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Abstract: Clinical cognitive advancement within the Alzheimer’s disease (AD) continuum is inti-
mately connected with sustained accumulation of tau protein pathology. The biological brain age 
and its gap show great potential for pathological risk and disease severity. In the present study, we 
applied multivariable linear support vector regression to train a normative brain age prediction 
model using tau brain images. We further assessed the predicted biological brain age and its gap 
for patients within the AD continuum. In the AD continuum, evaluated pathologic tau binding was 
found in the inferior temporal, parietal-temporal junction, precuneus/posterior cingulate, dorsal 
frontal, occipital, and inferior-medial temporal cortices. The biological brain age gaps of patients 
within the AD continuum were notably higher than those of the normal controls (p < 0.0001). Sig-
nificant positive correlations were observed between the brain age gap and global tau protein accu-
mulation levels for mild cognitive impairment (r = 0.726, p < 0.001), AD (r = 0.845, p < 0.001), and AD 
continuum (r = 0.797, p < 0.001). The pathologic tau-based age gap was significantly linked to neu-
ropsychological scores. The proposed pathologic tau-based biological brain age model could track 
the tau protein accumulation trajectory of cognitive impairment and further provide a comprehen-
sive quantification index for the tau accumulation risk. 

Keywords: brain age; Alzheimer’s disease; tau protein accumulation; positron emission  
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1. Introduction 
Alzheimer’s disease (AD) is a prevalent neurodegenerative disease characterized by 

a typically long preclinical stage lasting 15–20 years [1]. The 2018 National Institute on 
Aging and Alzheimer’s Association research framework primarily characterizes AD by 
the accumulation of β-amyloid (Aβ) and tau pathologic proteins and subtle neurodegen-
eration [AT(N)] [2]. Previous studies have demonstrated that Aβ accumulation may play 
a causal upstream role in the AD continuum, potentially leading to the downstream path-
ologic changes, such as tauopathy and neurodegeneration, that ultimately result in cog-
nitive deterioration [3,4]. However, the potential floor or ceiling effects in the amount of 
Aβ deposition may have limited contributions to the degree of dementia [5,6]. The ongo-
ing tau pathologic accumulation, rather than Aβ alone, closely corresponds with the clin-
ical progression and cognitive changes of AD [7–11]. Thus, characterizing the tau protein 
accumulation trajectory is of pivotal clinical importance for determining the severity of 
AD. 
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Thanks to advancements in positron emission tomography (PET) imaging and traces, 
tau PET imaging enables in vivo visualization and quantification of the AD-related tau 
protein accumulation trajectory. Currently, semi-quantitative methods like standardized 
uptake value ratio (SUVR) are primarily utilized in clinical practice to assess tau protein 
accumulation. However, the heterogeneity and individual specificity of AD make it chal-
lenging to provide patients with a relatively simple and easy-to-understand quantitative 
parameter. Recent studies have proposed a superior canonical image-based quantitative 
approach, tauIQ, to quantify tau PET scans. This approach exhibits enhanced efficacy com-
pared to traditional SUVR approaches [12,13]. However, the approach necessitates a large 
cross-sectional dataset of subjects across all of the AD continuum to estimate nonspecific 
tau load, local tau load, and noise, and these data requirements restrict its application in 
clinical practice [12]. 

Recent studies have adopted approaches based on biological brain aging to assess 
disease-specific risk and elucidate the determinants contributing to the discrepancy be-
tween biological brain age and chronological age [14–17]. In particular, the efficacy of pre-
dictive models for estimating brain age using neuroimaging, such as magnetic resonance 
imaging (MRI) and fluorodeoxyglucose PET, has been demonstrated in AD, Parkinson’s 
disease, epilepsy, and schizophrenia [18–22]. The biological brain age derived from a brain 
image is typically related to the reduction of gray matter, decreased glucose metabolism, 
cerebral blood flow, or global oxygen utilization [23–25]. The discrepancy between chron-
ological brain age and biological brain age, termed the brain age gap, can provide insight 
into whether a patient within the AD continuum appears older or younger compared to a 
same-aged individual with normal cognitive status. Accumulating evidence from AD 
studies suggests that tau pathology initially manifests in the locus coeruleus and entorhi-
nal cortex [26]. Very few studies, however, have examined biological brain age using path-
ologic tau accumulation in AD spectrum [27]. Moreover, biological brain age and its gap 
can capture individual tau accumulation differences in the interaction of aging and AD 
patients. 

