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Abstract: Concrete production causes significant environmental damage during its entire life cycle 

due to the large consumption of natural aggregate. The aim of this research was to use the Life Cycle 

Assessment (LCA) methodology to conduct a comparative analysis of four different concrete 

mixtures, i.e., construction and demolition waste (CDW), incinerator ashes, marble sludge, and blast 

furnace slag. The LCA study was implemented in the Campania Region of Italy. The main 

contribution of the study was that it proposed the use of “green” recycled aggregates in concrete 

production in order to assess the reduction of potential adverse impacts, from both environmental 

and energy perspectives. SimaPro© software was used to conduct the analysis. The main results of 

the research showed that the recycled aggregates that were analyzed were preferable to traditional 

concrete. In particular, the recycled aggregate that had the least adverse impact on the environment 

was blast furnace waste.  
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1. Introduction 

Concrete is a key component in constructing buildings because it is the most commonly used 

material in infrastructures [1]. It also is known that the construction industry is one of the main 

consumers of raw materials [2]. As discussed by several authors and in detail by [3] the main component 

of concrete is cement, which releases significant quantities of carbon dioxide (CO2) into the atmosphere 

[4]. In other words, the production of concrete has a notable impact on the environment, and 

environmental problems are known to be quite serious in the construction industry [5–8]).  

The scientific community devotes significant attention on finding sustainable solutions to avoid 

the use of ordinary concrete and to manage its environmental impacts [9]. In order to achieve this 

purpose, it is possible to replace (totally or partially) natural aggregates with recycled aggregates 

(e.g., fly ash (FA), blast furnace slag, and murble sludge) [10–14]). Also, complete replacement of 

cement with alkali-activated binders can be another option [15–17]; and still another option could be 

to replace cement with recycled fibers [18,19].  

Another advantage is that the addition of slag enhances the strength of concrete and reduces the 

heat of hydration [20]. This replacement also allows a reduction in energy consumption and CO2 

emissions, since blast furnace slag is a product that has already undergone the transformation from 

carbonate to oxide with the consequent release of CO2. Blast furnace slags can be used in several 

applications, including road construction base materials after grinding and cementitious materials 

[21] since they contain high amounts of calcium silicate, glass, and high-quality ceramic products [22] 
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They also are mechanochemically treated so they can be recycled as a low-cost adsorbent [23,24]. 

Thus, in the concrete production industry there is increasing interest in the use of new kind of 

aggregates due to some of their advantages, such as social acceptance, economic advantage, and 

sustainability [25]. Their use can reduce the carbon footprint and to help sustain growth without 

harming the environment [26].  

However, it is necessary to evaluate these new materials in terms of their performance, quality, 

and costs, as well as their social and environmental aspects. To achieve this goal, a well-know tool, 

Life cycle assessment (LCA), can be used successfully to analyze the environmental performance of 

the entire life cycle of a product or of a process [27–29]. In fact, LCA allows us to balance the use of 

material and energy and quantify the overall environmental impacts [30,31]. Definitively, LCA is 

potentially a promising technique that can be useful in evaluating the environmental performance of 

construction materials [32–38].  

According to the previous consideration, the aim of this research was to develop an 

environmental analysis of four specific mixtures of concretes with recycled aggregates. The paper is 

organized as follows. Section 2 presents an overview of the literature on LCA and concrete made 

from recycled aggregates. Materials and methods are defined in Section 3. A real case study is 

presented in Section 4, and our conclusions are summarized in Section 5. 

2. State of Art of LCA and Recycled Aggregates Concrete 

Because of limited natural resources, the environmental assessment of concrete made from 

recycled aggregates through the LCA approach is a strategic issue and a major challenge [39]. 

Concrete recycling operations have three main benefits, i.e., (1) they reduce the demand for new 

resources; (2) they reduce energy production costs; and (3) they recycle waste that would otherwise 

be landfilled [40]. The recycling of concrete is an important environmental challenge, and there are 

many case studies presented in the literature. An investigation on the Scopus data base using as 

keywords the search string “Life Cycle Assessment AND Concrete” identified 1321 publications since 

1983, the first year the document was published, to February 2018 (the investigation period). Papers 

were selected by applying the following criteria: (1) Article; (2) abstract; and (3) key words. The 

scientific research that is available indicates that there is increasing interest in this topic. The year 

2017 had more documents published on this topic (182 publications) than any other year from 1983 

through 2016. Regarding where the documents were published, it was not surprising that most of 

them (263) were published in the United States.  

