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Abstract: Statistical learning (SL), the ability to extract patterns from the environment,
has been assumed to play a central role in whole cognition, particularly in language
acquisition. Evidence has been gathered, however, from behavioral experiments relying
on simplified artificial languages, raising doubts on the generalizability of these results
to natural contexts. Here, we tested if SL is affected by the composition of the speech
streams by expositing participants to auditory streams containing either four nonsense
words presenting a transitional probability (TP) of 1 (unmixed high-TP condition), four
nonsense words presenting TPs of 0.33 (unmixed low-TP condition) or two nonsense words
presenting a TP of 1, and two of a TP of 0.33 (mixed condition); first under incidental
(implicit), and, subsequently, under intentional (explicit) conditions to further ascertain
how prior knowledge modulates the results. Electrophysiological and behavioral data were
collected from the familiarization and test phases of each of the SL tasks. Behavior results
revealed reliable signs of SL for all the streams, even though differences across stream
conditions failed to reach significance. The neural results revealed, however, facilitative
processing of the mixed over the unmixed low-TP and the unmixed high-TP conditions in
the N400 and P200 components, suggesting that moderate levels of entropy boost SL.

Keywords: statistical learning; implicit learning; explicit learning; entropy; artificial languages

1. Introduction
Statistical learning (SL), the ability to extract patterns from the sensory environment

even without intention or awareness, has been assumed to play a central role in whole
cognition, particularly in the learning of the rule-governed aspects of language. The first
evidence of this comes from a seminal study by Saffran et al. [1], which demonstrated that
eight-month-old infants, after being exposed for just two minutes to a continuous speech
stream made of the repetition of three-syllable nonsense words (e.g., “gikoba”, “tokibu”,
“tipolu”, “gopila”) presented without pauses between each other and with no repetition
of the same “word” in a row (e.g., “gikobatokibutipolugopilatokibu”), were able to detect
co-occurrences between adjacent syllables—a statistic known as transitional probability
(TP)—to extract word-like units from the stream (e.g., “gikoba”). Of note, in that artificial
language, the probability of a syllable such as “ko” to be followed by “gi”, or a syllable such
as “ba” to follow “ko” is highly likely, whereas the probability of a syllable such as “go” to
succeed “ba” is less likely once each “word” could only be followed by another “word”
in the stream with the same level of probability. Once TPs were the only cue available to
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assist “word” segmentation, the results obtained from this seminal study suggested that
babies use the statistical regularities embedded in speech to discover “word” boundaries.

Since then, many other works have shown that SL mechanisms are also present
in other levels of language acquisition, such as word-referent associations (e.g., [2–4]),
grammatical categorization (e.g., [5,6]), the establishment of long-distance dependencies
(e.g., [7–10]), and the development of literacy skills (e.g., [11–14]). However, as Siegelman
recently pointed out [15], even if all these studies provide evidence that SL is a powerful
mechanism that enables individuals to acquire language so quickly and effortlessly, and
the fact that numerous works have shown that humans possess remarkable abilities to
detect regularities in the environment and that language is a system full of regularities, this
does not necessarily mean that SL mechanisms are used and play a fundamental role in
language acquisition.

Alternative approaches claim that SL mechanisms cannot fully account for the pro-
cesses underlying language acquisition in “real” contexts, as these conclusions were drawn
from laboratory studies using oversimplified artificial languages that do not mimic the
complexity of natural languages (see [16] and [17] for discussion). Indeed, the vast ma-
jority of the SL studies conducted so far have exposed participants not only to a small
number of nonsense words (typically four or six), each presented an equal number of
times to control for word frequency effects, but also “words” with TPs of 1, meaning
that each syllable occurs exclusively in a specific “word” and always in the same syllable
position (e.g., [1,18–22]). However, as Soares et al. recently emphasized [23], in natural
languages, words show a much more diversified pattern both in terms of syllable length
and syllable composition and also in the number of times each word occurs in the language,
showing a Zipfian distribution (see [24,25] and also [26–28] for evidence in the European
Portuguese language).

All these aspects considerably change the proprieties of the input to which participants
are exposed in natural vs. artificial languages, casting doubts on the generalizability of the
results obtained from lab experiments to “real” contexts (see [29] and also [30] for reviews).
Furthermore, these studies often assume that participants are tabula rasae, devoid of any
prior knowledge of the language to which they are exposed (see [31,32]). This assumption
also fails to reflect how language acquisition occurs in natural contexts, as it is well known
that individuals use prior linguistic knowledge to support the acquisition of the new one
through mechanisms such as anchoring and/or bootstrapping (e.g., see [33] for details).

To address these issues, recent SL studies have attempted to analyze how SL operates
under a broader range of conditions (e.g., [19,20,34–38]). Of particular interest for this
paper are the studies conducted by Soares et al. ([23,39–42]), involving both adult and child
participants, with and without developmental language disorder (DLD; previously referred
to as specific language impairment [SLI]—see [43] and [44] for details). These studies used
the triplet-embedded paradigm introduced by Saffran et al. [1], from which behavioral and
electrophysiological (EEG) data were collected during the familiarization phase, allowing
the authors to study the processes underlying SL and not only its results. Behavioral data
were collected after the exposure phase through the use of the two-alternative forced-
choice (2-AFC) task, in which participants were asked to decide which stimuli in a pair—a
three-syllable nonsense word presented during familiarization and a foil made of the same
syllables in an order not presented before—“sounded more familiar” as in the majority of
SL studies (see [18,37,45]).

Specifically, in these studies, Soares and colleagues ([23,39–42]) exposed participants
to speech streams made of the repetition of eight three-syllable nonsense words. Four
of these “words” presented TPs of 1, as in Saffran et al.’s [1] study (referred to as easy or
high-TP words), and four presented TPs of 0.33 (referred to as hard or low-TP words). Note
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that the syllables in the low-TP words also appeared in other “words” embedded in the
stream to closely mimic what occurs in natural languages, where the same syllable (e.g.,
“cur”) can appear in different words at different syllable positions such as in “cur.va.ture”,
“in.cur.sion” or “re.oc.cur”. Moreover, the same participants performed the task, first under
implicit conditions (i.e., without any instructions about the nonsense words embedded in
the stream as typically observed in SL studies) and, afterwards, under explicit conditions
(i.e., with the previous knowledge of the nonsense words embedded in the stream) to
further analyze the role that explicit knowledge plays on SL.

The results obtained with adult participants ([23,39,45]) showed that although the
overall 2-AFC performance exceeded the chance level in both SL tasks (around 60%)—
children’s performance ([39–42]) was not significantly different from chance as observed in
other studies (e.g., [46–48]—see also [49] for similar findings in the context of the artificial
grammar learning [AGL] task)—it was nevertheless substantially below the levels observed
in other SL studies. For example, accuracy rates averaged 74% in [50], 75% in [19], and 89%
in [18]. The use of a higher number of “words” than used in previous SL studies (i.e., eight
vs. four/six—see [18,19,46]) that were repeated fewer times (60 instead of 100 or more),
along with the use of different types of “words” (high- and low-TP words) in the same
stream, were pointed out by the authors [23] as potential explanations for the results. It is
also important to note that although the 2-AFC differences between high-and low-TP words
failed to reach statistical significance in the SL tasks performed under implicit and explicit
conditions, in subsequent studies the authors found reliable signs of SL in the 2-AFC task
performed under implicit conditions but, surprisingly, only for the low-TP words.

