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Abstract: This paper investigates composite reinforcement with regard to its use as longitudinal
reinforcement. The methods used to calculate the shear strength of concrete members reinforced with
fibre-reinforced polymer (FRP) bars are analysed. The main parameters having a bearing on the shear
strength of beams reinforced with composite bars are defined. A comparative analysis of the shear
strength calculating algorithms provided in the available design recommendations concerning FRP
reinforcement and formulas derived by others researchers is carried out. A synthesis of the research
to date on sheared concrete members reinforced longitudinally with FRP bars is made. The results
of the studies relating to shear strength are compared with the theoretical results yielded by the
considered algorithms. A new approach for estimating the shear capacity of support zones reinforced
longitudinally with FRP bars without shear reinforcement was proposed and verified. A satisfactory
level of model fit was obtained—the best among the available proposals. Taking into account the
extended base of destructive testing results, the estimation of the shear strength in accordance with
the proposed model can be used as an accompanying (non-destructive) method for the empirical
determination of shear resistance of longitudinally reinforced FRP bars.
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1. Introduction

Steel-reinforced concrete members exposed to extremely adverse environmental conditions
relatively quickly fail to meet the facility use requirements concerning durability and reliability [1–4].
A structural member’s corrosion resistance (among other things) can be increased by applying
non-metallic glass fibre-reinforced polymer (GFRP), carbon-fibre-reinforced polymer (CFRP), basalt
fibre-reinforced polymer (BFRP) or aramid fibre-reinforced polymer (AFRP) reinforcements to it [1].
Fibre-reinforced polymer (FRP) bars are characterized by good mechanical (high tensile strength) and
physical (density much lower than that of reinforcing steel) properties [1,2,5]. FRP rebars have been
applied to structural members incorporated in structures highly exposed to an aggressive environment
and in facilities whose proper operation is contingent on the electromagnetic neutrality of, among
other things, its structural members [5]. Since FRP rebars are electromagnetically neutral, they are
used in facilities requiring particularly high operating precision (and so no disturbance to equipment
operation) and in infrastructure facilities (no corrosion causing stray currents).

The shear failure of steel-reinforced concrete (steel-RC) beams without shear reinforcement is often
abrupt and has a brittle character. Therefore, the design shear capacity of a structural member should
be sufficient to ensure the transfer of interactions not weaker than the ones corresponding to the design
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flexural capacity. The load capacity loss due to bending is indicated by a large increment in deflections,
whereby the failure is much less sudden. The situation is different in the case of FRP reinforcement,
which is characterized by a linear-elastic behaviour in the whole strength range until failure [6].
Since composite rebars do not exhibit a plastic behavior, they break rapidly without any warning,
which is their drawback. Nevertheless, mainly owing to their corrosion resistance and electromagnetic
neutrality, FRP rebars have found application as reinforcement for members in flexure [1]. In the case
of both bending and shearing, the failure of beams reinforced with composite rebars is much more
rapid than that of steel-RC beams [7]. Therefore, it is important to design flexural members reinforced
with composite rebars with regard to both bending and shearing.

This paper presents composite bar reinforcement design recommendations from the available
codes and formulas derived by other researchers. The available design recommendations concerning
the shear strength of beams without shear reinforcement are verified on the basis of the experimental
studies to date of support zones reinforced with FRP rebars. Moreover, the paper presents a proposal
for a new approach for estimating the shear capacity of support zones reinforced longitudinally with
FRP bars without shear reinforcement.

2. Available Models and Design Recommendations

The very good properties of composite bars provided an incentive to investigate the possibility of
using polymer reinforcement as the primary reinforcement in concrete members [1]. The recommendations
concerning composite reinforcement are modifications of the standards for designing steel-RC
units, which are mostly based on the semiprobabilistic method of limit states. Among the design
recommendations concerning concrete elements reinforced with FRP bars one can distinguish: American
ACI 440.1R-15 [5], Canadian CSA-S806-12 [8], Japanese JSCE 1997 [9] and Italian CNR-DT 203/2006 [10].
The chronology of design recommendations concerning concrete members reinforced with FRP bars is
presented by Bywalski et al. [1] and Drzazga [11]. Recommendations [5,8–10] include information on:
the experimental strength characteristics of FRP rebars, the available rebar diameters, the available
types of reinforcement, the mechanical and physical properties of FRP reinforcement, etc. Moreover,
all the recommendations concerning composite bar reinforcement introduce safety factors (for the
member and/or the material) appropriately higher than the ones specified in the standards for designing
RC members.