Then, the analysis was refined by applying a search string as follows “Life Cycle Assessment AND 

Recycled Concrete”. In this case, the number of publications identified in the survey decreased 

significantly to a total of 87 from 2003, the first year a related document was published, to February 

2018, the investigation period. Thus, it is evident that the LCA of “recycled concrete” is still a limited 

research area despite the increasing interest in the topic in recent years. 

According to the previous analysis, it is important to point out that some recent studies aimed at 

evaluating the environmental interest of using recycled aggregates, in comparison with natural 

aggregates, as analyzed by [41] For this purpose, a recent interesting study was conducted by [42]. In 

their study, 216 concrete mixes from 24 references (selected from papers published in reference 

journals and conference proceedings) were analyzed in order to define the best concrete solutions 

from environmental and economic perspectives. The results showed that cement is the main 

component that causes adverse environmental impacts, so the use of superplasticizer has been 

advised to indirectly decrease the amount of cement required. It also was apparent that reducing 

adverse environmental impacts are not necessarily associated with higher costs.  

Concerning the environmental impacts, an interesting study was proposed by [43] in which the 

environmental impacts of using coarse natural aggregate (NA) and coarse recycled concrete 

aggregate (RCA) were analyzed in the New York City area. The study showed that the replacement 

of NA with RCA, as a concrete aggregate, had no significant effect on the environmental impact of 

concrete production. Even so, the research pointed out that avoiding the landfilling of construction 
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and demolition waste (CDW) will be a result of producing RCA concrete, provided that CDW is 

recycled only for the purpose of producing concrete aggregate. 

An interesting study was proposed by [44] in which green concrete mixes were compared with 

a conventional concrete mix. The final results highlighted that RCA with fly ash (FA) was the most 

suitable mixture. [36] compared the environmental impacts of a recycled concrete and an ordinary 

concrete. In the analysis, they pointed out that recycled concrete had less impact in terms of 

greenhouse gas emissions. Some interesting studies have proposed the use of alternative concretes 

by replacing the virgin raw materials [38, 45–47].  

The bibliographic analysis showed that a lot of the recent research has been dedicated to the 

investigation of the use of recycled aggregates to replace ordinary cement. Thus, all of the existing 

studies have highlighted the importance of developing environmental impact analyses that address 

the local and national situations. Different from the documents we analyzed concerning previous 

research, the aim of our research was to help address the paucity of such analyses that specifically 

deal with the situation in Italy, where scientific literature on this subject is scarce.  

3. Materials 

3.1. Construction and Demolition Waste (CDW) 

Construction and demolition waste (CDW) accounts for around 25–30% of the waste produced 

in Europe, and these wastes are voluminous and heavy [48]. Such waste includes numerous 

materials, such as bricks, gypsum, concrete, glass, metals, wood, plastics, solvents, and asbestos [49]. 

The CDW derives mainly from the construction of civil buildings and infrastructures, from the total 

or partial demolition of buildings and civil infrastructures, and from planning and road maintenance 

[50]. In order to be reused, it must be treated in special crushing and selection plants, which must 

meet the technical requirements established in the Waste Framework Directive (2008/98/EC). The 

Directive provides a framework to guide the European society to recycling with the aim of achieving 

at least 70% (by weight) of non-hazardous construction and demolition waste by 2020. As 

demostrated by [51], the technology for the separation and recovery of CDW is well established and 

competitive in terms of the costs to be incurred.  

3.2. Incineration Ashes 

Incinerator ashes are obtained from the incineration of municipal solid waste (MSW), so their 

composition is related strictly to the composition of the raw MSW, the combustion conditions, and 

the operational conditions of the plant. Chemical substances emitted by an incinerator include 

organic compounds that contain chlorine, polycyclic aromatic hydrocarbons (IPA), volatile organic 

compounds (VOCs), trace elements (lead, cadmium, and mercury), hydrochloric acid, nitrogen 

oxides, sulfur oxides, and carbon oxides. Many of these compounds dissipate in the atmosphere 

together with dust, bottom ash, and fly ash. 

