expression of pro-inflammatory mediators. The treatment also increased
the proportion of circulating regulatory T cells by inducing Foxp3 expression through the
demethylation of a CpG island in the Foxp3 gene [145].

However, regarding HDAC inhibitors, Camelo et al. demonstrated that TSA alleviated
symptoms of spinal cord inflammation, demyelination, neuronal and axonal loss, and
disability in mice during the relapsing phase. It also increased the mRNA levels of genes
associated with antioxidants, anti-excitotoxicity, and neuronal growth, whereas it inhibited
caspase activation and downregulated pro-apoptotic E2F transcription factor pathway
genes [146]. Ge et al. showed that the HDAC inhibitor Vorinostat inhibited the differenti-
ation, maturation, and endocytosis of human CD14(+) monocyte-derived dendritic cells
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(DCs), reducing their ability to stimulate allogenic T cell proliferation in vitro. Vorinostat
also decreased Th1 and Th17 cytokine production and reduced CNS inflammation and
demyelination in a mouse model of MS [147].

The research has also explored the role of miRNAs in treating MS. Wang et al. found
that miRNA-219 mimics promoted remyelination and improved motor function in animal
models [148].

Junker et al. identified miRNA-34a, miRNA-155, and miRNA-326 as potential targets
for reducing MS lesion activity by regulating CD47, which affects macrophage activation
and myelin phagocytosis [112].

Morquette et al. observed that miRNA-223 and miRNA-27a-3p protect against gluta-
mate toxicity in MS, suggesting potential therapeutic targets [149], whereas Zhang et al.
showed that miRNA-26a modulates Th17 cytokine expression, indicating its potential for
MS therapy [150].

Emerging therapies also include modulators of miRNA expression. Nanocurcumin
decreased miRNA-155 and miRNA-16 in MS patients, which are involved in T cell-mediated
autoimmunity [151].

6. Conclusions

In conclusion, the emerging understanding of epigenetic modifications has shed
light on their pivotal role in the progression and onset of neurodegenerative diseases,
such as PD, ALS, and MS. Epigenetic alterations can dysregulate the expression of key
genes involved in dopaminergic neuron function, protein aggregation, and oxidative stress
response, mitochondrial functions that induce or exacerbate neuronal damage and impair
cellular homeostasis, ultimately leading to the typical motor symptoms of these motor
diseases. Moreover, neuroinflammation, a common condition detected in both PD, ALS,
and MS, can contribute to alterations in the epigenetic profile of the cells and may promote
the progression of the diseases. In MS, additional changes in the epigenetic landscape of
immune cells can promote their activation and infiltration into the central nervous system,
contributing to neurodegeneration.

Overall, the identification of epigenetic modifications as key players in the patho-
genesis of Parkinson’s disease, ALS, and MS holds great promise for the development of
novel therapeutic strategies. Targeting epigenetic regulators could offer new therapeu-
tic approaches for potentially slowing disease progression and improving outcomes for
patients affected by these neurodegenerative disorders.
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