To account for this unexpected result, Soares et al. [45] called attention to an inevitable
consequence that the manipulation of the TPs in their studies entailed. Because high-TP
words were made of unique syllables that occurred only in specific “words”, conversely to
low-TP words whose syllables appeared in different “words” in different syllable positions
(first, second, and third), the syllables of the high-TP words occurred three times less
frequently than the syllables of the low-TP words. Thus, even though high- and low-TP
words appeared exactly the same number of times during exposure to account for word
frequency effects in processing, the fact that low-TP words entail syllables that occurred
more often might have led participants to choose the stimuli that contained syllables that
had occurred more frequently in the 2-AFC post-learning task. The shift from a TP-based
strategy to a syllable-frequency-based strategy as suggested by these results is also in
line with recent studies showing that the level of entropy—a term originally rooted in
thermodynamics, referring to the degree of disorder or randomness within a system, and
then adopted in disciplines such as information theory to represent the level of uncertainty
or unpredictability in a dataset [51]—interferes with the ease with which TPs/word-like
units were extracted from the input (e.g., [34,36,52–54]).

Indeed, the concept was recently applied to SL research by Siegelman et al. [54] as an
index of stream learnability operationalized as the predictability of a given element (e.g.,
syllable) based on the probability distribution of all the elements in the stream based on
Markov’s formula—see also [36] for another implementation of entropy in SL research
using Shannon’s formula. Entropy is thus a global statistic that computes distributional
information of the input as a whole and that, together with TPs (a local statistic), has been
assumed to affect SL processes and their results (see [29]). Previous studies suggest that
the lower the level of entropy, the higher the learning rates (e.g., [36,52–54]). Thus, it is
possible that the higher level of entropy of the streams used by Soares et al. ([23,39,40,45]),
due to both the use of a higher number of “words” than used in previous works and the
use of “words” presenting different levels of predictability, might made the stream more
complex to process and “words” harder to extract, hence justifying the lower rates of SL
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observed. Yet, it is also important to point out that there are also other studies suggesting
that moderate levels of entropy facilitate SL (see [55–59]) as it provides the “right” level
of variability to support pattern detection in line with the Goldilocks principle—SL is
optimized in streams that are neither too predictable nor too unpredictable.

Still, the EEG data collected during the familiarization phase in Soares et al. ([23,39,45])
studies with adult participants showed modulations in the N100 and, particularly, in the
N400 ERP components, considered the signatures of SL in the brain (e.g., [18,21,22,50]).
Specifically, the results revealed enhancements in the N100 component, suggesting an
increased sensitivity to the regularities embedded in the input as exposure to the speech
stream unfolded (e.g., [60]). Importantly, in the N400 component, results showed larger
amplitudes for the high- than for the low-TP words regardless of the condition (implicit vs.
explicit) under which the SL task was performed, suggesting facilitated access to high-TP
representations in the brain and/or more successful integration of high-TP representations
into higher-order language structures, as expected to observe at the behavioral level. As
we have been claiming, the inconsistency between the behavioral and EEG results might
indicate that the EEG data obtained from the familiarization phase and the behavioral data
obtained from the test phase might tap into different processes and mechanisms. Indeed,
besides being a post-learning task assessing SL only after exposure, it is also important
to highlight that in the 2-AFC task, participants are asked to make explicit judgments
about regularities that are expected to be acquired implicitly (i.e., without intention and
awareness), which might create not only a mismatch between the “mode of learning” and
the “mode of assessing”, but also to allow other meta-cognitive factors to affect the results
(for a discussion see [18,23], and [61]). Nonetheless, it is also important to consider that
the disparity in the results observed by Soares et al. ([23,39,45]) could also stem from the
complexity (entropy) of the streams used, even though understanding which levels of
entropy enhance SL processes without overwhelming the cognitive system, as well as the
factors that may influence them (e.g., prior knowledge), are crucial questions that remain
largely overlooked in SL research.

This study was designed to shed light on how the composition of the streams presented
to participants both under implicit (without previous knowledge of the “words” embedded
in the stream) and explicit (with previous knowledge of the “words” embedded in the
stream) conditions could impact SL processes and their results by collecting behavioral
(2-AFC) and neural (EEG) data. To that purpose, three types of auditory streams were
constructed. Each stream contained four three-syllable nonsense words drawn from the
study of Soares et al. [23]. Two of those streams were homogenous (unmixed streams),
in the sense that they contained only one type of “words”, either high-TP (1) or low-TP
(0.33) words. The other type was heterogeneous (mixed streams), in the sense that half of the
three-syllable nonsense words were high-TP (1) and the other half low-TP words (0.33), as in
the previous work of Soares et al. ([23,39,40,45]), but using a lower number of three-syllable
nonsense words (four) to approach closely previous studies (e.g., [1,18,19,50]). The rationale
behind this proposal was that if the number of words affected SL, as we expected, then
we should observe higher levels of 2-AFC performance here than in the previous Soares
et al. ([23,39,45]) works. Once homogeneous streams with low-TP words present higher
levels of entropy (0.48) than streams with high-TP words (0.16), as computed from Markov’s
formula, 2-AFC performance was also expected to be better for the unmixed high-TP than
for the unmixed low-TP stream condition. These values were computed through the use of
Markov’s formula, taking the TPs of all possible transitions (syllable pairs) into account.
Note that low-TP words increase the level of entropy in the stream because they increase the
level of randomness or uncertainty between syllable transitions. Importantly, if moderate
levels of entropy facilitate SL, as claimed by the Goldilocks principle, performance should
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be better in the mixed condition (0.26 of entropy according to Markov’s formula) than
both in the unmixed low-TP and unmixed high-TP conditions, particularly in the SL tasks
performed under implicit conditions, once participants cannot rely on prior knowledge to
support SL.

Furthermore, if the presence of high- and low-TP words within the same stream
encourages the use of a syllable frequency-based strategy rather than a syllable TP-based
strategy, as suggested by Soares et al. ([39,45]), recognition rates would be expected to be
higher for low-TP words than for high-TP words in the mixed stream condition. However, it
is also plausible that with less complex streams, behavioral and neural results may converge,
leading to a better 2-AFC performance for high-TP than low-TP words, consistent with the
neural-level findings reported by Soares et al. ([23,39,45]). In the same vein, if the streams’
composition affected SL processes, modulations in the N100 and N400 components were
expected to be observed across conditions. Specifically, enhancements in the N100 and
N400 components, taken as the neural signatures of SL in the brain, should be observed in
the mixed high-TP condition relative to the other stream conditions. Moreover, in the mixed
condition, it is also possible that high-TP words produce this kind of effect, particularly
under explicit conditions, as observed in previous works.