As a result of experimental research in the field of beams reinforced longitudinally with composite
bars, many authors gave their own proposals for estimating the shear capacity of such elements. Table 1
presents the algorithms for estimating shear capacity of beams without transverse reinforcement.
The algorithms are valid if no axial force is present. Similarly, as in the standards for designing
steel-RC members, in the available models and design recommendations concerning composite bars,
the shear strength of members without shear reinforcement is determined mainly from empirical
formulas. This is due to the high complexity of the shear transfer mechanisms, the different types of
failure and the internally interdependent forces in the beam. Kosior-Kazberuk [12] indicated that shear
strength (Vc) consists of: the strength resulting from aggregate interlock, the shear strength of the
concrete in the compression zone, the dowel action of the longitudinal reinforcement and residual
tensile strength of concrete across the crack. The stiffness of composite rebars is much lower than
that of steel reinforcement. In comparison with a steel-RC member, after cracking, the distance from
the compressed fibres to the neutral axis in a concrete member longitudinally reinforced with FRP
bars is smaller (the compression region of the cross section is reduced). This is due to the lower axial
stiffness of FRP reinforcement. Since the compression zone extent is smaller, the shear strength of
the concrete in the compression zone is also smaller [5,7]. Moreover, the crack width is larger in the
case of FRP reinforcement. Hence, the component associated with aggregate interlock is smaller [5,7].
The low transverse stiffness of FRP rebars significantly reduces the component stemming from dowel
action [5,7]. As a result, at the same longitudinal reinforcement area, the concrete member reinforced
with FRP bars has a lower shear strength than the corresponding steel-RC member [13,14].
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Table 1. Algorithms for determining the shear resistance of the shear zones longitudinally reinforced
with fibre-reinforced polymer (FRP) bars.

Algorithm Shear Strength of Member without Shear Reinforcement

Tottori et al. [15] Vc = 0.2
(
100ρf fc

Efl
Es

)1/3( d
1000

)−1/4
(
0.75 + 1.4

a
d

)
bwd (1)

JSCE-97 [9]

Vc = βdβpβn fvcdbwd

βd = 4
√

1
d ≤ 1.5; d in (m); βp = 3

√
100ρf

Efl
Es
≤ 1.5;

βn = 1.0 when there is no axial force; fvcd = 0.2 3
√

fc ≤ 0.72 MPa

(2)

Michaluk et al. [16] Vc =
Efl
Es

(
1
6

√
fcbwd

)
(3)

Deitz et al. [17] Vc = 3 Efl
Es

(
1
6

√
fcbwd

)
(4)

El-Sayed et al. [18]

Vc =
(

TheNetherlandsρfEfl
90β1 fc

)1/3
( √

fcbwd
6

)
≤

√
fcbwd
6

β1 =


0.85 for fc ≤ 28 Mpa

0.85− 0.05 fc−28
7 for fc = 28÷ 56 Mpa

0.65 for fc ≥ 56 Mpa

(5)

Wegian et al. [19] Vc = 2
(

fc
TheNetherlandsρfEfl

Es

d
a

)1/3
bwd (6)

CNR DT 203/2006 [10]

Vc = 1.3
(

Efl
Es

) 1
2 τRdkd(1.2 + 40ρf)bwd ≤ VRd,max = 0.5υ1 fcbw·0.9d

τRd = 0.25 fct; kd = 1.6− d[m] ≥ 1.0; 1.3
(

Efl
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)1/2
≤ 1.0
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{
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0.9− fc
200 ≥ 0.5 for fc > 60 Mpa

(7)

Nehdi et al. [20] Vc = 2.1
(
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a

