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Abstract: Background/Objectives: Voice analysis has shown promise in anxiety assess-
ment, yet traditional approaches examining isolated acoustic features yield inconsistent 
results. This study aimed to explore the relationship between anxiety states and vocal pa-
rameters from a network perspective in ecologically valid settings. Methods: A cross-sec-
tional study was conducted with 316 undergraduate students (191 males, 125 females; 
mean age 20.3 ± 0.85 years) who completed a standardized picture description task while 
their speech was recorded. Participants were categorized into low-anxiety (n = 119) and 
high-anxiety (n=197) groups based on self-reported anxiety ratings. Five acoustic param-
eters—jitter, fundamental frequency (F0), formant frequencies (F1/F2), intensity, and 
speech rate—were analyzed using network analysis. Results: Network analysis revealed 
a robust negative relationship between jitter and state anxiety, with jitter as the sole speech 
parameter consistently linked to state anxiety in the total group. Additionally, higher anx-
iety levels were associated with a coupling between intensity and F1/F2, whereas the low-
anxiety network displayed a sparser organization without intensity and F1/F2 connection. 
Conclusions: Anxiety could be recognized by speech parameter networks in ecological 
settings. The distinct pattern with the negative jitter-anxiety relationship in the total net-
work and the connection between intensity and F1/2 in high-anxiety states suggest poten-
tial speech markers for anxiety assessment. These findings suggest that state anxiety may 
directly influence jitter and fundamentally restructure the relationships among speech 
features, highlighting the importance of examining jitter and speech parameter interac-
tions rather than isolated values in speech detection of anxiety. 

Keywords: anxiety assessment; speech parameters; network analysis; ecological validity; 
psychological stress 
 

1. Introduction 
The rapid pace and high-pressure demands in contemporary society can easily in-

duce emotional responses such as the anxiety state in individuals [1,2]. These negative 
emotions may cause impaired decision-making [3], reduced work efficiency [4], and 
strained interpersonal relationships [1], ultimately impacting overall productivity and an 
individual’s well-being [5]. These emotions are largely driven by the persistent stressors 
of daily life [2]. Distinct from chronic anxiety disorders, the anxiety state is a transient 
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emotional response that individuals experience when exposed to situational stressors, 
such as stringent deadlines, performance evaluations, and social pressures [6,7]. Despite 
this growing prevalence, the methods for its assessment remain subjective and time-con-
suming [8,9]. Traditional evaluation of anxiety has predominantly relied on self-report 
questionnaires, clinical interviews, and behavioral observations, which, while providing 
valuable insights into subjective experiences, are susceptible to reporting biases and recall 
limitations [10,11]. These conventional approaches are typically supplemented by physi-
ological measurements, including cardiovascular monitoring, blood pressure measures, 
and cortisol sampling, which offer objective biological markers of stress responses [12,13]. 
Contemporary wearable devices enable continuous tracking of various physiological pa-
rameters, including heart rate variability or electrodermal activity [14]; however, these 
measurements require direct contact between the sensing elements and the skin surface. 

Speech has in recent years arisen as a particularly promising approach for anxiety 
detection, with its non-invasive quality, remote measurement capability, and potential for 
continuous monitoring [15,16]. It could reflect psychological states through synchronizing 
muscles across respiratory, phonatory, and supralaryngeal organs, working in line with 
cognitive and emotional processing [17,18]. The intricate interplay between these systems 
makes speech particularly valuable as a biomarker, as it can capture significant motor, 
cognitive, and behavioral changes associated with mental health conditions [19,20]. 

Individuals with anxiety disorders exhibit heightened activation of the sympathetic 
nervous system under stress [21,22], which directly influences speech production through 
various pathways [23]. This manifests in different features, including speech rates, in-
creased disturbances, and hesitations [8,24,25], which could be measured by speech pa-
rameters such as fundamental frequency, formant frequencies, and various spectral prop-
erties [9,26]. Most research studies on anxiety have reported increased F0 in anxious indi-
viduals [8,24]. Besides F0, parameters such as jitter, shimmer, and pause patterns [9,14] 
and speech rate [27] reveal further complexity in anxiety-induced vocal expression. Anx-
iety may further impair articulatory precision, reducing vowel clarity and altering for-
mant bandwidths as a result of stress-induced physiological arousal [28–30]. The anxiety 
state, as a transient response to situational stressors, often correlates with vocal parame-
ters, including elevated fundamental frequency (F0), increased intensity, accelerated 
speech rate, and decreased duration [9,14,31–33]. 