To the best of our knowledge, this is the first study to simultaneously investigate
behavioral and neural (EEG) correlates of auditory SL in speech streams made of low-
or high-TP words presented in either unmixed or mixed conditions. Unlike previous
studies that manipulated the rate of presentation of visual (shapes) information ([54]) or
the frequency with which each “word” was presented during exposure ([36]), we adopted
a novel approach by directly varying TPs within speech streams. This design closely
approximates the complexity of natural linguistic environments, offering new insights into
how SL mechanisms operate in more ecologically valid contexts. Additionally, our work
uniquely addresses the role of prior knowledge in extracting regularities from streams
of varying complexity, an issue largely overlooked in previous research. By integrating
behavioral and neural data, this work can not only deepen our understanding of how
the brain processes complex information, advancing theoretical models of SL, but also
provides critical insights into the role that SL mechanism might effectively play in language
acquisition—a hotly debated issue in current SL literature ([16,17]). These findings also
hold promise for informing contemporary artificial intelligence (AI) techniques by refining
algorithms designed to emulate human-like language learning and enhancing practical
AI applications.

2. Materials and Methods
2.1. Participants

Fifty-six undergraduate students (Mage = 21.4; SDage = 4.0; 47 women) from the
University of Minho participated in the study. The sample size was estimated based on
previous studies. A similar sample size was also obtained from power analysis conducted
using G*Power [62] to achieve 95% power for detecting a medium effect at a significance
criterion of α = 0.05 (1 − β = 0.95; α = 0.05) for an effect size of (U) = 0.40 (ηp

2~0.082). All
participants were native speakers of European Portuguese, with normal hearing and no
reported history of learning or language disabilities and/or neurological problems. All
were right-handed, as assessed by the Portuguese adaptation of the Edinburgh Handedness
Inventory ([63,64]). Written informed consent was obtained from each participant. The
local Ethics Committee approved the study.
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2.2. Stimuli

The nonsense words were taken from Soares et al. ([23]). They were made of 32 unique
Portuguese syllables recorded by a native speaker of European Portuguese with a duration
of 300 ms each. The syllables were evenly distributed across two syllabaries (syllabary A
and B—see Table 1) used either in the implicit or explicit versions of the SL tasks (coun-
terbalanced across participants) to avoid interference. In each syllabary, the 16 syllables
were concatenated into triplets, presenting either TPs of 1 (high-TP words) or 0.33 (low-TP
words). The high-TP words entailed syllables that only occurred in each of those words,
such as “tucida” from syllabary A and “todidu” from syllabary B; while low-TP words
entailed syllables that occurred in several words at different (initial, medial, and final)
syllable positions, such as the syllable “do” in the nonsense words “dotage”, “tidomi”, and
“migedo” from syllabary A and the syllable “pi” in the nonsense words “pitegu”, “tepime”,
and “megupi” from syllabary B (see Table 1). The high-TP words were used to construct the
unmixed high-TP streams, whereas the low-TP words were used to construct the unmixed
low-TP streams. Two mixed streams (mixed A and mixed B—made of two of the four
“words” of the unmixed high-TP condition and two of the four “words” of the unmixed
low-TP condition) were also constructed for control. See Table 1 for an illustration of the
type of streams constructed.

Table 1. Examples of the “words” and foils used per stream condition.

Type of
Stream

Syllabary A Syllabary B

“Words” Foils “Words” Foils

unmixed
high-TP

tucida tubago todidu tomabe
bupepo bucica cegita cedico
modego mopeda gapabe gagidu
bibaca bidepo bomaco bopata

unmixed
low-TP

dotige dogeti pitegu pigute
tidomi timido tepime temepi
migedo midoge megupi mepigu
gemiti getimi gumete guteme

mixed A

migedo gebado megupi gumapi
gemiti mogeti gumete gagute

modego bimigo gapabe bomebe
bibaca mideca bomaco mepaco

mixed B

dotige docimi pitegu tegigu
tidomi budoge tepime toteme
tucida tutipo todidu cepidu

bupepo tipeda cegita pidita

The nonsense words were concatenated with the Audacity® software (3.7.1. version)
with a 50 ms interval between syllables as in previous studies ([39–42,45]). They were
presented in a pseudo-randomized order, such that the same “word” or the same syllable
would never appear in a row (i.e., situations such as “tucidatucida” or “tidomimigedo”
were not allowed to occur) to avoid confounds (e.g., [1,18–20] see also [59]). In each stream,
the “words” were presented 60 times in six blocks of 10 repetitions, each lasting 4.2 min
(around half a second per block). TPs across “word” boundaries were, therefore, 0.33 for
the unmixed high-TP and mixed conditions, and 0.50 for the unmixed low-TP condition.
Each stream was also edited to include a superimposed chirp sound (a 0.1 s sawtooth wave
sound from 450 to 1450 Hz) in 10% of the syllables to provide participants with a cover
task (i.e., a chirp detection task) during exposure, as in previous studies (e.g., [23,39,40,45]).
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The chirp was included in all “words” counterbalanced across syllable positions to prevent
confounds (see Figure 1).
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Figure 1. Experimental setup. (Panel A) illustrates the timeline of the procedure, beginning with the
implicit and subsequently with the explicit SL tasks. Each task comprises three phases: instructions
(Panel B), familiarization (Panel C), and test (Panel D). The instructions determine the conditions
under which the SL task was performed (implicit vs. explicit). During familiarization, from which
EEG data were collected, participants were presented with a continuous auditory stream made of the
repetition of the four three-syllable nonsense words (two high- and two low-TP words in the mixed
stream condition depicted in the Figure) and instructed to perform the chirp detection task (speaker
icon on the Figure). The tasks ended with a test phase (Panel D) consisting of a 2-AFC task from
which behavioral data were collected.

For the 2-AFC tasks, 16 foils were created for each type of stream. The foils were
created from the same syllables that made the “words” in each stream and syllabary (see
Table 1). The syllables in the foils were used with the same frequency and syllable positions
as the syllables in the “words”, though presented in an order not presented before. For
example, the syllable “do”, which appeared three times at different syllable positions (initial,
medial, final) in three different “words” from the unmixed low-TP condition, also appeared
three times at these syllable positions in the foils (e.g., “dogeti”, “midoge”, “timido”—see
Table 1). Note, however, that due to stimuli restrictions (i.e., to the number of syllables
used to make the four high-TP and the four low-TP words in each syllabary—four vs.
twelve), the foils in the unmixed high-TP and the mixed conditions present TPs of 0 as the
order of the syllables they entailed was entirely new. However, in the unmixed low-TP
condition, the foils present TPs of 0.25, once the number of syllables available and the
need to not repeat the same “word” consecutively did not preclude the possibility of a
given syllable pair presented in the foils to have occurred during exposure across “word”
boundaries (e.g., the syllable pair “geti” presented in the foil “dogeti” could have also
appeared when the nonsense word “dotige” was followed by the nonsense “word” “tidomi”
in the familiarization phase).
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Four lists of materials were created for each type of stream to counterbalance syllables
across positions in each syllabary (8 lists per type of stream, 32 lists in total). Participants
were randomly assigned to one list of one of the three types of streams (unmixed high-TP,
unmixed low-TP, or mixed A or B). A total of 16 participants were assigned to the unmixed
high-TP condition, 16 to the unmixed low-TP condition, and 24 to the mixed condition
(12 participants to the A and 12 to the B version). Note that when assigned to a given
stream condition, participants performed the implicit and the explicit versions of the SL
task under the same stream condition (either unmixed high-TP, unmixed low-TP, or mixed),
though using stimuli from syllabary A or syllabary B to avoid carry-over effects. The high
number of participants assigned to the mixed condition was due to the need to increase the
statistical power of the analysis to explore the effects of the type of “word” in the results
(note that in this condition, we only use two items per type of “word”).