Efl
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)0.3
bwd· 2.5d

a
2.5d

a ≥ 1.0
(8)

Hoult et al. [21]
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√
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M
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ag −
ag

10 ( fc − 60) for 60 ≤ fc < 70 Mpa
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(9)
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3
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{
1.0 for M
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Vd < 2.5
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√
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Kara [24] Vc = 0.997bwd
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Kurth [25]
Vc = β 1

313κ(100ρfEfl fc)
1/3bwd

β = 3 d
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√
200
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Jang et al. [26]
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1
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√
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− 0.095 a

d + 32.101ρf
(15)



Buildings 2020, 10, 86 4 of 13

Table 1. Cont.

Algorithm Shear Strength of Member without Shear Reinforcement

Lignola et al. [27]

Vc = 1.65
(

Efl
Es

)0.6
CRd,ck(100ρf fc)

1/3bwd

k = 1 +
√

200
d ≤ 2.0; d in (mm);

CRd,c =

{
0.18 for normal concrete

0.12 for lightweight concrete

(16)

ACI 440.1R-15 [5]
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2
5 k

√
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√
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2
− TheNetherlandsρfnf; nf =

Efl
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(17)

Valivonis et al. [28]
Vc =

2ϕf fctbwd2

a ≥ 0.45ϕf fctbwd

TheNetherlandsϕf = 0.4
(

Efl
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)TheNetherlandsρf
; a ≤ 3.33d

(18)

Thomas et al. [29]

Vc = k1k2τcbwd
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0.85
√

fc
(√

1+5β−1
)

6β ; β = fc
45.55pt

;

k1 =

{
2.2 d

a + 0.12 for a
d ≤ 2.5

1.0 for a
d > 2.5

;

k2 =

{ 750
450+d for d > 300 mm
1.0 for d ≤ 300 mm

; pt = TheNetherlandsρf
Efl
Es

(19)

Hamid et al. [30] Vc = fcbwd
[
0.00203(TheNetherlandsρfEfl fc)

1/3 + 0.153 d
a

]
(20)

where: TheNetherlandsρf—longitudinal FRP reinforcement ratio of beam; f c—compressive strength of concrete
(MPa); f ct—tensile strength of concrete (MPa); Efl—elastic modulus of FRP rebars (MPa); Es—elastic modulus of
steel rebars (MPa); Ec—elasticity modulus of concrete (MPa); d—effective depth of cross section (mm); a—length
of the shear zone—distance of concentrated force from the support (mm); a/—shear slenderness; bw—web width
(mm); λ—modification factor related to density of concrete; V—shear force (N); M—bending moment (Nmm);
ag—maximum size of coarse aggregate [mm]; h—height of cross section (mm); pt—equivalent longitudinal FRP
reinforcement ratio of beam regarding to steel.

3. Experimental Database

The dimensioning algorithms included in design recommendations should assure a specific level of
reliability by describing the real behaviour of the considered members. In the present study, algorithms
for shear member dimensioning, as applied to beams longitudinally reinforced with FRP bars without
shear reinforcement were verified. As part of the evaluation of the algorithms for beams longitudinally
reinforced with FRP bars, but without shear reinforcement, 310 support zones described in 53 research
papers (and briefly presented by Drzazga in [11]) were investigated. In Table 2, the characteristics of
shear design parameters for beams used in the database that have been the subject of previous research
in the field of shearing of concrete beams longitudinally reinforced with FRP bars are presented.

Table 2. Shear design parameters for beams used in the database.

Number of Support Zones 310

Properties Min Max Average COV 1 (%)

bw (mm) 89 1000 251 68
h (mm) 100 1000 318 51
d (mm) 73 937 270 54
a (mm) 200 3055 907 53

a/d (–) 0.8 12.5 3.7 43
f c (MPa) 20 93 44 39

TheNetherlandsρf (%) 0.12 11.57 1.35 134
Efl (MPa) 29,400 192,000 73,408 59

Longitudinal reinforcement material (–) AFRP, BFRP, CFRP, GFRP
Vtest (N) 9000 291,300 62,490 85

1 Coefficient of variation.
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4. Verification of the Available Models and Design Recommendations

For each of the support zones, theoretical shear strength was calculated in accordance with the
procedures presented in Table 1 and was compared with the experimental ultimate shear strength.
Theoretical strength Vn was calculated without reduction factors taken into account. One should note
that the values of strength Vtest were obtained for the short-term loading of the beams. This way of
loading precludes any study of the long-term processes taking place in concrete and in FRP rebars and
of the effect of an aggressive environment.