In the current observational study, our objective was to develop a normative brain 
age prediction model using AV-1451 tau PET images of normal controls (NCs) and further 
assess the predicted brain age and its gap for patients within the AD continuum, including 
mild cognitive impairment (MCI) and AD. We also examined the associations between 
brain age gap and neuropsychological tests for patients with cognitive impairment. 

2. Materials and Methods 
2.1. Participants 

All of the imaging data utilized in this study were acquired from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database (https://adni.loni.usc.edu/, accessed on 
31 March 2005). The ADNI was launched in 2003 as a public-private partnership, led by 
Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test 
whether serial MRI, PET, other biological markers, and clinical and neuropsychological 
assessments can be combined to measure the progression of MCI and early AD. All pro-
cedures performed in this study involving human participants were in accordance with 
the ethical standards of the institutional and/or national research committee and with the 
1964 Declaration of Helsinki and its later amendments or comparable ethical standards. 
The data analysis and ethical permissions of this study were approved by the institutional 
review board at each of the participating centers. ADNI is listed in the ClinicalTrials.gov 
registry (ADNI-1: NCT00106899, date: 31 March 2005; ADNI-GO: NCT01078636, date: 1 
March 2010; ADNI-2: NCT0123197, date: 27 October 2010; ADNI-3: NCT02854033, date: 
27 July 2016). 

A total of 810 subjects (418 NCs, 306 patients with MCI, and 86 patients with AD) 
were included in this study. The T1-weighted MRI and AV1451 PET images of all subjects 
had to be obtained within the same visit. Mini-Mental State Examination (MMSE), 
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Montreal Cognitive Assessment (MOCA), Alzheimer’s Disease Assessment Scale Cogni-
tive 11 items (ADAS11), and Alzheimer’s Disease Assessment Scale Cognitive 13 items 
(ADAS13) were used to evaluate the cognitive function in all participants. All of the pa-
tients diagnosed with AD met the diagnostic criteria outlined by the National Institute of 
Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and 
Related Disorders Association [28]. Detailed diagnostic criteria for all subjects are availa-
ble at https://adni.loni.usc.edu/methods/documents/ (accessed on 31 March 2005). 

2.2. Image Acquisition and Processing 
We obtained the T1-weighted MRI and corresponding AV1451 PET images from the 

ADNI database. Details on the acquisition and preprocessing procedures for T1 and PET 
images can be accessed (http://adni.loni.usc.edu/methods/documents/, accessed on 31 
March 2005). In brief, tau PET images were acquired during a resting state 75–105 min 
after an intravenous bolus injection of 18F-radiolabeled AV1451. T1 MRI were obtained 
using unified scanning protocols on 3T scanners. 

Individual T1 MRI images were segmented using Statistical Parametric Mapping 12 
(SPM12) carried out in MATLAB 2021b (MathWorks, Natick, MA, USA). Tau PET images 
were realigned, averaged, and spatially coregistered with their corresponding MRI im-
ages. Subsequently, voxel-based partial volume effects correction of tau PET images was 
performed using the Müller-Gärtner method with the PETPVE12 toolbox. Then, the 
AV1451 PET images were normalized to the Montreal Neurological Institute standard 
space via applying the MRI-segmented parameters. Spatially normalized PET images 
were subsequently smoothed using a Gaussian kernel with 8 mm full-width at half-max-
imum. The SUVR image was generated using the inferior cerebellar gray matter as the 
reference region. We extracted 80 cerebral averaged SUVR values from the preprocessed 
PET images utilizing the automated anatomical labeling atlas. We also calculated a global 
merged SUVR from the typical temporal meta-region harboring elevated pathologic tau 
accumulation in the AD continuum (inferior temporal, the middle temporal and fusiform 
gyri, the parahippocampal, the entorhinal cortex) [29]. 