2.3. Procedure

Participants were first presented with the implicit version of the SL task and then
with the explicit version of an analogous SL task (see Figure 1). In the implicit version,
participants were instructed to pay attention to the auditory stream (a sequence of syllables)
presented at 60 dB SPL via binaural headphones. To ensure they paid adequate attention
to the stream, a cover task was used during familiarization: participants were asked to
detect, as quickly and accurately as possible, a deviant sound (i.e., a chirp sound) that
occasionally would appear superimposed over syllables by pressing the spacebar on a
computer keyboard. The chirp sound could emerge at any of the three-syllable positions of
the “words”, which precluded its use as a cue for stream segmentation. Following exposure,
participants were asked to decide, as accurately as possible, which of two auditory stimuli
(one “word” and one foil) “sounded more like” the stimuli presented before (i.e., to perform
a 2-AFC task). The 2-AFC comprised 16 trials in which each of the four “words” presented
during familiarization was paired with the four foils. As in Soares et al. ([39]), this option
sought to minimize the number of times each “word” and foil was presented to once as
Soares et al. ([45]) have shown that increasing the number of trials by repeating the same
stimuli (“words” and foils) several times throughout the 2-AFC task has detrimental effects
on SL performance (see ([45]) for details).

In the 2-AFC task, each trial began with the presentation of a fixation point (cross)
for 1000 ms, after which the first stimulus (“word” or foil) was presented, followed by
the second stimulus. A 500 ms inter-stimulus interval separated the presentation of the
stimuli. The next trial began as soon as participants made a response or 10 s had elapsed.
The 16 trials were presented in four blocks of four trials each. In each block, the order (first
or second) by which the stimuli were presented was controlled, so that in half of the trials,
half of the “words” were presented first and in the other half the reverse (counterbalanced
across blocks). The trials in each block, as well as the blocks, were randomly presented to
the participants.

After a brief interval, participants underwent the explicit version of the SL task.
This version followed the same procedure except that, before the new familiarization
phase began, the stimuli (i.e., the nonsense words embedded in the stream) were taught.
Specifically, participants were told that they would be listening to other “words” from
another foreign language. Then, each of the four new “words” was presented auditorily
(one by one) and participants were asked to repeat each of them correctly. As in the implicit
version of the task, during familiarization, participants were asked to perform the cover
task (i.e., press the computer keyboard’s spacebar whenever they heard a chirp sound)
to ensure adequate attention to the stream. After familiarization, participants performed
another 2-AFC task that mimicked the one used in the implicit version of the SL task.
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The procedure took about 60 min to complete per participant. Figure 1 depicts a visual
summary of the experimental design adopted in the mixed condition as an example. In all
the other conditions, the procedure was exactly the same except for the use of other types
of streams (unmixed high-TP and unmixed low-TP streams).

2.4. EEG Data Acquisition and Processing

Data collection was performed in an electric-shielded, sound-attenuated room at
the facilities of the Psychological Neuroscience Lab (School of Psychology, University of
Minho). Participants were seated in a comfortable chair, one meter away from a computer
screen. During the familiarization phase, EEG data were recorded with a 64 channels
BioSemi Active-Two system (BioSemi, Amsterdam, The Netherlands) according to the
international 10–20 system digitized at a sampling rate of 512 Hz and downsampling to
256 Hz. Electrode impedances were kept below 20 kΩ. EEG was re-referenced offline to
the algebraic average of mastoids. Data were filtered with a bandpass filter of 0.1–30 Hz
(zero-phase-shift Butterworth) plus a notch filter of 50 Hz. Interpolation was performed
for electrodes with noise or flat. Independent component analyses (ICA) were performed
to remove stereotyped noise (mainly ocular movements and blinks) by subtracting the
corresponding components. ERP epochs were time-locked to the nonsense words’ onset,
from −300 ms to 1200 ms (baseline correction from −300 to 0 ms). After that, epochs
containing artifacts (i.e., with amplitudes exceeding +/−100 µV) were excluded. EEG
data processing was conducted with Brain Vision Analyzer, version 2.1.1. (Brain Products,
Munich, Germany).

2.5. Data Analyses

Behavioral (2-AFC) and EEG data analyses were performed using the IBM-SPSS®

software (Version 27.0). All participants showed a click detection performance above 90%
during familiarization, except one from the mixed stream condition, which was excluded
from the analyses. Therefore, the behavioral analyses considered the data from 55 partic-
ipants (16 from the unmixed high-TP condition, 16 from the unmixed low-TP condition,
and 23 from the mixed condition). For these analyses, the percentage of correct responses
was computed for each of the 2-AFC tasks (implicit and explicit) and separately per stream
(unmixed high-TP, unmixed low-TP and mixed—mixed A and mixed B collapsed). One-
sample t-tests against the chance level were conducted on the data of each of the SL tasks
and streams to determine whether the performance was significantly different from chance
(50%). A repeated measure analysis of variance (ANOVA) using the type of stream (un-
mixed high-TP, unmixed low-TP, or mixed) as a between-subject factor and the SL task
(implicit vs. explicit) as a within-subject factor was also conducted to analyze if 2-AFC
performance was significantly different across conditions and groups. For the mixed stream
condition, a second ANOVA was conducted to ascertain whether the 2-AFC performance
was significantly different across the type of “words” (high- vs. low-TP) and the conditions
under which the SL task was performed (implicit vs. explicit).

Individual ERPs were averaged separately per SL task (implicit and explicit), stream
condition (unmixed high-TP, unmixed low-TP, or mixed—mixed A and mixed B collapsed),
and length of exposure (half 1: block#1, block#2, block#3 vs. half 2: block#4, block#5,
block#6). As in previous studies, we chose to analyze neural data into two different halves
to further examine if the brain responses to the different conditions would emerge as
a function of the amount of exposure to the input ([23,39,40]). Due to artifact rejection
(rejected more than 50% of the trials), six participants were excluded from the unmixed
high-TP stream condition in the SL task performed under implicit conditions, and four in
the SL task performed under explicit conditions; four participants were excluded from the
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unmixed low-TP stream condition in the SL task performed under implicit conditions and
one in the SL task performed under explicit conditions; and six participants were excluded
from the unmixed high-TP stream condition in the SL task performed under implicit and
explicit. After artifact rejection, the average accepted trials by condition and group was
83% (178 trials).