The comparative analysis included the model fit indicators in the form of the average of the ratio of
the experimental and theoretical shear force, Vtest/Vn, parameter X (inverse of regression curve slope),
coefficient of variation (COV), mean absolute percentage error (MAPE) and the percentage of support
zones with overestimated strength. The results of the comparative analyses of procedures included
in the design recommendations ACI 440.1R-15 [5], Canadian CSA-S806-12 [8], Japanese JSCE-97 [9]
and Italian CNR-DT 203/2006 [10] are presented in Table 3. The results of the comparative analyses of
the algorithms proposed by Tottori et al. [15], Michaluk et al. [16], Deitz et al. [17], El-Sayed et al. [18],
Wegian et al. [19], Nehdi et al. [20], Hoult et al. [21], Razaqpur et al. [22], Alam [23], Kara [24], Kurth [25],
Jang et al. [26], Lignola et al. [27], Valivonis et al. [28], Thomas et al. [29] and Hamid et al. [30] are
presented in Table 4.

Table 3. Comparison of experimental (Vtest) and theoretical (Vn) values of the concrete shear strength
for available design recommendations. Results according to Equations (2), (7), (13) and (17).

Vtest
Vn

ACI 440.1R-15 [5] CSA S806-12 [8]

Arithmetic mean 2.20 1.18
Parameter X (inverse of regression curve slope) 2.20 1.47

Coefficient of variation (COV) (%) 63.38 43.18
Mean absolute percentage error (MAPE) (%) 45.88 20.61

Percentage of beams with overestimated
strength (%) 0.97 39.03

Theoretical concrete shear strength versus
experimental concrete shear strength
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Table 4. Comparison of experimental (Vtest) and theoretical (Vn) values of the concrete shear strength
for algorithms proposed by other authors. Results according to Equations (1), (3)–(6), (8)–(12), (14)–(16)
and (18)–(20).

Vtest
Vn

Tottori et al. [15] Michaluk et al. [16]

Arithmetic mean 1.20 3.26
Parameter X (inverse of regression curve slope) 1.57 3.87

Coefficient of variation (COV) (%) 36.98 73.26
Mean absolute percentage error (MAPE) (%) 19.38 59.09

Percentage of beams with overestimated
strength (%) 30.00 10.97

Theoretical concrete shear strength versus
experimental concrete shear strength
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Table 4. Cont.

Vtest
Vn

Hoult et al. [21] Razaqpur et al. [22].

Arithmetic mean 1.88 1.09
Parameter X (inverse of regression curve slope) 2.21 1.04

Coefficient of variation (COV) (%) 91.29 24.59
Mean absolute percentage error (MAPE) (%) 34.15 18.97

Percentage of beams with overestimated
strength (%) 13.23 39.97
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experimental concrete shear strength
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Table 4. Cont.

Vtest
Vn

Lignola et al. [27] Valivonis et al. [28]

Arithmetic mean 1.07 0.98
Parameter X (inverse of regression curve slope) 1.37 1.08

Coefficient of variation (COV) (%) 64.64 39.97
Mean absolute percentage error (MAPE) (%) 31.91 32.81