2.3. Brain Age Estimation 
We used the resulting 80 cortical tau SUVR values as features to estimate the values 

to be used in the normative brain age predictive model. A multivariable linear support 
vector regression (SVR) model was initially trained to predict individual chronological 
age utilizing these tau SUVR values. Compared to conventional linear regression meth-
ods, the SVR model offers enhanced robustness against outliers and overfitting by learn-
ing the relative importance of each SUVR value in age prediction and fitting a hyperplane 
to the brain age. We employed a 10-fold cross-validation iteration approach to train and 
predict chronological age utilizing NCs consisting of 9 folds (training dataset, n = 376 [418 
× 0.9]). The fitted regression coefficients in the SVR model were subsequently applied it-
eratively to the held-out set of individuals (test dataset, n = 42), which resulted in a pre-
diction of chronological age for every NC participant. The SVR model employed sequen-
tial minimal optimization for solving for the chronological age, with a set gap tolerance of 
0.001. 

The brain age gap offers a standardized measurement indicating that an individual’s 
brain tau accumulation level appeared older (gap > 0) or younger (gap < 0) compared to 
same-aged NCs without cognitive impairment. The brain age gap correlates with chron-
ological age, leading to an overestimation for younger participants and an underestima-
tion for older attributed to regression dilution [30–32]. Consequently, we utilized the lin-
ear bias correction method to address age bias correction for the brain age gap, where sex, 
education, and APOE4 status were adjusted. The trained SVR model and the corrected 
brain age gap model were then applied to patients with MCI and AD to obtain pathologic 
tau accumulation-based brain age and its gap estimates for each cohort. The accuracy of 
the predictions of the brain age of NCs was evaluated using mean absolute error (MAE) 
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and Spearman’s correlation coefficient between chronological age and predicted brain age 
in the test dataset. 

2.4. Statistical Analyses 
All continuous data underwent normality testing using the Kolmogorov–Smirnov 

test, and the homogeneity of variance was determined using the F test. Group differences 
among NCs, MCI, and AD in clinical characteristics and brain age gap were evaluated 
using one-way analysis of variance (ANOVA) with post hoc Bonferroni’s correction and 
pairwise comparisons. The effect size was used to measure the pairwise comparisons. 
Power analysis for ANOVA was conducted in G-Power to determine a sufficient sample 
size using an alpha of 0.05, a power of 0.95, a large effect size (f = 0.4), a number of groups 
of 3, and two tails. Based on the aforementioned assumptions, the desired sample size is 
102. A chi-squared test was used to analyze the sex variable. To investigate the associa-
tions between brain age gap and neuropsychological assessments, Spearman’s correlation 
coefficients were calculated. Additionally, we repeated the above association assessments 
using covariate controlled (sex, education, APOE4 status) linear regression models, to en-
sure that the relationship between brain age gap and neuropsychological assessments was 
not driven by these covariates. The Spearman’s correlation coefficient was employed to 
assess the association of the brain age gap and the merged tau SUVR. All statistical anal-
yses were conducted with MATLAB 2021b (MathWorks) and Prism v. 10.1.2 (GraphPad 
Software). Significance was determined at p < 0.05 (two-tailed). 

3. Results 
3.1. Subject Characteristics 

The clinical and demographic information for this study is shown as Table 1. Com-
pared with AD, NC and patients with MCI had younger age and higher education. There 
was no significant sex difference (p = 0.203). Compared with NC, patients with MCI and 
AD had higher cognitive severity (ADAS11, ADAS13, MMSE, and MOCA score) and eval-
uated pathologic tau accumulation (all p < 0.001). Average chronological age (range) 
across NC, MCI, and AD was 72.7 (52.7 to 92.5), 74.6 (55.9 to 92.3), and 76.9 (55.3 to 91.1), 
respectively. 

Table 1. Clinical and demographic information about this study subject. 