Based on previous SL studies (e.g., [18,21–23,39,40,50]) and on the general inspection of
the data, peak amplitudes were measured for the N100 (60–120 ms) and N400 (350–450 ms)
components, taken as the neural signatures of words’ segmentation in the brain. Nonethe-
less, since a general inspection of the neural results suggested that the positivity observed
within the 120–220 ms time window, corresponding to the P200 component, might reveal
contrasts of interest, we decided to further examine this component, even though it was
not initially considered. Previous SL studies have also reported an enhancement of this
component in SL tasks, which has been associated with early perceptual learning of the
regularities embedded in the speech streams and attention allocation [65–68]. To account
for the topographical distribution of the abovementioned EEG modulations, peak ampli-
tudes’ values were obtained for the frontocentral regions of interest (ROI; F1, Fz, F2, FC1,
FCz, FC2, C1, Cz, and C2) where amplitudes were maximal for the N100, P200, and N400
components.

Repeated measure ANOVAs were conducted on the neural data obtained for the target
components in two sets of analyses. In the first, the type of stream (unmixed high-TP,
unmixed low-TP, or mixed) was a between-subject factor, and the length of exposure (half 1
vs. half 2) was a within-subject factor. Note that unlike the behavioral analyses and EEG
results reported in previous studies ([23,39,40]), here we opted to analyze the SL tasks
performed under implicit and explicit conditions separately. This decision was driven by
the high number of participants excluded from the EEG analysis—primarily in the unmixed
high-TP condition due to artifact rejection. Introducing the SL task condition (implicit
vs. explicit) as an additional within-subject factor in the ANOVA would have limited the
analysis to only eight participants in the unmixed high-TP condition, significantly reducing
statistical power. Thus, for the first EEG analysis, we considered data from 41 participants
in the implicit SL task (10 from the unmixed high-TP condition, 12 from the unmixed
low-TP condition, and 19 from the mixed condition) and 45 participants in the explicit SL
task (12 from the unmixed high-TP condition, 15 from the unmixed low-TP condition, and
18 from the mixed condition). In a second set of ANOVA analyses, focused on the mixed
stream condition, we included the SL task (implicit vs. explicit), type of word (high- vs.
low-TP), and length of exposure (half 1 vs. half 2) as within-subject factors. This approach
was feasible because, in this case, neural data from 17 participants were available for both
implicit and explicit SL tasks.

Both for behavioral and ERP data, main and interaction effects that reached statistical
or marginal significance levels (p < 0.05 or p < 0.08, respectively) in comparisons of interest
are reported. The Greenhouse–Geisser correction for nonsphericity was used when appro-
priate. Post hoc tests for multiple comparisons were adjusted with Bonferroni correction.
In such cases, the p-values reported were the ones obtained after the Bonferroni corrections
were automatically applied (i.e., the adjusted p-values) by the IBM-SPSS® software (Version
29.0). Measures of effect size (Eta squared, ηp

2) and observed power (pw) for a single effect
are reported in combination with the main effects of the condition. For the behavioral data,
the results of one-sample t-tests against the chance level were presented first, followed by
the results of ANOVAs comparing performance across the three stream conditions, and the
ANOVA focused on the mixed stream condition. The EEG results, obtained from the initial
ANOVAs conducted for each SL task and the subsequent ANOVA focusing on the mixed
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stream condition, are reported separately for each targeted ERP component: N100, P200,
and N400.

3. Results
3.1. Behavioral Data

The mean percentages of correct responses obtained for the 2-AFC tasks performed
under implicit and explicit conditions per type of stream are presented in Table 2. Standard
deviations are presented in parentheses.

Table 2. Mean percentages (and standard deviations) of correct responses for 2-AFC tasks performed
under implicit and explicit conditions per type of stream.

SL Task

Type of Stream Implicit Explicit

Unmixed high-TP 61.3 (11.5) 71.5 (12.3)
Unmixed low-TP 55.9 (8.7) 64.1 (13.4)

Mixed 62.2 (15.1) 69.6 (17.4)

The results from the one-sample t-tests against chance level showed that participants
revealed an above-chance 2-AFC performance in all the conditions, unmixed high-TP:
implicit SL task, t(15) = 3.96, p < 0.001, explicit SL task, t(15) = 7.00, p < 0.001; unmixed
low-TP: implicit SL task, t(15) = 2.70, p = 0.008, explicit SL task, t(15) = 4.20, p < 0.001; mixed:
implicit SL task, t(22) = 3.88, p < 0.001; explicit SL task, t(22) = 5.39, p < 0.001. Moreover, in
the mixed condition, the one-sample t-tests against chance level showed that performance
exceeded the chance levels for both types of “words” in the SL tasks performed under
implicit and explicit conditions (see Table 3), high-TP words: implicit SL task, t(22) = 3.29,
p = 0.002, explicit SL task, t(22) = 5.54, p < 0.001; low-TP words: implicit SL task, t(22) = 2.24,
p = 0.018, explicit SL task, t(22) = 3.57, p < 0.001.

Table 3. Mean percentages (and standard deviations) of correct responses for 2-AFC tasks performed
under implicit and explicit conditions in the mixed stream condition per type of “word”.

SL Task

Type of Word Implicit Explicit

High-TP 65.8 (23.0) 75.0 (21.7)
Low-TP 58.7 (18.6) 64.1 (19.0)

Additionally, the results from the repeated measures ANOVAs indicated that only the
main effect of the SL task reached a statistically significant level, F(1, 52) = 12.54, p < 0.001,
ηp

2 = 0.194, pw = 0.935. This effect showed that performance was better when the 2-AFC
tasks were performed under explicit than implicit learning conditions regardless of the
type of stream considered (68.4 vs. 59.8, respectively).

Finally, the results of the ANOVA conducted on the data obtained from the mixed
condition showed a main effect of word type, F(1, 22) = 5.32, p = 0.031, ηp

2 = 0.195,
pw = 0.597, indicating that high-TP words were recognized more accurately than low-TP
words (70.4 vs. 61.4, respectively). No other main or interaction effects reached statisti-
cal significance.
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3.2. Electrophysiological Data
3.2.1. N100 Component

In the first set of analyses, contrasting the three types of streams, the ANOVA revealed
that the only effect that reached a statistically significant level was the effect of the length of
exposure, F(1,38) = 5.234, p = 0.028, ηp

2 = 0.121, pw = 0.606 in the SL task performed under
implicit conditions. Figure 2 depicts the neural responses (mean amplitudes’ values and
topographical maps) observed in this time window (the gray-shadowed rectangle) for SL
tasks performed under implicit (left panel) and explicit (right panel) learning conditions
in the first (solid lines) and second (sotted lines) halves for each of the streams (yellow:
unmixed high-TP condition; red: unmixed low-TP condition; and orange: mixed condition).
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Figure 2. Neural responses in the first and second halves of the SL tasks performed under im-
plicit (left panel) and explicit (right panel) conditions in the N100 component. Yellow solid
line = unmixed high-TP stream, first half; yellow dotted line = unmixed high-TP stream, second half;
red solid line = unmixed low-TP stream, first half; red dotted line = unmixed low-TP stream, second
half; orange solid line = mixed stream, first half; orange dotted line = mixed stream, second half.