The composition of the latter depends on the lifestyle and waste recycling process of a country, 

and, for this reason, it varies from country to country [52]. The most common chemical compounds 

and elements found in the fly ash from Municipal Solid Waste Incineration (MSWI) are oxides and 

large amounts of heavy metals, including Cr, Cu, Hg, Ni, Cd, Zn, and Pb. Such metals may be harmful 

to the environment and may cause leaching problems, and for this reason they must be treated 

appropriately [53].  

After the treatment, the slags can be reused, rather than disposed of as waste because of their 

environmental compatibility. The most common reuses of fly ash are roadside substrates, ceramic 

material, concretes and mortars, infrastructure, and landfill covers. 

3.3. Marble Sludge 

Marble is a metamorphic rock that consists primarily of calcite (CaCO3) and dolomite 

(CaMg(CO3)2). During the processing of marble, 30% of the stone goes to scrap, and the amount of 

scrap marble is expected to increase since production is increasing in the marble industry [53]. 
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Calcium carbonate is used in several sectors, such as the deacidification of agricultural land; the 

production of cements; the production of paper, paints, and polypropylene; the production of sodium 

carbonate; as a neutralizer for acidic industrial wastewater; for the absorption of heavy metals; in 

production of lime; and in the cosmetic and pharmaceutical industries. The amount of waste 

generated is a big issue for the companies since the waste must be disposed in landfills. This approach 

is in contrast with the goals of sustainable development, which are focused on zero waste production 

through the full reuse of secondary raw materials by means of recovery and recycling procedures. 

There are two important aspects associated with this approach, i.e., economic and environmental 

aspects, because the companies would have lower expenses related to landfilling and higher revenues 

due to the sale of micronized calcium carbonate. In fact, using scrap materials that come from 

recovery and recycling operations means that they are no longer considered to be wastes; rather, they 

are now considered to be raw materials and secondary materials to be used in additional production 

processes. This is useful to pursue the dual objective of minimizing the generation of waste to be 

disposed and of reducing the burden for the company that also obtains an added value [54].  

3.4. Blast Furnace Waste 

Blast furnace slag results from the physical separation, based on density differences, that occurs 

in the blast furnace between the cast iron and all of the other oxides that do not undergo reduction in 

the metallic state. The composition of the slag depends on the production process, on the 

characteristics of the materials, and on the technologies that are used. The materials consist mainly 

of calcium oxide (CaO), magnesium oxide (MgO), silicon dioxide (SiO2), some aluminum oxide 

(Al2O3), and smaller quantities of other mineral compounds. After the slag is extracted from the blast 

furnace, it is subjected to rapid and intense cooling and to a granulation process. This process 

guarantees the formation of a glassy phase and a structure that gives hydraulic characteristics to the 

slag that allow it to be used to replace up to 70% of the limestone and clay used in the production of 

Portland cement with several other benefits [55]. In fact, the aim of the concrete industry is to 

substitute other cementitious materials for Portland cement, especially waste materials from 

industrial processes.  

4. Methodology and Results 

The ISO 14040 standard systematically defines the LCA methodology by explaining four 

different phases. The first phase is the goal phase, which defines the context of the study. The second 

phase is the life cycle inventory (LCI) analysis, which defines the raw materials that are the inputs to 

the system. The third phase is the impact assessment phase, which identifies the potential 

environmental effects. The fourth and last phase is the interpretation phase, in which information 

from the results are evaluated [56,57].  

4.1. Goal and Scope Definition 

The environmental implicatons of using recycled aggregates in Campania, a region located in 

South Italy, were analyzed in this research. (See Figure 1).  
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Figure 1. Location of natural aggregate and mixed recycled aggregate production. 

In detail, four different concrete mixtures composed of recycled aggregates were analyzed. The 

mixtures were as follows: 

- Mixture 1: concrete with incinerator ashes. 

- Mixture 2: concrete with blast furnace slag. 

- Mixture 3: concrete with construction and demolition waste. 

- Mixture 4: concrete with murble sludge. 

Table 1 shows mix design for each of the mixtures. 

Table 1. Mix design of concrete. 