Studies have been performed on speech parameters in anxiety, highlighting key sen-
sitive indicators including the following: (1) Fundamental frequency (F0), which repre-
sents the rate of vocal cord vibration and corresponds to perceived pitch, has been con-
sistently identified as a primary indicator of stress. Multiple studies have demonstrated a 
reliable increase in F0 under anxious or stressed conditions [15,34]. This elevation in F0 
has been attributed to increased muscle tension and respiratory changes during stress re-
sponses [35]. (2) Formant frequencies, particularly the first (F1) and second (F2) formants, 
serve as crucial indicators of vocal tract resonance and articulation patterns. Research has 
shown that stress-induced changes in muscle tension and breathing patterns can affect 
formant characteristics [30]. The F1/F2 ratio has emerged as a potentially valuable metric, 
though individual variations in these parameters suggest speaker-specific patterns rather 
than universal trends [14,36]. (3) Jitter, which quantifies cycle-to-cycle frequency variation 
in vocal fold vibration, has demonstrated mixed results in anxiety detection. While some 
studies report decreased jitter under stress conditions [37], others have found more vari-
able patterns, suggesting that jitter’s relationship with anxiety may be modulated by indi-
vidual differences and specific stressor types [15]. (4) Intensity, measured as the amplitude 
or loudness of speech signals, typically shows elevation under an anxious state, reflecting 
increased subglottal pressure and muscular tension [38]. However, the magnitude of these 
changes can vary significantly based on the nature and intensity of the stressor. (5) Speech 



Brain Sci. 2025, 15, 262 3 of 16 
 

rate, often quantified through mean voiced segment length, indicates temporal features of 
stress-affected speech production. Stress typically leads to alterations in speaking pat-
terns, including pause and segment duration [35]. Additionally, spectral features (MFCC, 
LPCC) and the harmonics-to-noise ratio (HNR) also tap into the acoustic complexity as-
sociated with stress, yet HNR sensitivity appears more consistent in physical stress (e.g., 
workouts) than in tasks involving heavy cognitive load or psychological stress [37–40]. 
Overall, these findings support the notion that anxiety-driven physiological arousal alters 
speech production through multiple, interrelated pathways, positioning acoustic features 
as viable indicators of psychological stress in various contexts. 

To date, much of the existing research on anxious speech has been conducted in con-
trolled laboratory settings, with limited ecological validity in the findings [28]. Real-world 
scenarios, such as those involving social evaluation or time pressure, presumably would 
be more ecologically valid for investigating anxiety-related speech changes. Moreover, 
previous studies have primarily focused on isolated speech parameters, overlooking the 
complex interrelations between these features [25,41]. For example, while F0 and jitter are 
often studied independently, their interactions with formants, intensity, and speech rate 
under anxiety state are poorly understood. 

Network analysis, which is one of the state-of-the-art tools to identify and analyze 
the pattern of statistical association in multivariate data, has achieved exponential devel-
opment in the field of psychological science [42]. Networks include nodes and edges. 
Nodes represent the variables of study and edges represent connections between nodes. 
Compared with traditional statistical models, network analysis offers the following meth-
odological advantages for investigating the relationships among anxiety state and related 
speech parameters: (1) Visualization of systemic dynamics. It illustrates direct edges, in-
direct pathways, and central nodes in a unified framework, mitigating the reductionism 
and isolated focus of traditional methods [43]. (2) Group-level network comparison. Ra-
ther than treating parameters as independent units, such as t-tests on speech rate, network 
comparison tests reveal differences in edge connections, node centrality, and overall con-
nectivity between low- and high-anxiety states [44]. (3) Statistically robust edge estima-
tion. Within a network, edges are usually statistically depicted using regularized partial 
correlations. These correlations, obtained after controlling for other variables and employ-
ing statistical regularization techniques, represent purer, more restrained, and interpreta-
ble connections among multivariate data [45]. By integrating these advantages, network 
analysis offers a holistic, data-driven framework that not only pinpoints “hub” speech 
parameters but also uncovers subtle systemic dysregulations that may be overlooked by 
traditional methods. 

Therefore, this study aims to examine the complex impacts of the anxiety state on 
speech parameters using network analysis in a real stressed scenario. Specifically, the 
study has two primary objectives: (1) to investigate the complex associations between the 
anxiety state and speech parameters, with a focus on both direct and indirect relationships 
within the network; and (2) to explore how different levels of an anxiety state influence 
the patterns of associations between speech parameters. 