The length of exposure effect observed in the implicit SL tasks in this time window
showed a larger amplitude in the second than in the first half of the familiarization phase,
as can be inferred from Figure 2 by contrasting, in the gray shadowed rectangle from the
left panel, the solid lines with dotted lines in each of the stream conditions.

In the second analysis, focused on data from the mixed stream condition, the ANOVA
showed that the main effect of word type reached a marginally statistically significant level,
F(1,16) = 4.111, p = 0.060, ηp

2 = 0.204, pw = 0.478. Figure 3 depicts the neural responses
(mean amplitudes’ values and topographical maps) from the mixed stream condition for the
high-TP (light blue lines) and the low-TP (dark blue lines) words in the SL tasks performed
under implicit (solid lines) and explicit (dotted lines) conditions in the N100 (first gray
shadowed rectangle) and P200 (second gray shadowed rectangle) components regardless
of the length of exposure to the streams (first and second halves collapsed).

The type of word effect observed in the N100 time window revealed a larger amplitude
for the high- than for the low-TP words regardless of the learning conditions (implicit and
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explicit) under which participants performed the SL tasks, as can be inferred from Figure 3
by contrasting the solid and dotted light blue lines with the solid and dotted dark blue
lines in the first gray shadowed rectangle.
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3.2.2. P200 Component

The results from the first ANOVA, comparing the three type of streams, revealed that
the main effect of stream reached a statistically significant level, F(2,42) = 3.842, p = 0.029,
ηp

2 = 0.155, pw = 0.665 in the SL tasks performed under explicit conditions. In the SL tasks
performed under implicit conditions the results failed to show any statistically significant
main or interaction effect. Figure 4 depicts the neural responses (mean amplitudes’ val-
ues and topographical maps) observed in the P200 (first gray-shadowed rectangle) and
N400 (second gray-shadowed rectangle) components for the SL tasks performed under
implicit (solid lines) and explicit (dotted lines) learning conditions per stream (yellow:
unmixed high-TP condition; red: unmixed low-TP condition; and orange: mixed condition)
regardless of the length of exposure (first and second halves collapsed).

The stream effect observed in the P200 component showed a larger amplitude in
the mixed than in the unmixed low-TP condition (p = 0.031), irrespective of whether
participants were exposed to the auditory streams under implicit or explicit conditions, as
can be inferred by contrasting the orange solid and dotted lines (mixed condition) with the
red solid and dotted lines (unmixed low-TP condition), in the first gray shadowed rectangle
of Figure 4.

In the second analysis, restricted to the neural data from the mixed stream condition,
the ANOVA revealed that the type of SL task main effect reached a marginally statistically
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significant level, F(1,16) = 4.062, p = 0.061, ηp
2 = 0.202, pw = 0.474. The task effect observed

in this time window revealed a larger amplitude for the SL tasks performed under explicit
than under implicit conditions, as can be inferred by contrasting, in the second gray
shadowed rectangle of Figure 3, the light and dark blue dotted lines (explicit conditions)
with the dark blue solid lines (implicit conditions).
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low-TP stream, implicit; red dotted line = unmixed low-TP stream, explicit; orange solid line = mixed
stream, implicit; orange dotted line = mixed stream, explicit.

3.2.3. N400 Component

The results from the first ANOVA comparing the three types of streams revealed a
significant main effect of type of stream, F(2,42) = 4.387, p = 0.019, ηp

2 = 0.273, pw = 0.727
in the SL tasks performed under explicit conditions, similar to the findings observed in
the P200 time window. However, in this case, the post hoc comparisons revealed that
the difference across stream conditions reached statistical significance when comparing
the mixed with the unmixed high-TP stream conditions, with the first exhibiting a larger
amplitude than the former (p = 0.017), as can be inferred by contrasting the orange solid and
dotted lines (mixed condition) with the yellow solid and dotted lines (unmixed high-TP
condition) in the second gray shadowed rectangle of Figure 4. The results of the first
ANOVA conducted on neural data from the implicit learning conditions, as well as from
the second ANOVA conducted on the neural data from the mixed stream condition, did
not reveal any statistically significant main or interaction effects.
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4. Discussion
The present study examined how the composition of the speech streams affected SL

processes and their results. We also aimed to ascertain how the prior knowledge of the
three-syllable nonsense words embedded in the speech streams modulated these results.
To that purpose, three types of speech streams containing either four high-TP words (i.e.,
three-syllable nonsense words with TP = 1; unmixed high-TP condition), four low-TP words
(i.e., three-syllable nonsense words with TP = 0.33; unmixed low-TP condition), or two high-
TP and two low-TP words (mixed condition) were presented to participants, first under
incidental (implicit), and, subsequently, under intentional (explicit) conditions, as in the
previous SL studies of Soares et al. ([23,39–42]). Neural and behavioral data were collected
during each SL task’s familiarization and test phases. To the best of our knowledge, this
paper is the first to examine these issues directly with important theoretical and practical
implications. The findings can contribute not only to deepening our understanding of
how SL mechanisms work in a wide range of situations, approaching closely what might
occur in natural languages acquisition; but also to shed light on the type of statistics (local
statistics vs. global statistics) participants are sensitive to and use to extract word-like units
from the continuous auditory streams, which can be used to inform the advancement of
AI techniques and the efficiency of its real-world applications. The results obtained were
straightforward and can be summarized as follows: (i) behavioral (2-AFC) signs of SL
were observed for the three types of streams and learning conditions, particularly in the SL
task performed under explicit conditions, as anticipated; (ii) although 2-AFC performance
was numerically higher (and very similar) in the mixed and unmixed high-TP conditions
than in the unmixed low-TP condition both in the SL tasks performed under implicit
and explicit conditions, differences failed to reach statistical significance across stream
conditions; (iii) still, the 2-AFC data obtained from the mixed stream condition revealed
a word type effect indicating better recognition rates for the high- than for the low-TP
words; (iv) importantly, the neural data showed evidence of stream effects both in the N400
component, foreseen from the outset, and in the additional P200 component showing a
larger amplitude in the mixed vs. the unmixed high-TP condition in the former and a larger
amplitude in the mixed vs. the unmixed low-TP condition in the latter, suggesting, in both
cases, facilitative processing of the mixed over the other stream conditions; (v) additionally,
the neural data revealed a length of exposure effect in the N100 component, indexed by a
larger amplitude in the second half than in the first half of the SL tasks performed under
implicit conditions, regardless of the type of stream, suggesting that participants were able
to extract the regularities embedded in the speech streams as exposure unfolded as expected;
(vi) a marginally significant word type effect was observed in the N100 component for
the mixed stream condition, with high-TP words eliciting larger amplitudes than low-TP
words; (vii) although direct comparisons of neural responses between SL tasks were limited
to the mixed condition, the separate analyses for the implicit and explicit SL tasks revealed
that the stream effects observed in the P200 and N400 components emerged only under
explicit conditions, suggesting an indirect SL task effect in the expected direction; and
(viii) that a significant (albeit marginally) direct SL task effect was observed in the mixed
stream condition, indicated by a larger P200 amplitude in the SL task performed under
explicit than implicit conditions, as expected.