Materials Unit Mixtures Natural Concrete 

- - M1 M2 M3 M4 - 

Cement (Portland) [kg] 350 350 350 350 350 

Water [kg] 175 175 175 175 175 

Natural sand [kg] 937.5 937.5 937.5 937.5 937.5 

Natural stone [kg] - - - - 937.5 

Recycled aggregate (MSW) [kg] 937.5 - - - - 

Murble sludge - - - - 937.5 - 

Recycled aggregate - - 937.5 - - - 

CDW - - - 937.5 - - 

- - - - - - - 

4.2. Functional Unit 

The functional unit was defined as 1 m3 of concrete (with a specific weight equal to about 2400 

kg/m3) to facilitate data management and application. Also it was assumed that the different types of 

mixtures have approximately the same strength and durability performance, e.g., the same 

mechanical properties, workability, and durability-related properties. Note that 1 m3 of concrete was 

chosen as the function unit since, as suggested by [58] 1 m3 of concrete is more representative than 1 

kg, and it can be stated that the densities of the three samples are very similar. In this study, it was 

hypothesized that the cement content and the functional performance of the concrete were constant. 
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4.3. System Boundaries 

In our research, the production phase (excluding the treatment and disposal phases) constitutes 

boundaries of the system. The motivation for this choice was our awareness that the production phase 

is the most relevant phase in terms of environmental impacts, as demonstrated by several authors 

[59–61]. This phase includes the processing of raw materials, transportation, and the production of 

concrete. Also, the boundaries of the system include the energy required for the processing and 

transportation of the materials, for the treatment of artificial aggregates (if needed), and also for 

mixing. In order to properly compare the impacts that result from the different mixtures, the same 

distances were hypothesized, i.e., (1) 70 km between the concrete mixing plant and the concrete 

production plant and (2) 20 km from the concrete production plant to the retrieval point for the 

artificial aggregate. Figure 2 shows the boundaries of the system. 

 

Figure 2. System boundaries. 

4.4. Inventory Analysis 

At this stage of LCA, we considered all of the inputs and outputs of the life cycle phases. Primary 

data were collected from the Italian Technical Economic Association of Concrete (ATECAP) and 

during visits to the production and recycle plants. Cement data were obtained from [49]. Ecoinvent 

v.3 or ELCD (European Life Cycle Databases) were used to complete any missing data. In addition, 

the literature review was used to integrate the inventory analysis [62]. The LCI data that were 

considered for each process are shown in Figure 3.  

 

Figure 3. Mixed concrete production process. 
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Table 2 shows the costs of electricity, fuel, and water associated with the raw material and the 

natural aggregates. 

Table 2. Inventory data related to the extraction of natural raw material and to the production of NA. 

LCI Unit Raw Material Extraction Natural Aggregates Production 

Electric energy consumption [kWh/t] - 1.85 

Diesel consumption [l/t] 0.40 0.50 

Water consumption [l/t] - 0.45 

4.5. Impact Assessment 

The impact assessment helped quantify the “magnitude” of the potential impacts through four 

steps. The first step was called “classification,” the aim of which was to define the impact categories 

for each of the inventory items. The second step was the so-called “characterization step,” that aimed 

to classify each impact into its impact category. The second step was followed by the “normalization 

step,” which sought to define local or global environmental impacts. The last step was “weighting.” 

Its aim was to classify the impact categories. We used Eco-indicator 99 in SimaPro, which is one of 

the most extensively used impact assessment methods in LCA. It is an end-point approach (or 

damage approach) that considers 11 impact categories in three damage categories, i.e., (1) human 

health (expressed as Disability Adjusted Life Years (DALY); (2) depletion of resourses; and (3) quality 

of the ecosystem [63].  

Note that most of the data in this study were assumed to occur within the European context, but 

some damages were assumed to occur on global scale, such as the depletion of the ozone layer; 

greenhouse effects; and damages from some radioactive substances. Different damages from some 

persistent carcinogenic substances also were modelled in the regions adjoining Europe. 

The damages estimates were comparable, and they were summed in a single score, i.e., the Eco-

indicator expressed in Points (Pt) or MilliPoints (MPt), which represents the overall performance of 

the system that was investigated in environmental energy terms. In other words, the point (pt) 

corresponds to 1/1000 of a year lost in the life of a healthy European citizen. 

4.6. Interpretation, Results, and Discussion 

All mixtures were studied in terms of environmental impact using SimaPro 8 software (Pré 

Consultants, Amersfoot, The Netherlands). Results for the environmental damage (resources, 

ecosystem quality, and human health) showed that the main environmental damage was related to 

human health. The results also showed that the transport of ordinary concrete had the greatest 

impact. 

