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Abstract: The construction of a new facility in an urban area, such as a downtown area, involves
considerable earthwork excavation most of the time. Measuring the actual productivity of earthwork
operations that involve heavy machinery can be a complex task for project managers. The complexity
contributes to the impact of the many factors involved, the required accuracy, and the uncertainties
associated with such operations. Traditionally, measuring actual productivity is carried out manually
by measuring the actual quantities of the excavated earth. Measuring actual productivity manually is
time-consuming and not necessarily accurate. The paper presents a case study project in Montreal
to investigate the application of a developed methodology that is affordable for small to medium
size contractors. It integrates the GPS and fuzzy set theory as an alternate effective methodology for
measuring actual onsite productivity during the construction stage in an urban area. The developed
methodology combines GPS data that are collected in near real time, fuzzy set theory (FST),
and Google Earth. FST is used to define the variability and uncertainty which exists in the duration
of the main activities of the earthwork (loading, traveling, dumping, and returning). Google Earth
is used for graphical presentation and to store the collected GPS data of the moving hauling units.
The productivity estimated by the developed methodology was compared with that provided by
a simulation-based model, in which the collected GPS data are used to define the duration of
earthmoving moving operations, and with that measured manually by contractor. The developed
methodology proves that the utilization of GPS data and FST can yield a more accurate estimation of
onsite actual productivity compared to that provided by simulation-based approaches, but in much a
simpler way regarding the computation effort and time.
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1. Introduction and Literature

Productivity in the construction industry can be defined as a measure of the output of machines
or human labor in a certain period of time (i.e., M3/h). Measuring the actual productivity of earthwork
is a major concern to project managers [1], especially if the project is located in an urban area that faces
many constraints and obstacles. Traditionally, measuring the actual productivity of excavation work
depends on the use of historical information of similar completed projects and experts’ opinions [2].
The use of historical information cannot always be suitable, since each project is unique and historical
information gives rise to uncertainty [3]. Literature shows that the progress made in information
technology has led to the development of many new models and systems for estimating onsite actual
productivity, such as: (1) On board instrumentation systems (OBIS), (2) ANN (e.g., [4], (3) RFID
(e.g., [5,6]), and (4) GPS (e.g., [7,8]).
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At the planning stage, the literature reveals that many ANN-based models have been developed
to predict the productivity of excavators; for example, Tam et al. [4] utilized ANN to estimate the
production rate of excavators considering four factors an effecting excavator’s productivity, which
are defined as inputs variables, while the excavator’s actual cycling time was defined as the model
output. Even though the model can provide a reasonably accurate estimation, it is not practical, since
estimating the productivity of excavators is simple compared to the estimation of productivity of a
fleet consisting of more than one type of heavy equipment, such as excavators and trucks. In addition,
the literature reveals that ANN-based models for estimating onsite actual production fail to provide
accurate results [9].

For the last 30 years, Caterpillar has developed many systems to monitor the mechanical
conditions of its equipment to track the production rate, such as the vital information management
system (VIMS) and product link. Such systems are costly and small to medium size contractors cannot
afford them. To develop more practical tools, many models have been reported in the literature using
different techniques (e.g., [7,10]). Simulation is one of the techniques utilized to develop models to
estimate the actual productivity of earthmoving operations (e.g., [10]). The model integrates GPS
data with discrete event simulation (DES) to stochastically forecast the productivity of earthmoving
operations. Here, the collected GPS data are used to define the activity duration of the simulation
model. The main setbacks of using the simulation as indicated in the literature (e.g., [11–13]) are:
(1) simulation is costly; (2) it is time-consuming; (3) it needs professionals and multi run to produce
meaningful outputs (productivity estimation); and (4) simulation is too sensitive to assumptions to
generate probability distribution functions.

Compared to OBIS, which is mainly developed to collect data to monitor the mechanical status of
the tracked machine, the use of GPS as a data collection tool has the following advantages [14]: (1) Only
GPS can distinguish the idle time of machine activity and (2) the GPS can collect large amounts of data
to determine activity durations without the need to install costly sensors; (3) GPS data can reflect the
actual conditions of the operations; and (4) the loading time cannot be recognized using OBIS.