These results are interesting and globally provide support for our hypotheses. In-
deed, when the number of words embedded in the streams is halved (from eight in the
previous work of Soares et al. ([23,39–42]) to four), an increase in 2-AFC performance
was observed, particularly in the SL tasks performed under implicit conditions, as ex-
pected. Specifically, a comparison between the results obtained here and those reported
by Soares et al. ([39])—these works are more directly comparable since both used 16 trials
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in the 2-AFC post-learning task—revealed notable differences. When considering overall
2-AFC performance (i.e., regardless of word type), participants improved their performance
by 9.5% in the implicit SL tasks (52.8% in Soares et al. [39] vs. 62.2% here) and by 6.1% in
the explicit SL tasks (63.5% in Soares et al. [39] vs. 69.6% here). It is also worth noting that
when we consider the type of word in the analyses, it is readily apparent that the increase in
the 2-AFC performance was more pronounced for the high-TP than for the low-TP words.
Indeed, the comparison of the results obtained here in the mixed stream condition with
those obtained by Soares et al. [39] revealed that the 2-AFC performance for the high-TP
words increased by 18.7% in the implicit SL tasks (47.1% in Soares et al. [39] vs. 65.8%
obtained here), and by 13.6% in the explicit SL tasks (61.4% in Soares et al. [39] vs. 75%
obtained here). For the low-TP words, however, the comparisons revealed a pretty similar
pattern of results across studies with a difference of 0.3% in the SL tasks performed under
implicit conditions (58.4% in Soares et al.’s [39] vs. 58.7% obtained here) and a difference
of 1.4% in the SL tasks performed under explicit conditions (65.5% in Soares et al. [39] vs.
64.1% obtained here).

In the case of the unmixed streams, the comparisons of the results obtained by Soares
et al. [39] for the high-TP words and those obtained here for the unmixed high-TP stream
condition revealed an increase of 14.2% in the SL tasks performed under implicit conditions
(47.1% in Soares et al. [39] vs. 61.3% obtained here) and an increase of 10.1% in the SL tasks
performed under explicit conditions (61.4% in Soares et al. [39] vs. 71.5% obtained here).
In the case of unmixed low-TP streams, however, the comparisons revealed a decrease
of 2.5% in the SL tasks performed under implicit conditions (58.4% in Soares et al. [39]
vs. 55.9% obtained here) and a decrease of 1.4% in the SL tasks performed under explicit
conditions (65.5% Soares et al. [39] vs. 64.1% obtained here). It is worth emphasizing that
the magnitude of the SL task effect observed in our data is comparable to that reported
by Soares et al. [39], with both showing a large effect size. Taken together, these findings
indicate that the complexity (entropy) of the auditory streams presented to participants
in the triplet-embedded paradigm—indexed both by the number of “words” embedded
in it and “word” TPs—strongly impacts “word” recognition, particularly high-TP words
both when the SL tasks are performed under implicit and explicit conditions. This also
agrees with the view that the representations generated under incidental and intentional
learning conditions are not immune to interference, as several authors have been claiming
(e.g., [45,69–72]). Nevertheless, it is also important to note that the relatively low 2-AFC
performance observed in the unmixed low-TP condition relative both to the mixed and the
unmixed high-TP conditions could arise not only from the fact that it presents the higher
level of entropy (0.48)—possibly making it more difficult to extract word-like units—but
also from the fact that the foils used in the 2-AFC task present higher TPs (0.25) than the
foils used in the unmixed high-TP and stream mixed conditions (TP = 0) due to the reduced
number of syllables used in that condition, as mentioned before (see the Stimuli section),
which may have made the foils more difficult to discriminate.

Thus, the stream conditions more directly comparable, at least at a behavioral level
of analysis, are the unmixed high-TP and the mixed conditions, which failed to show any
statistically significant difference even though the 2-AFC performance was 6.3% higher
in the mixed condition over the unmixed low-TP condition and 0.9% higher in the mixed
condition over the unmixed high-TP condition. The absence of statistically significant
differences across stream conditions at the behavioral level suggests that increasing the
unpredictability of the speech streams by manipulating “word” TPs did not hinder 2-AFC
discriminations, possibly because the levels of entropy introduced in the speech streams
were not high enough to disrupt performance, and/or because the 2-AFC post-learning
task used to test SL was not sensitive enough to detect such differences, as discussed ahead.
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Nevertheless, the EEG data collected during the exposure phase revealed strong stream
effects not only in the N400 component, as anticipated from the outset, but also in the P200
component, which was explored additionally. In both cases, the findings suggest facilitative
processing of the mixed stream condition over the unmixed low-TP stream condition (in
the case of the P200 component) and of the mixed stream condition over the unmixed
high-TP stream condition (in the case of the N400 component). These findings crucially
revealed that moderate levels of entropy enhanced (rather than hindered) the extraction of
word-like units from speech streams, aligning with the Goldilocks principle. This is, to the
best of our knowledge, the first study showing how the composition of the speech streams
(operationalized in terms of entropy) modulates the neural correlates of SL, hence extending
previous results (see [55–59]). By balancing predictability and variability, the mixed streams
used in our study appear to have created the optimal conditions to engage attentional
mechanisms, allowing for better detection of the regularities embedded in the input and
the extraction of word-like units. Predictability may have provided sufficient stability in
the input to enable the brain to detect recurring patterns, while the variability introduced
by using high- and low-TP words likely stimulated cognitive processes such as prediction,
adaptation, and error detection, which are the core of SL. This combination of elements
possibly ensured that the mixed streams used in our study were challenging enough
to actively engage participants’ learning systems without overloading their cognitive
capacities. Moreover, it is also possible that the balance achieved in the mixed streams
between predictability and variability may have also optimized the recruitment of both
bottom-up and top-down processes in the extraction of input regularities, explaining the
large, albeit marginally significant, SL task effect observed in the P200 component for this
stream condition. Bottom-up mechanisms, driven by the statistical properties of the input,
would have enabled participants to detect transitions and co-occurrences between syllables.
At the same time, top-down mechanisms, such as attention to the previously learned
“words”, may also have played a crucial role in integrating this information into perceptual
(word-like) units. This result, also observed in other studies (e.g., [19,20,23,39–41]), and,
indirectly, in the other stream conditions under study—note that the stream effects reported
in the P200 and N400 components were only observed in SL tasks performed under explicit
conditions—suggests a more successful segmentation of the speech streams when “extra”
(metalinguistic) information about the to-be-learned regularities were provided, which also
agrees with the behavioral data obtained in the current work.