Based on existing evidence showing that the anxiety state is associated with changes 
in vocal properties, we hypothesize that (1) speech parameters will exhibit a direct asso-
ciation with the anxiety state, and (2) higher levels of anxiety will fundamentally alter the 
network relationships among key speech parameters compared to lower anxiety states. 
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2. Materials and Methods 
2.1. Settings and Participants 

Participants were recruited from second-year undergraduate students at a large pub-
lic university in Xi’an City, China. Participants were selected using a restricted homoge-
neous sampling method. Out of 569 students in the same grade, over 334 subjects were 
chosen based on their similar CET-4 test scores (a standardized English proficiency test in 
China; M = 499, SD = 32.85) to ensure comparable language proficiency across participants. 
A total of 316 valid participants were ultimately included in the analysis (191 males 
[60.4%] and 125 females [39.6%]). The age of participants ranged from 19 to 22 years old, 
with a mean age of 20.3 (±0.85) years. All participants provided written informed consent 
prior to participation. 

The oral examination was conducted by course instructors as part of the curriculum. 
Following the image description task, participants were immediately instructed to self-
rate their anxiety levels experienced during the task. The research assistants provided 
clear instructions, asking participants to “reflect on your feelings during the image de-
scription task and rate your anxiety level based on your immediate experience”. The self-
rating was conducted using a 4-point scale (0 = no anxiety, 1 = mild anxiety, 2 = moderate 
anxiety, 3 = severe anxiety). This immediate assessment timing was crucial to capture the 
authentic anxiety-state levels while the experience was still fresh in participants’ memory, 
minimizing potential recall bias. Based on these ratings, participants were categorized into 
two groups: the low-anxiety group (ratings of 0–1; n = 119) and the high-anxiety group 
(ratings of 2–3; n = 197). This self-assessment approach aligns with prior research empha-
sizing the subjective nature of the anxiety state [46,47]. Following the assessment, the uni-
versity counseling service were available for students who reported high anxiety levels. 
This study was conducted in accordance with the Declaration of Helsinki and received 
approval from the Ethics Committee of Xijing Hospital (KY20242053-C-1). 

2.2. Materials and Procedure 

This study utilized a cross-sectional design to explore differences in speech parame-
ters between high- and low-anxiety individuals under a naturalistic stress-inducing con-
dition. The anxiety-eliciting task was a foreign language oral examination, where partici-
pants were required to describe a thematic cartoon in English. This foreign language exam 
is an established ecological stressor widely recognized for its ability to provoke anxiety in 
second-language learners [48,49] because of the performance-related stress, fear of failing 
linguistic assessments, and anticipation of negative evaluations from proficient instruc-
tors [49–51]. The assessment consisted of a standardized picture description task featuring 
a thematic cartoon (topic: online and offline life) selected from a validated resource for 
formal language assessment materials. The instructions and interface of the online lan-
guage testing platform are presented in Supplementary Figure S4. Previous psychophys-
iological studies have documented significant stress responses in such contexts, particu-
larly among learners in high-stakes educational environments, with consistent elevations 
in both subjective anxiety measures and objective stress indicators [52,53]. 

Recordings were conducted in the university language labs with the ambient noise 
level maintained below 40 dB. The lab has a typical office acoustical setup with moderate 
reverberation time (approximately 0.4–0.5 s). Participants completed the oral exam task in 
a computer laboratory equipped with standardized workstations. Each participant was 
provided with a SANAKO SLH-07 headset featuring an integrated unidirectional micro-
phone (frequency response: 40 Hz–16 kHz) to ensure consistent audio recording quality 
across all participants. The oral examination was conducted through an online English-
language testing platform (https://www.tsinghuaelt.com/ (accessed on 18 January 2024)) 
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designed for Chinese college curricula, with identical audio settings across all work-
stations. The microphone functionality was tested on the platform’s recording test page 
before beginning the oral exam (see Supplementary Figure S5). 

The task instructions were presented uniformly through the testing platform inter-
face. Students were required to talk about the picture displayed on the screen and were 
given in 45 s for preparation and 3 min to talk about it. After completing the task, partici-
pants were prompted to rate their anxiety state using the 4-point scale described earlier. 

2.3. Speech Feature Extraction 

Speech recordings were processed to extract five key acoustic parameters: jitter, fun-
damental frequency (F0), formants (F1/F2), intensity, and speech rate. These parameters 
were selected based on their established relevance to anxiety-related changes in speech 
[15,34,35]. 

The acoustic parameters analyzed in this study were defined as follows: Jitter refers 
to the cycle-to-cycle variation in fundamental frequency, which may indicate vocal insta-
bility and stress [23]. F0 reflects emotional arousal and tension [26]. F1/F2, the ratio of the 
first and second formants, represents interactions between pitch and vocal tract resonance 
and serves as a key indicator of articulatory precision and speech clarity [14]. Intensity 
captures the loudness of speech, measured in decibels (dB), and is often associated with 
vocal effort [54]. Speech rate measures the number of spoken syllables per second and 
reflects overall speech fluency and pacing [55]. 