 NC MCI AD p 
Post Hoc p 

p1 p2 p3 
Number 418 306 86 - - - - 

Sex (M/F) 259/159 170/136 54/32 0.203 0.083 0.885 0.232 
Age (years) 72.7 ± 7.6 74.6 ± 7.3 76.9 ± 7.9 <0.001 0.0014 <0.001 0.341 

Education (years) 16.7 ± 2.2 16.4 ± 2.5 15.4 ± 2.5 <0.001 0.231 <0.001 0.003 
APOE4 carriers (%) 32.3 53.9 61.6 - - - - 

ADAS11 5.2 ± 2.5 9.7 ± 4.4 20.6 ± 8.6 <0.001 <0.001 <0.001 <0.001 
ADAS13 8.2 ± 3.9 15.8 ± 6.8 31.5 ± 10.1 <0.001 <0.001 <0.001 <0.001 
MMSE 29.2 ± 1.0 27.3 ± 2.3 21.5 ± 4.2 <0.001 <0.001 <0.001 <0.001 
MOCA 26.2 ± 2.6 22.9 ± 3.2 16.3 ± 4.4 <0.001 <0.001 <0.001 <0.001 

Merged tau SUVR 1.14 ± 0.12 1.42 ± 0.45 1.71 ± 0.63 <0.001 <0.001 <0.001 <0.001 
Data are expressed as means ± standard deviations or rate. Post hoc p values were calculated after 
application of the Bonferroni’s correction. P1 NC versus patients with MCI. P2 NC versus patients 
with AD. P3 patients with MCI versus patients with AD. Abbreviations: NC, normal control; MCI: 
mild cognitive impairment; AD, Alzheimer’s disease; ADAS11, Alzheimer’s Disease Assessment 
Scale Cognitive 11 items; ADAS13, Alzheimer’s Disease Assessment Scale Cognitive 13 items; 
MMSE, mini-mental status exam; MOCA, Montreal Cognitive Assessment; SUVR, standardized up-
take value ratio. 
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3.2. Pathologic Tau Accumulation in AD Continuum 
As shown in Figure 1, across the AD continuum, the evaluated pathologic tau bind-

ing was maximal at the inferior temporal, parietal-temporal junction, and precuneus/pos-
terior cingulate and moderately spread in the dorsal frontal, occipital, and inferior-medial 
temporal cortices. Group differences of global tau accumulation also show that AD had 
the highest tau deposition levels, SUVR = 1.71 ± 0.63 (post hoc p < 0.0001, Cohen’s d = 1.73 
between NC and AD; Cohen’s d = 0.72 between MCI and AD, Figure 1d). 

 
Figure 1. Group-average tau PET SUVR maps. Compared with NC group (a), there are significant 
and widespread pathologic tau accumulations in the MCI (b) and AD (c) groups. (d) Group differ-
ences of merged tau SUVR between NC, MCI, and AD. NC: normal control, MCI: mild cognitive 
impairment, AD: Alzheimer’s disease, SUVR: standardized uptake value ratio, ****: Post hoc p < 
0.0001. 

3.3. Brain Age Prediction and Its Gap 
The normative brain age prediction model was trained using tau PET images with 

10-fold cross-validation. As depicted in Figure 2a, the overall accuracy measured on the 
test dataset was MAE = 4.89 ± 0.261, r = 0.722, p < 0.001. Figure 2b,c demonstrate the scatter 
plot of chronological age and predicted brain age gap. After linear bias correction, there 
was no significant negative correlation between chronological age and predicted gap. 
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Figure 2. Brain age prediction on normal controls. (a) Regression plot showing chronological age 
versus predicted brain age; (b) Uncorrected brain age gap; (c) Brain age gap after bias correction. 