These findings also appear to suggest that results observed in lab experiments using
the triplet-embedded paradigm may actually underestimate the human capacity to extract
regularities from the speech input—as they rely on oversimplified languages—and that SL
mechanisms may play a more fundamental role in language acquisition in a natural context
than previously thought. Language is inherently structured but also variable, and this vari-
ability can help learners extract meaningful units at different levels of language processing
(such as phonemes, syllables, words, and syntactic structures) more efficiently. Indeed,
variability might encourage learners to pay more attention to the patterns embedded in the
linguistic input, as they have to distinguish between different instances to find regularities,
allowing the system to become “fine-tuned” to capture the subtleties of language to which
they are exposed. Moreover, language variability compels learners to continuously adjust
their predictions about what comes next. For instance, when a learner encounters a word
in a novel context, their prediction mechanisms are challenged, requiring them to adapt
and refine their understanding based on the new input. This iterative process of prediction,
error detection, and adjustment might not only strengthen the human ability to recognize
patterns in the linguistic input but also foster the development of more robust and flexible
knowledge, enhancing language competence. This might explain why, in cross-situational
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word learning studies, both children and adults have been shown to learn novel word-
object mappings more effectively when exposed to non-uniform (variable) rather than
uniform distributions (see [73,74]). SL mechanisms seem thus to be at the heart of language
acquisition processes and enable individuals to acquire language so quickly and effortlessly
(see [2–10,15], see also [23,39–42]).

Notably, the facilitative effects observed in the mixed stream condition over both
the unmixed high-TP and unmixed low-TP stream conditions were evident even if the
neural data indicated that participants were sensitive to the regularities embedded in all
the speech streams, as reflected by the strong length of exposure effect observed in the
N100 component—in line to that reported by Soares et al. [39], although at a later (N400)
time window; as well as by the behavioral signs of SL which were observed across all
streams conditions. The disparity between behavioral and neural results in SL research
is not new (see [18–20,23,39–42,47,48]) and might reflect, as several authors have been
claiming, that online (EEG) and offline (2-AFC) SL measures tap into distinct cognitive
processes, the first related to how the brain computes statistical regularities embedded
in the input, and the second with how people retrieve patterns learned from memory
(see [23,37], for a discussion). This also aligns with other works claiming that the 2-AFC
task is not suitable for testing SL, as it presents low sensitivity to detect subtle differences as
typically used in SL experiments (see [15,45,48]). These findings highlight the importance
of using alternative measures to assess SL, particularly those sensitive to the time course of
processing, such as EEG, during exposure to the speech streams, as used here and in an
increasing number of SL studies ([18–20,22,23,33,35,39–42,47,50,53,67]).

Nevertheless, the 2-AFC results observed in the mixed condition revealed that par-
ticipants were significantly better at recognizing high-TP than low-TP words both under
implicit and explicit conditions. These findings are not in accordance with the 2-AFC
results observed previously by Soares et al. ([23,39,45]) but align both with the neural data
observed by Soares et al. ([23,39]), who found greater N400 amplitudes for high- than for
the low-TP words, and with the large, albeit marginally statistically significant, word type
effect observed here for the mixed stream condition in the N100 component. This behavioral
result is relevant not only because it is the first converging with neural findings suggesting
facilitated processing of high-TP over low-TP words in components like the N100 and
N400 (see Soares et al. [23,39]) but also because it rules out the explanation advanced by
Soares et al. [45] to account for the better recognition rates observed in their study for
the low- than for the high-TP words. Indeed, Soares et al. [45] claimed that because the
syllables of the low-TP words were presented three times more often than the syllables of
the high-TP words (that entailed unique syllables), this may have led the cognitive system
to adopt a syllable-frequency-based strategy rather than a TP-based strategy to recognize
the “words” in the 2-AFC post-learning task. The results obtained here do not support
this explanation. However, it is important to note that the entropy levels of the mixed
streams used in this study—containing two high-TP and two low-TP words—are lower
than those used by Soares et al. [45], which included four high-TP and four low-TP words.
It is thus possible that the lower complexity of the streams used here had allowed a more
efficient extraction of the statistical regularities embedded in the input and the formation of
more stable representations of the perceptual units (“words”) in long-term memory, hence
avoiding the shift from a TP-based strategy to a syllable-frequency-based strategy that the
complexity of the streams used by Soares et al. ([39,45]) seems to have stimulated. In sum,
even though the results obtained here are interesting and contribute to existing research by
demonstrating that speech streams with moderate levels of entropy create better conditions
for SL—likely by striking a balance between predictability and variability to facilitate the
extraction of regularities embedded in the speech input—conclusions should be drawn
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with caution. It is important for future studies to replicate these findings, employing not
only a larger number of participants (given the high number of exclusions due to EEG
artifact rejection) but also using a within-subject design in the manipulation of the type
of stream to minimize the impact that individual differences might have on the results.
Nonetheless, these findings are promising and have the potential to open new avenues
in SL research. Future studies can further examine the conditions under which entropy
might disrupt 2-AFC performance by increasing the number of “words” embedded in
the streams or reducing the number of times each “word” is presented to avoid potential
ceiling effects. The use of other tasks, such as a target detection post-learning task (see [19]
and also [45] for a review), should also be considered. Identifying the “sweet spot” for
entropy, as well as exploring the role that prior knowledge plays in determining the “right”
level of entropy in different developmental stages, are also crucial questions that future
research should address, contributing to achieving a deeper and more comprehensive
understanding of the role that SL mechanisms play in “real-world” language acquisition
contexts. These insights have the potential to shape the development of cutting-edge AI
technologies by refining algorithms that more closely mirror human-like language learning
processes. By incorporating principles such as the balance between predictability and
variability and adapting to local and global regularities, AI systems can become better
equipped to handle complex and dynamic linguistic input in real-world situations, such
as human–computer interactions and virtual settings. These advancements could also
drive improvements across a wide range of applications, including enhancing the accuracy
and adaptability of speech recognition systems, advancing the diagnosis and treatment of
language impairments, and improving tools designed to support foreign language learning.
Ultimately, bridging the gap between human SL mechanisms and AI algorithms could
lead to breakthroughs in how machines process, understand, and interact with language,
paving the way for technologies that are more intuitive, adaptable, and effective in meeting
the complexities of human communication.

5. Conclusions
This work is, to the best of our knowledge, the first providing evidence on how

the complexity (entropy) of the speech streams presented to participants in the triplet-
embedded paradigm affects SL processes and their results by collecting behavioral (2-AFC)
and neural (EEG) data. Although the 2-AFC results failed to reveal significant differences
across stream conditions, the neural results crucially indicated facilitative processing of
the mixed over the other stream conditions, thus suggesting that SL may play a more
fundamental role in language acquisition than previously thought, as the mixed stream
condition mimic closely the complexity of natural languages. Although these results should
be confirmed with further research, the present work opens new avenues for future SL and
AI research.
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