Audio recordings were converted to a standardized format (16-bit WAV, 44.1 kHz) 
and trimmed to remove silence by Adobe Audition. Acoustic parameters were extracted 
using the open-source Python library Librosa (v0.10.0) and custom routines. Signals were 
pre-processed with a Hamming window (512 samples ≈ 23 ms at 22.05 kHz), 50% overlap 
(hop = 256 samples), and 0.97 pre-emphasis. F0 mean was extracted from indices 18/17 of 
the hsf array (Praat-aligned via Librosa). Formants F1/F2 were derived via 12th-order LPC 
analysis averaged across voiced segments using np.nanmean. Jitter followed the Praat 
equation. Intensity reflected RMS amplitude averaged over frames. Speech rate used 
Whisper (“base”) transcriptions. 

2.4. Data Analysis 

We utilized SPSS software (version 27.0) to perform the descriptive statistical analy-
sis. An independent samples t-test was conducted to compare differences between the 
high- and low-anxiety groups regarding various acoustic parameters, including intensity, 
speech rate, F1/F2, F0, jitter, and state anxiety. Before constructing three networks (i.e., 
total, low-anxiety, and high-anxiety networks), the goldbricker function in the R package 
network tools was applied to determine the redundant nodes [56], with no potential node 
redundancy screened out in the three networks. 

The three networks in this study were created using graphical Least Absolute Shrink-
age and Selection Operator (gLASSO) combined with the Extended Bayesian Information 
Criterion (EBIC) [45]. Within each network, the edges reflect the partial (Spearman) cor-
relation between two paired nodes, accounting for the influence of other nodes [45,57]. 
The gLASSO technique punishes small correlation coefficients to zero and results in a 
sparser and more interpretable network [45,58]. The EBIC tuning parameter (gamma) was 
adjusted to 0.5. The gamma controls the severity of the model selection, with higher values 
indicating that simpler models are preferred [45]. When gamma is set to 0.5, most spurious 
edges can be avoided [59]. Therefore, this more conservative approach makes the results 
of network structure more likely to be stable and reproducible. The EBICglasso function 
introduces gamma = 0.5 as “generally a good choice” and sets it as the default value 



Brain Sci. 2025, 15, 262 6 of 16 
 

[45,59]. The network visualization was generated using the Fruchterman–Reingold algo-
rithm, through which nodes with weak and sparse connections are located on the periph-
ery of the network, while nodes with strong and numerous connections tend to appear 
near the center of the network [60,61]. 

Expected influence, the sum value of all edges connecting to a specific node, was 
calculated for each node within low-anxiety and high-anxiety networks via R-package 
qgraph [61]. This indicator, when compared with the traditional centrality index (e.g., 
strength centrality), is more appropriate for networks that include both positive and neg-
ative edges [62]. Higher expected influence value of a node indicates its greater im-
portance in the network [62,63]. 

To identify the accuracy of edge weights, a 95% confidence interval (1,000 bootstrap 
samples) was plotted for each edge [64]. The stability of expected influence was deter-
mined by testing the correlation stability (CS) coefficient using the case-dropping boot-
strap method (1000 bootstrap samples). The CS coefficient measures the maximum pro-
portion of data that can be dropped to retain, with 95% certainty, a correlation of at least 
0.7 with the centralities of the original network [64]. As recommended by Epskamp et al., 
it is considered ideal for the CS coefficient to be higher than 0.5 and not lower than 0.25 
[64]. Additionally, we carried out bootstrapped difference tests (1000 bootstrap samples) 
for edge weights and expected influence. These analyses were performed using the R-
package bootnet [64]. 

To investigate differences between low-anxiety and high-anxiety network character-
istics, the R-package NetworkComparisonTest was employed with 1000 permutations 
[44]. We primarily concentrated on three key network characteristics: global expected in-
fluence, edge weights, and node expected influences. Given the exploratory nature of this 
study, no corrections were utilized for multiple comparisons [44,65]. 

3. Results 
Table 1 presents the descriptive statistics for the anxiety state and acoustic parame-

ters across the total sample, as well as the low- and high-anxiety groups. Self-reported 
anxiety differed significantly between groups, with the low-anxiety group reporting 
markedly lower levels compared to the high-anxiety group (p < 0.001, Cohen’s d = −3.731). 
This large effect size highlights a clinically meaningful distinction in perceived anxiety 
levels between the groups. 