In recent years, in addition to GPS, RFID has also been utilized to develop models to estimate
productivity for earthmoving operations [15]. In RFID-based models for estimating onsite productivity,
a tag is attached to tracked trucks, while RFID readers are fixed on gates at the loading and dumping
areas. The main setback of the use of RFID is that the system cannot recognize trucks’ idle time and
cannot determine the precise loading and dumping times. The literature reveals that RFID is utilized
to develop productivity estimation models of a fleet of scraper-pushers in real time [15]. RFID tags
are attached to scrapers, while RFID readers were connected to pushers. The captured information is
utilized to detect the loading, travelling, dumping, and returning time that generates the scraper cycle
time and, finally, is used to estimate productivity of the scrapers-pusher fleet. The main limitations
of such an application are that the calculated cycle times are approximate and the use of RFID tags
is expensive; RFID tags also have a limited battery lifetime and their use may lead to undesirable
interference due to their relatively wide range, and the possibility of obstruction from objects onsite [5].

1.1. Accuracy of GPS as a Data Collection Tool

Many research and field studies have been published concerning the accuracy of the applications
of GPS for the tracking and controlling of construction projects. The results of an experimental
study on a carrier phase real time inertial navigation system (INS) aided by differential GPS (DGPS)
revealed that carrier phase DGPS aided INS methods provided high, authentic, and reliable navigation
solutions [16]. The study showed that the accuracy of GPS is within centimeters and its applications in
outdoor operations proved it to be a suitable technology [17]. The literature indicated that the use of a
commercial GPS receiver proves to provide positioning data with accuracy in a limited area in open
ground [18]. The results of a field study demonstrated that the GPS positioning error was measured
to be approximately 0.234 m in 12 measures and there was only one measure with an error of 5.7 m,
and the lowest distance error was approximately 0.9 m [19]. In another field study that aimed to
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measure the accuracy of GPS [1,9], it was found that GPS provides accuracy with centimeters, proving
to be a fit for outdoor location sensing.

1.2. Problem Statment

The main setbacks of the previous described models, collectively or individually, are that (1) they
require costly devices to be installed in each hauling unit on the fleet as in the case of OBIS; (2) the
simulation based models require the collection of a large volume of data and it requires multi run to
produce meaningful outputs (productivity estimation); (3) the simulation is costly, time-consuming,
and it needs professionals that may not available to small to medium size contractors; (4) they do not
provide accurate productivity estimations; (5) they do not account for uncertainties associated with the
operations duration, and (6) the models cannot be adopted by small to medium size contractors due
to its high cost. This paper introduces a new methodology to estimate productivity of earthmoving
operations that accounts for uncertainties in operations duration. The methodology can be adopted by
small contractors with a reasonable cost. The introduced methodology requires a limited number of
GPS devices to be attached to only a hauling unit in the fleet.

2. Developed Methodology

As presented in Figure 1, the proposed methodology incorporates five main components. They are
GPS receivers, developed Graphical User Interface, Google Earth, developed algorithm of extracting
activities durations’, and Fuzzy set computational algorithm for estimating the actual productivity of
earthwork. The GPS receivers are used to collect data of the monitored equipment in real times. GUI is
designed and developed to facilitate data entry for both graphical and non-graphical data. The GUI
also automates data acquisition and analyzing the collected GPS data to extract the durations of
loading, hauling, dumping, and returning activities. Google earth is used for a graphical presentation
of the tracked equipment and for identifying loading, hauling, dumping, and returning activities.
The algorithm of determining activities duration is developed to calculate the activities durations
from the collected GPS data. The fuzzy set algorithm is used to enable project managers to define the
uncertainties associated with activities durations and to estimate a fuzzy actual onsite productivity.
It should be noted that the proposed methodology could also be used to select the most productive
fleet among a set of alternative fleets. The following sections describe in detail the main process of the
proposed methodology.