We further calculated the biological brain age and its gap in patients with MCI and 
AD utilizing the normative trained SVR prediction model and AV1451 PET images. As 
anticipated, the brain age gaps of the cognitive impairment groups were significantly 
higher than that of the NCs (p < 0.0001, multiple comparisons p < 0.0001, Figure 3). The 
mean brain age gap of the MCI/AD was 9.41 ± 13.8 or 25.4 ± 20.7 (Cohen’s d = 1.71 between 
NC and AD; Cohen’s d = 0.94 between NC and MCI; Cohen’s d = 0.90 between MCI and 
AD). We also observed that there was significant negative association between chrono-
logical age and brain age gap (MCI: β = −0.45, p < 0.001, R2 = 0.055; AD: β = −1.62, p < 0.001, 
R2 = 0.38), which indicated that patients with younger disease onset tended to have higher 
brain age gaps derived from pathologic tau accumulation. 

 
Figure 3. Pathologic tau-based brain age gap estimation for MCI and AD groups. (a) Violin plots of 
the corrected brain age gap for each diagnostic group. The corrected brain age gap of disease groups 
was compared with cognitively unimpaired individuals using a one-way ANOVA with post hoc 
Bonferroni’s correction. Tau-based brain age gap estimation for MCI (b) and AD (c). NC: normal 
control, MCI: mild cognitive impairment, AD: Alzheimer’s disease, ****: Post hoc p < 0.0001. 

3.4. Associations between Brain Age Gap and Neuropsychological Assessments and the AD 
Biomarker 

We further investigated the associations between brain age gap estimated by tau PET 
images and neuropsychological assessments and the AD biomarker, to evaluate whether 
a higher brain age gap was associated with severe cognitive symptoms. As shown in Fig-
ure 4, we found there were notable positive correlations between brain age gap and global 
tau accumulation level for MCI (r = 0.726, p < 0.001), AD (r = 0.845, p < 0.001), and the whole 
AD continuum (r = 0.797, p < 0.001), which remained after controlling for covariates (MCI: 
β = 0.024, p < 0.001, R2 = 0.53; AD: β = 0.026, p < 0.001, R2 = 0.71; whole AD continuum: β = 
0.025, p < 0.001, R2 = 0.63). 
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Figure 4. Association of brain age gap with merged tau SUVR in AD continuum. Scatter plots show 
the relationship between tau-based brain age gap with merged tau PET SUVR for MCI (a), AD (b), 
the whole AD continuum (c), respectively. MCI: mild cognitive impairment, AD: Alzheimer’s dis-
ease; SUVR: standardized uptake value ratio. 

As expected, the pathologic tau-based brain age gap was significantly associated 
with MMSE score (r = −0.709, p < 0.001), MOCA score (r = −0.531, p < 0.001), ADAS11 score 
(r = 0.569, p < 0.001), and ADAS13 score (r = 0.609, p < 0.001) in AD continuum (MCI and 
AD groups, Figure 5). After adjustments for sex, education, and APOE4 status, there were 
similar significant associations between the brain age gap and MMSE score (β = −0.104, p 
< 0.001, R2 = 0.24), MOCA score (β = −0.131, p < 0.001, R2 = 0.25), ADAS11 score (β = 0.253, 
p < 0.001, R2 = 0.31), and ADAS13 score (β = 0.317, p < 0.001. R2 = 0.29). 

 
Figure 5. Association of brain age gap with neuropsychological assessments in the AD continuum. 
Scatter plots show the relationship between tau-based brain age gap with MMSE score (a), MOCA 
score (b), ADAS11 score (c), and ADAS13 score (d), respectively. ADAS11, Alzheimer’s Disease As-
sessment Scale Cognitive 11 items; ADAS13, Alzheimer’s Disease Assessment Scale Cognitive 13 
items; MMSE, mini-mental status exam; MOCA, Montreal Cognitive Assessment. 

4. Discussion 
Given the severe and irreversible nature of AD, it is crucial to precisely explore the 

pathology trajectory within the AD continuum. The tau protein pathology, as an essential 
biomarker for diagnosis and cognitive progression, exhibits successive spatial expansions 
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during the course of AD. In light of that, our study presents an optimized brain age gap 
prediction model which is based on the tau accumulation trajectory. The brain age gaps 
of the cognitive impairment groups were significantly higher than that of the NCs, with a 
negative correlation observed between chronological age and brain age gap. In partici-
pants with cognitive impairment, the brain age gap exceeded that of cognitively unim-
paired participants and exhibited a notable correlation with both neuropsychological 
score and neuroimaging biomarkers. This study presents an optimal model for predicting 
brain age and the brain age gap in individuals within the AD continuum, emphasizing 
the significance of the brain age gap marker and its potential as a valuable tool for identi-
fying individuals at risk. Furthermore, it may serve as a valuable biomarker to detect 
heightened risk for tau pathology or indicate disease progression. 