For acoustic parameters, jitter was slightly higher in the low-anxiety group compared 
to the high-anxiety group (p < 0.05, Cohen’s d = 0.229), and F0 was slightly lower in the 
low-anxiety group than in the high-anxiety group (p < 0.05, Cohen’s d = −0.232). Both dif-
ferences were statistically significant but exhibited small effect sizes. 

No statistically significant differences were observed for formant ratio (F1/F2), inten-
sity, or speech rate (p > 0.2), and these variables demonstrated negligible effect sizes. 

Table 1. Anxiety state and acoustic variables across total, low-anxiety, and high-anxiety groups. 

Variables Total Group  
(Mean ± SD) 

Low-Anxiety Group 
(Mean ± SD) 

High-Anxiety 
Group  

(Mean ± SD) 

Low-Anxiety Group vs. 
High-Anxiety Group  

(p-Value) 
Cohen’s d 

Anxiety state 1.83 ± 1.01 0.70 ± 0.46 2.51 ± 0.50 0.000 ** −3.731 
Jitter 0.50 ± 0.07 0.51 ± 0.06 0.49 ± 0.08 0.040 * 0.229 

F0 181.88 ± 18.53 179.20 ± 18.70 183.49 ± 18.29 0.046 * −0.232 
F1/F2 0.25 ± 0.05 0.25 ± 0.06 0.25 ± 0.05 0.212 0.145 

Intensity 67.54 ± 5.64 67.78 ± 5.41 67.40 ± 5.78 0.561 0.068 
Speech rate 1.26 ± 0.57 1.26 ± 0.61 1.26 ± 0.55 0.999 0.000 

Variables of Significance:*p ≤ 0.05, **p ≤ 0.001. 
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Figure 1 illustrates the network structure of the anxiety state and various speech-
related indicators in the total group. It is evident that the anxiety state is negatively con-
nected to only one speech indicator—jitter (edge weight = −0.17). The connections between 
the speech indicators themselves are generally strong and predominantly positive. 
Among the speech indicators, three positive connections are, respectively, speech rate–
intensity (edge weight = 0.28), intensity–F1/2 (edge weight = 0.26), and F1/2–F0 (edge 
weight = 0.24). There exists only one strong negative connection between jitter and F0 
(edge weight = −0.39). The bootstrapped 95% confidence interval indicates that the edge 
weights are relatively accurate (Figure S1a in the Supplementary Material). Figure S1b 
shows the difference test results of all edges. 

 

Figure 1. Network structure of anxiety state and speech indicators in total group. Blue edges repre-
sent positive correlations and red edges represent negative correlations. The thickness of the edge 
reflects the magnitude of the correlation. The value on the edge represents the edge weights of two 
corresponding nodes. 

In the speech indicator network of the high-anxiety-state group (see upper left of Fig-
ure 2), the pattern of connections between speech indicators is very similar to that in Fig-
ure 1. Three positive connections are, respectively, speech rate–intensity (edge weight = 
0.28), intensity–F1/2 (edge weight = 0.33), and F1/2–F0 (edge weight = 0.20). Only one 
strong negative connection is between jitter and F0 (edge weight = −0.39). In the speech 
indicator network in the low-anxiety-state group (see lower left of Figure 2), except for the 
absence of a connection between intensity and F1/2, the connection patterns between the 
other indicators remain similar to the high-anxiety group. Bootstrapped 95% confidence 
intervals indicate that the edge weights in the two samples are relatively accurate (Figure 
S2a,c in the Supplementary Material). Figure S2b,d show the edge weights’ difference test 
results. 
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Figure 2. Speech indicator networks in high- and low-anxiety-state groups using average layout and 
bridge centrality plots. Blue edges represent positive correlations and red edges represent negative 
correlations. The thickness of the edge reflects the magnitude of the correlation. The value on the 
edge represents the edge weights of two corresponding nodes. 

The expected influence results for the high-anxiety- and low-anxiety-state groups are 
plotted in the right section of Figure 2. In the high-anxiety-state network, intensity has the 
strongest expected influence (raw value = 0.62). In the low-anxiety-state network, F1/2 has 
the strongest expected influence (raw value = 0.30). The CS coefficients of expected influ-
ences for high-anxiety-state and low-anxiety-state networks are 0.67 and 0.36, respectively 
(Figure S3a,c in the Supplementary Material). Figure S3b,d show the nodes expected in-
fluences’ difference test results. 

The results of the network comparison test reveal that only one connection among 
speech indicators exhibit significant differences: F1/2-intensity (p = 0.02). The node ex-
pected influences of two groups show no significant differences. In addition, the global 
expected influence of two groups also show no significant differences (high-anxiety-state 
group = 0.42; low-anxiety-state group = 0.19; S = 0.23, p = 0.43). 