Percentage of beams with overestimated
strength (%) 64.84 65.48

Theoretical concrete shear strength versus
experimental concrete shear strength
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On the basis of the comparative analyses, it was found that some of the current proposals estimate
the shear capacity of the support zones of beams longitudinally reinforced with FRP bars relatively well.
Among the design recommendations, the American ACI 440.1R-15 [5] provides the most conservative
approach for beams without shear reinforcement. The smallest margin of strength was obtained when
the algorithms given in the Italian standard CNR-DT 203/2006 [10] were used. Moreover, the number
of overestimated strength values is then the largest (Vtest < Vn), which adversely affects the level of
safety. The load capacities of more than 77% of the analysed support zones were overestimated when
the procedure was used. In addition, a high value of the coefficient of variation and the mean absolute
percentage error were obtained, which indicates a relatively large spread of results and an inappropriate
adjustment of the model. Taking into account the criterion of conservativeness and the scatter of
results, the best-fit model is included in the Canadian CSA S806-12 standard [8]. Using the procedures
given in [8], the smallest values of the coefficient of variation and the mean absolute percentage error
were obtained. Nevertheless, a relatively high percentage of support zones with an overestimated load
capacity, with the parameter X of 1.47, indicates that the model is not adjusted properly.

A better model fit was observed for proposals not included in any design standards. The procedures
proposed by Nehdi et al. [20], Razaqpur et al. [22] and Kurth [25], in particular, show a relatively
good fit of the model. This is evidenced by, among other factors, being close to the unity of the
arithmetic mean value of the ratio Vtest/Vn, and the value of parameter X. In addition, using the
procedures proposed by Nehdi et al. [20], Razaqpur et al. [22] and Kurth [25], a relatively low value of
the coefficient of variation and the mean absolute percentage error were obtained.
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5. Proposed Model for Estimating the Shear Capacity of Support Zones Reinforced
Longitudinally with FRP Bars without Shear Reinforcement

Based on the conducted analyses, it was found that it is reasonable to propose modifications to
the current procedures to better match the model determining the shear strength of support zones
reinforced longitudinally with FRP bars. The Razaqpur et al. [22] proposal—for which the best fit was
found in terms of the coefficient of variation and the mean absolute percentage error and parameter
X—was selected as the basis of the modification. The original form of the model (10) proposed by
Razaqpur et al. [22] in 2010 is presented Table 1.

Wegian et al. [19], Kurth [25] and Hamid et al. [30] describe that the shear capacity of concrete
support zones reinforced longitudinally with FRP bars without shear reinforcement depends on the
cube root of the axial stiffness of the longitudinal reinforcement and the compressive strength of the
concrete. Formula (10), in contrast to, for example, Kurth’s [25] proposal, does not include the size
effect, which, in the support zones of concrete beams, is important, as described by El-Sayed et al. [18]
and Alam [23]. In addition, the boundary shear slenderness a/d = 2.5 was taken as the criterion for
taking into account the arch action. Among others, Kurth [25] indicates that the effects of the arch
action are observed for support zones with higher values of the a/d ratio. Based on the regression
analysis and the evaluation of the impact of particular parameters, the following Formula (21) was
determined for the shear capacity of support zones reinforced longitudinally with FRP bars (except the
case of pure shear, where the bending moment, M = 0):

Vc = 0.028kmkakrk 3
√

fcbwd.

k = 1 + 3
√

200
d ≤ 2.0; km =

(
Vd
M

) 1
2 ; kr = (TheNetherlandsρfEfl)

1
3 ; ka =

{
1.0 for M

Vd ≥ 2.7
2.7Vd

M for M
Vd < 2.7

(21)

The size effect was taken into account by introducing the coefficient k, the value of which is
determined based on the formula, the form of which is similar to the proposed in Eurocode 2 [31].
Alam [23], in his research, observed that the limit tangential stresses are proportional to 1

3√
d

. Moreover,

it was assumed that the shear capacity is proportional to the cube root of the stiffness of the longitudinal
reinforcement. In addition, a higher limit value of the shear slenderness was introduced. Taking
into account the arch action of the support zone is possible only in the case of appropriate anchoring
of the longitudinal reinforcement. Table 5 presents the results of the verification analysis of the
proposed model.

Table 5. Comparison of experimental (Vtest) and theoretical (Vn) values of the concrete shear strength
for the proposed model.