2.1. Data Collection

The GPS is chosen for collecting data from a construction site for the purpose of measuring
onsite actual productivity because [14]: (1) GPS gives plenty of information to track the operations
of earthmoving as shown in Table 1; (2) Data collected by GPS in the form of time, speed, direction
and latitude, longitude, altitude coordinates are correct and accurate; (3) the collected position data
for different segments of travelled roads can be used to generate a road profile; and (4) the idle, haul,
and maneuver times of the tracked truck can be easily determined from the collected GPS data.

For easiness and efficiency, only a receiver unit of GPS is attached to a truck to measure the
productivity of entire fleet since all the involved trucks can be represented through cycle time of that
truck. The GPS unit used in this study cost 370 Canadian dollars and the cost of the used storage server
for the data was about 50 Canadian dollars/ month. The GPS unit is attached inside the truck cabinet.

The GPS data was collected daily in short time interval at various times of the day to demonstrate
actual conditions of construction site, and implicitly accounts for traffic and weather conditions.
A sample of the collected GPS data is shown in Table 1. The collected GPS data were mapped in
near real time via internet connection into Google Earth for graphical presentation and for extracting
activity durations of the entire operation using the developed algorithm as presented in the following
section. Figure 2 depicts the travelled road to the construction site of the example project as shown in
Google Earth.
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Figure 1. Flow chart of the developed methodology.

Table 1. Samples of collected GPS data.

Time Information Location Speed
(KM/h) Heading Latitude Longitude

15:27:11 Stopped for
23 h 16 m

7545 Henri-Bourassa
BOUL E, Montréal,

QC, CA
- - 45.62079 −73.58962

14:43:38 Stopped for
4 m

3496 West Broadway
AV, Montréal, QC, CA - - 45.45708 −73.64221

14:48:09 Stopped for
9 m

3905 West Broadway
AV, Montréal, QC, CA - - 45.45717 −73.64181

14:57:17 Moving 12 SW 45.4553 −73.6413

14:59:17 Moving 31 SE 45.45396 −73.63862

15:01:17 Moving 20 NE 45.45433 −73.63397

15:05:17 Moving 2 NE 45.45573 −73.62775
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Figure 2. View of traveled road of case project in Google Earth.

2.2. Extraction of Activities duration from GPS Data

After collecting and uploading of the collected GPS data of the tracked truck into google map,
the developed methodology then fires a developed standalone graphical user interface (GUI) for
extracting activities duration using the developed algorithm as presented in Figure 3. The extracting
activities include (loading, travelling, dumping, and returning), which are then utilized to determine
the truck cycle times. The following are the main five steps that summarize the process of extraction
activities duration from the collected GPS Data:

1. Uploading the collected GPS data into Google Earth.
2. Locating and defining the loading and dumping sites on Google map using a developed drawing

tool to facilitate the identification of departure and arrival times required to compute the truck
cycle time. Here, the user on Google Earth needs to define locations of loading and dumping
sites so that these locations can be recognized when the truck is in the loading or dumping sites.
The coordinates of the identified loading and dumping area are saved in a central database in
form of dbf format. The user can define several loadings and dumping sites dynamically as the
work progress. Different shapes can be used to display loading and dumping sites to fit certain
job site.

3. Having defined the loading and dumping sites, the developed algorithm of extracting duration
then extracts the coordination (XYZ) of positions on the traveled road from GPS data.

4. Computing the distance between mid-points (center) of identified dumping and loading areas
and the position of the point under consideration using Haversine formula [20]. Recognizing the
location of the tracked truck based on the calculated distance in step 2. One of two conclusions
can be reached; (1) If calculated distance is longer than the radius of dumping and loading sites,
the truck is identified as in traveling or returning; (2) If the calculated distance is smaller than the
specific radius of loading and dumping sites, the truck in this case would be within loading or
dumping area. Dumping time can be determined as time illustrated when the truck is within the
dumping site, and likewise loading time is computed as a time taken for the truck to stay in the
loading area. Hauling and returning times were differentiated by the direction of the moving
unit. If the direction was from the loading to the dumping area, time computed would be for
hauling. Otherwise it would be for the returning time.