4. Discussion 
This study employed network analysis to explore the impacts of anxiety state on 

speech parameters in ecologically valid settings. Two distinct networks were constructed. 
The first network elucidated the relationships between anxiety state and speech parame-
ters, with particular focus on the direct associations and transmission effects between pa-
rameters. The second network identified how different levels of anxiety state influence the 
association patterns among speech parameters. 

From a global view, the network structure demonstrated a clear, chain-like arrange-
ment of speech parameters, with jitter emerging as the only parameter directly connected 
to the anxiety state. This finding may suggest the role of jitter as the most critical acoustic 
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indicator of anxiety responses under stress. Specifically, the correlation between the anx-
iety state and jitter indicates that increased anxiety levels may disturb the vocal stability 
and trigger alterations in pitch. This finding aligns with previous research suggesting that 
anxiety-induced physiological changes affect laryngeal muscle tension and respiratory 
control [66]. Notably, the effect of anxiety on jitter is not universally observed. Some stud-
ies have documented increased jitter in response to stress [9,14,67], often attributed to 
heightened laryngeal and cricothyroid tension leading to less stable vocal fold vibration. 
Other research, however, includes findings similar to ours, where jitter decreases under 
real-world stress conditions such as exam or emergencies [37,68]. The reduced jitter in 
these scenarios could be justified by the cognitive load and emotional load induced alone 
or in combination [35]. And it could also be attributed to the compensatory vocal mecha-
nisms under anxiety conditions, suggesting heightened psychological arousal may lead 
to increased laryngeal muscle tension, consequently leading to more regular vocal fold 
vibration. Alternatively, given the dynamic nature of anxiety during a speech task, speak-
ers may experience peak anxiety at the beginning of a task, which may gradually diminish 
as they adapt to the stressor over time. This temporal variation in anxiety could influence jitter 
differently at different phases of the task. As such, if jitter reduction is driven by compensatory 
mechanisms, this effect may emerge later in the task as speakers adapt to the stressors. 

From the perspective of individual differences, these contradictory patterns may re-
flect variability in speech motor control or baseline vocal tension. When in a stressed state, 
jitter could be caused by either small variations or asymmetries in the cricothyroid muscle 
tension [69] and/or fluctuations in subglottal pressure [70] and/or perturbations in the mu-
cous of the vocal folds [71]. Speakers with greater baseline vocal tension may show a de-
crease in jitter as a form of physiologically “locked” vocal fold vibration, whereas those 
with lower baseline tension might exhibit an increase in jitter when confronted with stress. 
So, baseline vocal tension could be measured in the future by surface electromyography 
of the vocal tract, or general speech motor control could be pre-assessed to elucidate the 
individual differences in jitter responses under anxiety. 

Most importantly, our research extends beyond the confines of the lab, offering 
greater ecological validity by examining stress responses in more naturalistic settings. Pre-
vious network analysis study conducted in a controlled laboratory setting identified jitter 
as the only speech parameter directly connected to self-reported negative affect [14]. Con-
sistently, we also found jitter to be the only speech parameter directly linked to stress 
responses, reinforcing its potential as a robust acoustic biomarker of stress. These findings 
suggest that jitter holds significant promise as a reliable indicator of stress whether in con-
trolled experimental environments or in daily life. 

Furthermore, jitter also correlates inversely with F0, possibly acting as a “bridge” 
variable in transmitting anxiety effects onto other vocal parameters. A direct connection 
with F0 was expected, as jitter by definition refers to the variations that occur in F0. Pre-
vious research mostly showed that increased fundamental frequency (F0) is accompanied 
by elevated cycle-to-cycle frequency perturbation (jitter) under stress conditions 
[37,72,73]. As Giddens et al. reported, increased vocal fold tension under stress typically 
raises F0 while also leading to more irregular vocal fold vibration patterns, resulting in 
increased jitter [15]. Interestingly, our finding implies that despite the stress-induced ele-
vation in pitch, speakers maintain or even enhance their vocal stability, possibly as a phys-
iological adaptation to maintain speech clarity under pressure. Together, this sequential 
organization suggests a hierarchical relationship in how anxiety manifests through vari-
ous vocal parameters and potentially reflects the intricate mechanisms underlying speech 
production under stress. 