In the past, there have been numerous studies regarding brain aging. Most of these 
studies have predominantly employed structural MRI and fluorodeoxyglucose PET im-
aging for estimations of aging [31,33–35]. However, tau PET exhibits greater sensitivity 
compared to amyloid-PET and cortical thickness measurements in exploring cognitive 
variations during the early stages of AD [36]. Our model accurately estimated the dispar-
ity an individual’s brain age gap using pathologic tau images. One finding that stands out 
is that the evaluated pathologic tau binding was maximal at the inferior temporal, parie-
tal-temporal junction, and precuneus/posterior cingulate and moderately spread in the 
dorsal frontal, occipital, and inferior-medial temporal cortices in AD continuum, which is 
in line with previous research to some extent [37,38]. Imaging analysis revealed crucial 
pathologic tau regions within the AD continuum and demonstrated significant differences 
in overall tau protein accumulation. The studies conducted in vitro have indicated that 
tau proteins might experience transneuronal spreading, and estimating normal values for 
these brain regions was crucial to our development of the model used in this study [39]. 

The brain age gap derived from the tau PET data is elevated in cognitively impaired 
individuals compared to NCs. This performance is slightly better than previous structural 
age prediction models, which show increases between five and ten years [40]. Meanwhile, 
this model is clearly sensitive to different groups representing various statuses in the 
symptomatic phase. In cognitively impaired participants, the brain age gap estimated 
from model was significantly associated with the global tau accumulation level, further 
demonstrating the model’s predictive capability for tau pathology deposition. Elevated 
tau protein deposits were closely linked to cognitive deficits in AD [41,42]. Therefore, the 
brain age gap estimated by our model can systematically assess tau protein deposition 
and cognitive impairment in the brain, providing a straightforward and comprehensive 
index for clinical use. This could assist in early clinical intervention and help delay further 
cognitive decline. Additionally, this brain age gap model has great potential for initiating 
physical examinations in aging individuals and providing early cognitive risk predictions. 

Interestingly, in MCI and AD, chronological age showed a negative correlation with 
the brain age gap, revealing individuals with earlier disease onset typically exhibit a 
higher brain age gap resulting from pathological tau accumulation. A larger disparity be-
tween brain age and chronological age signifies a heightened risk during the course of the 
disease [43]. Pathologic tau-based brain age gaps demonstrated a significant association 
with neuropsychological scores, underscoring the intricate relationship between patterns 
of tau accumulation and cognitive function with clinical symptoms [44]. 

In our current study, various limitations need to be addressed. Firstly, this is a cross-
sectional study, and future follow-up is necessary to further validate the effectiveness of 
model. Secondly, in consideration of the potential influence of cross-cultural back-
grounds, this study did not include results from multiple cohorts. Our future plans in-
clude expanding multicenter research to obtain more stable models. Thirdly, the training 
set might have a smaller sample size compared to previous models. In addition, other 
types of biomarkers, such as plasma and cerebrospinal fluid markers [45], need to be in-
corporated to complement the ATN framework and achieve a more complete model in 
the future. Given the previous research on brain age [46–48], we believe this model could 
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be utilized as a sensitive biomarker for cognitive function decline during the symptomatic 
stage. 

5. Conclusions 
In summary, the current study demonstrates a brain age prediction model which was 

developed using the tau accumulation trajectory of normal controls. The model generates 
accurate brain age and brain age gap predictions for cognitively impaired individuals in 
the AD continuum. In the future, as effective treatments for AD become available, the 
model might assist in identifying individuals at various stages. Overall, all of our findings 
provide insight into the pathophysiology of AD and the potential predictive ability of our 
model to enable personalized recognition. 
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