5. Repeating step 4 till all locations on the travelled roads are identified. Table 2 depicts a sample of
the extracted duration of cycle times of the case study project.

6. Clustering the extracted cycle times into four groups. Group four is selected to present the loading,
dumping, hauling, and returning time of the tracked truck, which are the main components of
the truck cycle time.
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7. Performing statistical analysis on the extracted durations includes calculating minimum,
maximum, mean, and median of loading, dumping, hauling, and returning time of the tracked
truck to form fuzzy numbers of the cycle time.

Figure 3. Extracting activities duration from collected GPS data.

Table 2. Extracted cycle times.

Cycle No Total Cycle
Time (min)

Loading Time
(T1) min

Travel Time
(T2) min

Dumping Time
(T3) min

Return Time
(T4) min

1 33.75 7.75 10.00 8.00 8.00
2 31.00 3.00 10.00 8.00 10.00
3 29.08 3.08 9.00 5.00 12.00
4 33.54 4.13 10.78 5.00 13.63
5 43.00 2.00 7.00 5.00 29.00
6 28.00 2.13 9.87 7.00 9.00
7 25.00 2.75 8.25 6.00 8.00
8 27.00 4.00 9.00 5.00 9.00
9 67.00 2.15 46.85 9.00 9.00

10 28.00 3.10 8.90 5.00 11.00
11 27.05 3.05 8.00 6.00 10.00
12 28.15 3.00 8.00 6.00 11.15
13 28.00 4.00 10.00 5.00 9.00
n - - - - -
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2.3. Modelling Uncertainty and Estimate Productivity

To model uncertainties associated with the extracted cycle times: loading (T1), traveling (T2),
dumping (T3), and returning (T4) activities, the following steps are performed:

1. Defining the functions of membership to the four fuzzy numbers (a, b, c, and d) based on
computed mean, median, standard deviation, minimum, and maximum values. Mean and
median were used to define the lower and upper modes (i.e., b and c) with full membership
(i.e., f(x) = 1.0) and minimum and maximum were used to define lower and upper bounds
(i.e., a and d) with no membership (i.e., f(x) = 0.0). The contractor can set different membership
functions of the four activity durations, based on his/her judgment. In the example project
provided in this paper trapezoidal and triangular shapes were used, with full membership at
the median.

2. Calculating the fuzzy cycle time of the monitored truck by adding the bases of the cycle time’s
fuzzy numbers. Figure 4 illustrates the calculated fuzzy activity durations of the case project
presented in this paper.

3. Defuzzifing the calculated fuzzy cycle time by calculating a crisp expected value of the cycle time
through center of area (COA) technique [12].

4. Calculating the fleet fuzzy onsite productivity based on the hauling unit’s fuzzy cycle time using
Equation (1).

Pa =
m

∑
m=1

nt ∗ 60
FCT

∗Tc ∗ FF (1)

where m = number of trucks model in the fleet being considered; nt is number of trucks of the same
model in the fleet under consideration; Pa = estimated fleet productivity; FCT = the calculated
fuzzy cycle time; Tc = the capacity of the truck of the same model taking into consideration the
soil type; FF = adjustment factor that accounts for the fill factor which is relied upon soil type.

5. Analyzing the calculated fuzzy cycle time and the estimated fleet fuzzy productivity, using a set
of indices as described in the case project.

Figure 4. Fuzzy activity durations.
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3. Case Project

The project is a new building constructed recently at Concordia University’s Loyola campus
located west of the city of Montreal. The project involves the excavation of a basement that requires
the use of excavator and many trucks in an urban area. The project was also analyzed earlier for
estimating actual productivity using deterministic and probabilistic models to compare the outcomes
of the methodology and the results generated by deterministic and probabilistic based models [7].