The total group network analysis also showed a positive interplay among core speech 
parameters, where F0, formant frequencies (F1/2), intensity, and speech rate exhibited 
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positive interconnections, suggesting a coherent vocal pattern that might collectively shift 
when speaking under challenging conditions. From a physiological standpoint, as F0 
rises, speakers often inadvertently increase the intensity and modify the articulation cap-
tured by F1/2, which can also interact with the rate of delivery. Specifically, the positive 
correlation between F0 and F1/2 suggests that as speakers raise their pitch under stress, 
they also exhibit higher formant frequencies. This relationship likely reflects complex 
changes in vocal tract configuration under stress, as documented by Scherer [74] and Mur-
ray et al. [75]. The positive relationship between F1/2 and intensity indicates that speakers 
who produce higher formant frequencies also tend to speak louder under stress, a pattern 
consistent with acoustic theory and supported by studies of stress-induced vocal changes, 
noting that stress-induced physiological changes often result in simultaneous increases in 
vocal intensity and articulatory effort [26]. The moderate positive correlation between in-
tensity and speech rate further highlights the possible activation effect, wherein speakers 
under stress tend to speak both louder and slightly faster. Stress-induced arousal typically 
results in increased respiratory drive and heightened vocal cord tension, which can raise 
vocal intensity while also promoting a faster articulation tempo, as supported by studies 
on emotional vocal expression [26,74]. This relationship is consistent with findings that 
stress can amplify vocal energy and motor coordination, driving dynamic changes across 
vocal parameters. Moreover, the observed interconnections among F0, F1/2, intensity, and 
speech rate align with Scherer’s push effect theory [74], in which physiological arousal 
during emotional states initiates coordinated adaptations across multiple vocal subsys-
tems. These speech changes arise from increased sympathetic nervous system activation, 
subsequently affecting breathing patterns, vocal fold tension, and articulatory precision, 
eventually leading to synchronized shifts in pitch, loudness, and speech pacing. Thus, this 
chain of relationships reflects how stress modifies vocal behavior holistically. 

Most interestingly, the network analysis revealed distinct patterns of acoustic param-
eter connections between high- and low-anxiety groups, indicating that anxiety may fun-
damentally restructure the relationships among vocal parameters under stress. Similar to 
the total group network, the high-anxiety network exhibited greater association among 
acoustic parameters, with multiple strong connections forming a chain-like structure. This 
increased parameter coupling in the high-anxiety group aligns with Scherer’s component 
process model [76] and Goberman et al.’s stress-induced vocal synchronization [23], sug-
gesting that tighter coupling among acoustic parameters may serve as reliable biomarkers 
for anxiety states. The low-anxiety network displayed a sparse structure with fewer strong 
connections between parameters, which may suggest more relaxed vocal control com-
pared to high-anxiety states [35]. This finding is consistent with previous research show-
ing that neutral or low-arousal states typically demonstrate more independent variation 
in acoustic features [26]. This separation between intensity and F1/2 in the low-anxiety 
network indicates that speakers could maintain their natural articulation without inten-
sity compensation, in contrast to the strong connection of F1/2 and intensity in the high-
anxiety group, where speakers need to enhance their vocal intensity to compensate for the 
weak articulation. This pattern likely reflects what Lindblom termed “hypo-speech”, 
where speakers optimize articulatory effort to balance communicative efficiency and min-
imal physiological cost within a given context [77]. Thus, these contrasting networks offer 
valuable diagnostic potential for anxiety detection. The presence or absence of intensity–
articulation coupling may serve as a reliable marker for anxiety states, particularly in eco-
logically valid settings. 

The expected influence analysis provides additional insights into the relative im-
portance of different speech parameters within each anxiety-state network. In the high-
anxiety state, intensity (EI = 0.62) emerged as the most central node, suggesting the dom-
inant role of intensity in the high-anxiety group, which reflects the compensatory vocal 
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effort to maintain clarity despite stress-induced physiological arousal [74]. Conversely, in 
the low-anxiety state, F1/F2 (EI = 0.30) showed the strongest influence, indicating greater 
articulatory freedom when cognitive resources are not consumed by anxiety. This pattern 
aligns with Lindblom’s hyper- and hypo-speech framework, suggesting that speakers op-
timize vocal effort relative to communicative demands [77]. Comparing the expected in-
fluence between two groups, the low-anxiety-state network displayed more evenly dis-
tributed expected influence values across F1/2, intensity, and speech rate. This balanced 
distribution may suggest that parameters operate with greater independence rather than 
being dominated by specific features. The difference in expected influence between anxi-
ety states further supports our earlier observations about the distinctive network organi-
zations under different anxiety conditions. However, the absence of significant differences 
in nodes’ expected influence and global expected influence between groups suggests that 
while the organization of speech parameters differs between anxiety states, the overall 
influence structure remains relatively stable. 