Vtest
Vn

Proposed Model (21)

Arithmetic mean 1.00
Parameter X (inverse of regression curve slope) 1.03 (R2 = 0.87)

Coefficient of variation (COV) (%) 22.50
Mean absolute percentage error (MAPE) (%) 18.62

Percentage of beams with overestimated strength (%) 52.90

Theoretical concrete shear strength versus
experimental concrete shear strength
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The parameter value X = 1.03 was determined based on linear regression with a relatively
high coefficient of determination, R2 = 0.87, which is a measure of the model’s fit. In addition, the
smallest coefficient of variation and the mean absolute percentage error were obtained, which indicates
the smallest distribution of results among the described models. The percentage of beams with
overestimated strength is 52.90%, which is a result of obtaining the average value of the ratio of the
experimental and theoretical shear force Vtest/Vn close to 1.00.

Figure 1 shows the distribution of values of the experimental and theoretical shear force ratio,
Vtest/Vn, for the particular ranges. The distribution is close to the normal distribution, and the lower
endpoint of the 95% confidence interval of the average value is 0.977.
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Figure 1. Distribution of values of the ratio of the shear resistance attained experimentally, Vtest, to the
corresponding analytical, Vn for particular ranges.

One of the verification criteria for the proposed procedure was the analysis of the impact
of particular parameters on the ratio of the shear resistance attained experimentally, Vtest, to the
corresponding analytical, Vn. Figure 2 shows the value of Vtest/Vn in relation to shear slenderness, a/d,
compressive concrete strength, f c, the axial stiffness of longitudinal reinforcement, TheNetherlandsρfEfl

and the effective depth of cross section, d.
Based on Figure 2, it is concluded that the proposed Formula (21) appropriately takes into account

the influence of particular parameters on the shear capacity of support zones of beams longitudinally
with composite bars.
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Figure 2. The ratio of the experimental and theoretical shear force Vtest/Vn as a function of: (a) shear
slenderness, a/d; (b) the compressive strength of concrete, f c; (c) the stiffness of the longitudinal
reinforcement, TheNetherlandsρfEfl; (d) the effective depth of cross section, d.

6. Conclusions

The available design recommendations and formulas derived by other researchers introduce
various algorithms for determining the shear strength of beams longitudinally reinforced with FRP
bars, taking into account the characteristic features of the composite bars—their relatively low elastic
modulus and low strength in the perpendicular direction. This paper presents verification of the
current procedures implemented in available codes and the formulas derived by other researchers
in the field of estimating the shear strength of concrete support zones longitudinally reinforced with
FRP bars. In this paper, a new approach for estimating shear capacity of support zones reinforced
longitudinally with FRP bars without shear reinforcement was proposed and verified. The following
conclusions have been drawn from the analyses:

(1) In the case of support zones reinforced longitudinally with FRP bars without transverse
reinforcement, the best model among the available design standards is given in CSA S806-12 [8].
Nevertheless, the values of the verification parameters—especially the parameter X = 1.47, the coefficient
of variation, COV = 43.18%, and the mean absolute percentage error, MAPE = 20.61%—indicate an
unsatisfactory adjustment of the model.

(2) Better model fit was observed for proposals not included in any standards. The procedures
proposed by Nehdi et al. [20], Razaqpur et al. [22] and Kurth [25], in particular, show a relatively good
fit of the model.

(3) The developed empirical Formula (21) is a modification of the Razaqpur et al. [22], which was
supplemented with, among others, size effect and changing the criterion of taking into account the
arch action. Based on the verification analysis, the arithmetic mean ratio close to 1.00 was obtained.
The parameter value X = 1.03 (inverse of linear regression curve slope) was determined with a
relatively high coefficient of determination R2 = 0.87. A satisfactory level of value of COV = 22.50%
and MAPE = 18.62% was obtained. The proposed model appropriately takes into account the influence
of particular parameters (such as shear slenderness, the compressive strength of concrete, the stiffness
of the longitudinal reinforcement and the effective depth of cross section) on the shear capacity of
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support zones of beams longitudinally reinforced with composite bars. Based on the verification
analysis, a satisfactory level of model fit was obtained—the best among the available proposals.
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