The fleet used in this project consists of an excavator and number of articulated trucks. Excavation
soil was mainly sandy-clay. The foundation plans indicate that the average excavation depth is 7.70 m
and the excavation area is approximately 1800 m2. To demonstrate the accuracy of the developed
methodology, the estimated productivity was compared to the actual productivity achieved by the
contractor onsite and it was also compared to those obtained by using deterministic and probabilistic
based models [7].

Data of 104 truck cycles’ times in total were obtained from the collected GPS data. Table 2 depicts
a sample of the extracted cycle times from the collected GPS data. The table shows a variation in the
extracted cycle times. The variation occurs due to: (1) the project was constructed in an urban area
in which the travel road was vulnerable to the blockage of traffic; (2) traffic may slow down due to
weather conditions; (3) the project contains two dumping areas that were situated at various distances
from the construction site. Table 3 depicts the calculated fuzzy numbers of activities durations.

Table 3. Fuzzy numbers of activities durations.

Activity
Trapezoidal Representation (Minutes)

a b c d

Loading 1.50 2.75 4.00 13.00
Hauling 4.00 9.00 10.00 21.00

Dumping 2.50 5.00 6.00 12.00
Returning 6.00 9.00 12.00 40.00

3.1. Results and Discussions

To illustrate the features of the developed methodology in measuring actual onsite productivity
of earthmoving operations, the productivity was first estimated as a crisp number and then as a
fuzzy number and finally compared to the actual productivity the contractor achieved. The results
provided by the developed tool is also compared to that obtained by deterministic and probabilistic
models [15,19], respectively.

Trapezoidal and triangular membership functions were used to define the uncertainties associated
with activity durations; respectively. In first case, activity durations (loading, hailing, dumping,
and returning) were defined by trapezoidal fuzzy numbers. In the second case, activity durations were
defined by triangular fuzzy numbers with their full membership at the median.

The number of trucks involved in the operations was varied and therefore the associated
productivity was estimated to enable a comparison over a wide range of trucks used in
Montaser et al. [7]. In addition, ambiguity, possibility, fuzziness measures, agreement index,
and expected value are all used to assist in defining the uncertainty associated with the estimated
productivity. Comparison of the outputs of the developed methodology to the actual productivity the
contractor achieved and to those obtained by simulation-based model [15,19] is shown in Figure 5.
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Figure 5. Comparing the developed methodology with deterministic, and probabilistic models.

As presented in Figure 5, the estimated onsite productivity using the proposed methodology
(trapezoidal and triangular numbers) is very close (identical) to what the contractor measured on
site (226.63 Bcm/hr vs 230.5 Bcm/hr). In addition, it is closer to the average of the lower and upper
deterministic estimates than that provided by the simulation based model as presented in Table 4.
The productivity estimated by the developed methodology falls between the productivity estimated
using simulation and the upper limit of the productivity estimated using the deterministic model.
Table 4 depicts a comparison of the output of different methods for different fleet sizes.

Table 4. Comparison of the Results (productivity estimation (Bcm/hr) for Different Fleet Size.

No. of
Trucks

Deterministic Model Simulation
Based Model Developed Method

Lower Limit
Production

Bcm/hr

Upper Limit
Production

Bcm/hr

Average
Bcm/hr µ

Trapezoidal
Fuzzy

Numbers
Bcm/hr

Triangular
Fuzzy

Number
Bcm/hr

Developed vs.
Probabilistic (%)

2 38.89 67.23 53.06 53.27 42.18 43.4 −26.29
3 58.34 100.85 79.59 78.37 63.26 65.10 −23.89
4 77.79 134.47 106.13 102.97 84.35 86.80 −22.07
5 97.24 168.09 132.66 125.74 105.44 108.50 −19.25
6 116.69 201.71 159.2 145.14 126.53 130.20 −14.71
7 136.14 235.33 185.73 162.14 147.62 151.90 −9.84
8 146.77 268.95 207.86 173.60 168.70 173.60 −2.90
9 146.77 269.08 207.86 179.43 189.79 195.30 5.46