It is also worth noting that the use of English as a non-native language in our task 
likely amplified the anxiety triggered by the exam through foreign language anxiety (FLA) 
mechanisms [78], particularly affecting articulatory precision (F1/F2) and vocal effort (in-
tensity) [79,80]. This aligns with FLA research showing that linguistic insecurity exacer-
bates vocal changes [81,82]. Non-native speakers often exhibit reduced articulatory con-
trol and increased vocal tension due to unfamiliar phonemes [83,84], which may explain 
the strong intensity–F1/F2 coupling observed in our high-anxiety network. However, the 
stability of jitter as a biomarker across anxiety states suggests some vocal stress responses 
transcend language-specific factors. 

Previous research on speech biomarkers primarily focused on evaluating individual 
acoustic parameters in isolation. However, our study indicates the importance of the re-
lationships between these parameters as additional potential biomarkers, providing a fresh 
perspective on stress-related vocal dynamics. This shift broadens the scope of traditional 
biomarker research by emphasizing the need to examine how vocal features interact within 
a speech parameter network rather than concentrating solely on individual values. 

This study first employs network analysis of vocal parameters in an ecologically valid 
anxiety context, filling the gap in the existing anxiety research that has largely been re-
stricted to laboratory environments. In addressing the first objective, we uncovered a net-
work across anxiety state and speech parameters, which highlights the direct associations 
between jitter and anxiety state, and transmission effects among vocal features. Im-
portantly, jitter is found to be the sole speech parameter consistently linked to the anxiety 
state across all networks, underscoring its potential as a robust acoustic biomarker for 
stress. For the second objective, we demonstrated that varying levels of the anxiety state 
change the association patterns among speech features fundamentally, manifesting as the 
absence of an intensity and F1/F2 connection. These findings could enhance voice-based 
anxiety screening tools by prioritizing jitter and intensity–F1/F2 coupling as biomarkers. 
For instance, mobile apps analyzing speech during telehealth consultations or workplace 
stress assessments could flag high-risk states in real time. Clinically, this could supple-
ment traditional surveys with objective vocal metrics. 

Several methodological limitations warrant consideration. First, by recruiting mainly 
non-native English speakers from a single university, our findings may not fully general-
ize to other linguistic or cultural settings. Second, we relied on a single speech task (picture 
description), which may not capture the full range of anxiety-inducing scenarios—such as 
public speaking or interpersonal conflict. Furthermore, our binary categorization of anxiety 
(low vs. high) could obscure more nuanced or non-linear trajectories, including the possi-
bility that jitter initially increases at moderate anxiety levels but later stabilizes as speakers 
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adapt. Additionally, anxiety was measured solely via self-report, and the absence of physi-
ological indicators (e.g., cortisol, heart rate variability) may limit the objectivity of anxiety 
assessment. Finally, to keep computational demands manageable, we focused on a limited 
set of vocal parameters, potentially missing other relevant acoustic features. 

Therefore, future research should recruit participants from diverse populations to 
broaden the applicability of the findings. Studies should also examine additional stress-in-
ducing contexts and analyze speech production at multiple time points to better capture the 
dynamic progression of anxiety and the potential emergence of compensatory mechanisms. 
Furthermore, regression modeling of anxiety could be incorporated to determine the trend 
of jitter response. Further, incorporating physiological indicators and additional acoustic 
parameters, such as the harmonics-to-noise ratio, could be used to examine detailed anxiety-
related vocal changes. Finally, individual differences in speech motor control and baseline 
anxiety should be explored to uncover the mechanisms linking anxiety with vocal parame-
ters. 

5. Conclusions 
This study provides insights into the relationship between anxiety states and speech 

parameters using network analysis in an ecologically valid setting. By examining the in-
terconnections among vocal features, we identified jitter as the sole speech parameter con-
sistently linked to the anxiety state across all networks, underscoring its potential as a 
robust acoustic biomarker for stress. Additionally, the coupling between intensity and 
F1/F2 in high-anxiety states highlights how anxiety fundamentally reorganizes vocal pa-
rameter relationships, reflecting compensatory mechanisms under stress. Our findings 
contribute to a more comprehensive understanding of how anxiety manifests through in-
terconnected vocal parameters. We also demonstrate that the ecological validity of using 
real-world stressors, such as oral examinations, could capture authentic anxiety re-
sponses, which enhances the applicability of our results to real-life contexts. These find-
ings have practical implications for developing automated, speech-based anxiety screen-
ing tools that prioritize jitter and intensity–F1/F2 coupling as key markers. This study may 
offer a fresh perspective for developing objective, non-invasive assessments of anxiety. 
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