Figure 4 presents a comparison of the impacts of four mixtures of ordinary concrete. The analysis 

highlighted the fact that ordinary concrete had the greatest impact in all categories. Concrete with a 

mixture of incinerator ash was slightly better than concrete with aggregate based on murble sludge.  
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Figure 4. Characterization.  

In addition, note that all of the mixtures that were considered had overall less values in all impact 

categories and less consumption of resources. 

Table 3 summarizes the quantities of the main substances emitted into the air. The yellow color 

highlights the main critical issues for each mixture. In detail, CO2 emissions are relevant for all 

mixtures but, above all, for ordinary concrete. 

Table 3. Air emissions. 

Substance Unit M1 M2 M3 M4 Ordinay Concrete 

Aluminium (g) 6.152 6.152 3.784 6.52 6.558 

Ammonia (g) 3.672 8.611 4.780 9.114 11.569 

Butane (g) 1.257 1.257 0.996 1.257 1.259 

Carbon dioxide, bio. (kg) 229.826 282.972 181.693 282.972 285.755 

Carbon dioxide, fossil (kg) 24.385 24.385 16.703 24.385 24.218 

Carbon monoxide, f. (g) 214.679 214.679 146.162 214.679 239.090 

Ethane (g) 0.740 0.740 0.259 0.740 1.399 

Methane, biogenic (g) 2.374 2.374 1.472 2.374 2.830 

Nitrogen oxides (g) 447.672 447.672 288.400 447.672 479.243 

Nitrogen oxides (g) 56.867 56.867 38.4286 56.867 63.351 

Propane (g) 1.241 1.241 0.985 1.241 1.245 

Sulfur dioxide (g) 109.074 109.074 72.756 109.074 125.078 

Table 4 shows land emissions. The main critical issue is related to release of oils into the soil. 

Table 4. Land emissions. 

Substance Unit M1 M2 M3 M4 Ordinay Concrete 

Calcium (g) 2.077 2.072 1.645 2.077 2.109 

Carbon (g) 1.611 1.611 1.278 1.611 1.631 

Chloride (g) 1.813 1.784 1.436 1.813 1.841 

Iron (mg) 82.954 82.954 54.796 82.954 105.607 

Oils, unsp. (g) 65.787 65.787 54.752 65.787 61.551 

Orbencarb (µg) 67.029 67.029 50.522 67.029 77.851 

Sodium (g) 1.036 1.036 0.820 1.036 1.052 

Zinc (mg) 3.299 3.299 2.243 3.299 3.806 

Zinc (mg) 8.442 8.422 6.710 8.442 8.517 

5. Conclusions 

In this study, different kinds of concrete mixtures containing waste were evaluated from an 

environmental perspective by applying the LCA methodology. The aim of this research was to 

contribute to the study of the most sustainable concrete compositions, with natural and recycled 

aggregates, through a life cycle analysis. The main results of the research showed that the analyzed 

recycled aggregates are preferable in comparision with traditional concrete. In particular, the recycled 

aggregate that had the least impact was blast furnace waste.  

In addition, this research confirmed that (1) the production of OPC (Ordinary Portland Concrete) 

in Campania, Italy is associated with high CO2 emissions; (2) the use of recycled aggregates ensured 

the reduction of GW (Global Warming); (3) the use of recycled aggregates can improve the 

environmental management problem. 

In conclusion, the results of the study indicated that the use of recycled aggregates is a potential 

field of research that could ensure tangible environmental benefits in the future in the context of the 

Campania Region and in a national context. In addition, the study points out some critical issues. In 
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particular, the LCA analysis did not consider the technical and economical aspects. Thus, starting 

from the current scenario, three main issues will be investigated in future research. The first issue 

concerns the development of a life cycle costing analysis (LCC) to determine the most cost-effective 

option among the four alternatives. The second issue is concerned with the analysis of the 

environmental and economic implications as a function of different distances, which affect the impacts 

due to transport. Based on these sensitivity analyses, it will be possible to choose the available resources 

that generate the lowest environmental and adverse economic impacts. The third line of research will 

be concerned with the investigation of the use of innovative composite materials [64–67].  

A last recommendation is for LCA analysists to perform a similar study. Since inventory analysis 

could vary from one area to another, it is desirable to improve the precision of the LCAdata.  
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