10 146.77 269.08 207.86 181.81 210.88 217.00 13.79
11 146.77 269.08 207.86 182.19 226.63 226.63 19.61
12 146.77 269.08 207.86 182.29 226.63 226.63 19.56
13 146.77 269.08 207.86 182.29 226.63 226.63 19.56
14 146.77 269.08 207.86 182.29 226.63 226.63 19.56

It is essential to note that using fuzzy numbers to model uncertainties associated with the duration
of loading, traveling, dumping, and returning activities yields close results to those generated using
simulations-based models. This makes the developed methodology a more practical tool. Comparing
the outputs of the developed methodology to that of deterministic and simulation-based models,
the following can be observed:

1. The output of the developed methodology is very close to the actual productivity the contractor
achieved and measured.
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2. The output of the developed methodology is in an agreement with the output of the
simulation-based model for identifying the most productive fleet formation (11 trucks) required
to serve an excavator.

3. The developed methodology requires only a one step calculation to estimate productivity
compared to that of simulation-based models, which need multi runs (e.g., 1000 iteration) to
generate significant productivity estimates.

To provide interpretations to the obtained results, a set of measures and indices were used [21].
They are possibility measure, fuzziness (F), agreement Index and ambiguity (AG). Possibility measure
is used to calculate feasibility of estimation of certain fleet productivity and/or cycle time. As an
example, possibility measures that the truck cycle time is 22 min, as used in the deterministic model,
and equals 0.8. The fuzzy number that has the possibility measurement of 1.0 is considered to be
most plausible and feasible variable. Therefore, the most plausible and feasible truck cycle time is
somewhere between 25–35 min.

The assessment of feasibility of productivity to be at a set crisp value or within a specific range
is also carried out through the possibility measure. As shown in Figure 6, the calculated fuzzy
productivity of the fleet that consists of one excavator and 11 trucks (most productive fleet formation)
is (a = 86.00, b = 231.24, c = 287.36, d = 528.50) Bcm/hr. The possibility of the following two events are
also examined:

• The fleet productivity would be between 400 Bcm/hr and 500 Bcm/hr.
• Fleet productivity is exactly 300 Bcm/hr.

As it can be seen in Figure 6, the fuzzy productivity of the first event is expressed by four numbers
(400, 400, 500, 500) and the fuzzy productivity in the second event is expressed as (300, 300, 300,
300). In the first case, the intersections are: {400|0.53, 400|0.53, 500|0.12, 500|0.12}, so in this case
the probability that the productivity lies between 400 Bcm/hr and 500 Bcm/hr is 0.53. With respect
to the second case which exactly 300 Bcm/hr; the assessment was made between two fuzzy events.
The elements that fall into the intersection range and their degrees of membership include {300|0.95,
300|0.95, 300|0.95, 300|0.95} therefore the possibility of having productivity about 300 Bcm/hr is 0.95
(see Figure 6). According to the possibility measurement, it is clear that the most possible productivity
rate of the fleet that consists of 11 trucks and one excavator, which is about 300 Bcm/hr. for the
elements along with their related degree of membership.
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Figure 6. Possibility measure of productivity event.
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Possibility measure gets its value through the highest membership function resulting from the
area of intersection of the two events that are involved in the method. As in the case described
above, calculating the possibility of the fleet productivity falls between 400 Bcm/hr and 500 Bcm/hr.
In applying the possibility measure, the area of intersection is not accounted for. Considering that the
possibility of the fleet productivity is between 400 and 500 Bcm/hr and that the fleet productivity is
greater than 400 Bcm/hr, the PM of these two scenarios are almost equivalent (PM = 0.53), although
the intersection area of the second case is greater than the first one.

On the other side, the Agreement Index accounts for the intersection area. For the same example
above, the possibility the fleet productivity falls between 400 and 500 Bcm/hr is 0.53, but 0.95 for the
fleet productivity being greater than 300 Bcm/hr. The agreement index, on the other hand is 0.13
for the first case and 0.43 for the second. In addition, it can be seen that the possibility of the fleet
productivity being greater than 250 Bcy/hr is higher than these two cases; with possibility measures of
1.0 and an agreement index of 0.63.

Tables 4–6 show a comparison between the output of the developed methodology and each of the
deterministic and probabilistic based models used in estimating onsite productivity. The comparison
reveals that developed methodology yields not only closer results to the productivity actually achieved
onsite, but it also suggests certain effective tools to contractors to assess the possibility of achieving a
certain productivity value; which cannot be determined using any probability-based analysis, such as
simulation as depicted in Table 6. For example, the possibility of the productivity being 300 Bcm/hr is
0.9, whereas using probabilistic analysis this crisp number cannot be evaluated.

Table 5. Comparison of the results.

Method Input Distribution Output
Distribution

Most Productive Fleet (Bcm/hr)

µ σ

Simulation Lognormal - 182.19 -
Deterministic Crisp Crisp 207.927 NA

Developed Method Trapezoidal Trapezoidal (86.00, 231.24, 287.36, 528.55) **
174.56 *** -

** Fuzzy fleet productivity, *** Productivity estimation using defuzzified cycle time (42.39 min).

Table 6. Evaluation of different measures applied to estimated productivity.

Method
Fleet

Productivity
(Bcm/hr)

Probability
(p > 300
Bcm/hr)

Possibility
(p = 300
Bcm/hr)

Is It More
Possible That
(p = 182.19) >
(p = 226.63)?

Expected
Value

Fuzziness
Measure

Ambiguity
Measure FNQI

Simulation 182.19 - NA NA - NA NA NA
Deterministic 146.77–269.00 NA NA NA 207.88 NA NA NA

Developed Method (86.00, 231.24,
287.36, 528.55) 0.54 e 0.95 f No f 287.48 193.22 92.46 142.84

e agreement index f possibility measure, FNQI: Fuzzy number quality index, and it is calculated using the weighted
average of both = 0.5, p = productivity.

3.2. Features of the Proposed Methodology

The developed methodology has a number of features: (1) it yields results that are close to the
actual productivity achieved by contractors; (2) it is simpler than simulation based modes; (3) It does
not require specialized skills; (4) it allows the users to conduct a risk analysis assessment in a much
easier way; (5) it allows the users to perform alternative selections of different outputs using measure
indices; and (6) it is an inexpensive tool for comparing the commercial systems described earlier, (7) the
developed methodology can be used by small to average size contractors who cannot afford expensive
commercial tracking systems.
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3.3. Limitations of the Study and Recommendation of Future Work

This study is limited to fleet configuration and consists of an excavator at time. It also assumes
that the tracked fleet consists of trucks of the same size, which may not always be true. In such
cases, more GPS receivers should be attached to all trucks in the fleet, which makes the proposed
methodology costly. The developed approach is limited to open cut excavation that involves only the
use of fleets consisting of an excavator and trucks.

As for future research, estimating onsite productivity of other fleet configurations, such as those
that consist of dozers and scrapers, may need the combination of GPS and other technologies such
as RFID and other remote sensing technologies. The proposed methodology can be improved if it
integrates with BIM for updating the actual progress on 3D models for the work under consideration.
It also can be integrated with sensor technologies to handle ever excavation of underground earth
work and not only open cut excavation.

4. Conclusions

This paper presents a methodology that applies GPS data and fuzzy numbers for estimating onsite
productivity of excavation work in near real time in an urban area. The developed methodology can
provide the project management team with a user-friendly method to estimate the onsite productivity
of excavation work. The proposed methodology can provide an accurate estimation with less effort
and time and with a cheaper method when compared with sophisticated and expensive commercial
systems. Results obtained through the application of the developed methodology were compared
to actual onsite productivity achieved by a contractor on a construction site and compared to those
provided by deterministic and probabilistic based methods. The results indicate that the application
of fuzzy numbers to model uncertainties associated with activity duration can provide more realistic
results than those modeling uncertainties using simulations.
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