
buildings

Article

Framing and Evaluating the Best Practices of IFC-Based
Automated Rule Checking: A Case Study

Soroush Sobhkhiz 1, Yu-Cheng Zhou 2 , Jia-Rui Lin 2,* and Tamer E. El-Diraby 1

����������
�������

Citation: Sobhkhiz, S.; Zhou, Y.-C.;

Lin, J.-R.; El-Diraby, T.E. Framing and

Evaluating the Best Practices of

IFC-Based Automated Rule Checking:

A Case Study. Buildings 2021, 11, 456.

https://doi.org/10.3390/

buildings11100456

Academic Editor: Junbok Lee

Received: 16 September 2021

Accepted: 1 October 2021

Published: 3 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada;
s.sobhkhiz@mail.utoronto.ca (S.S.); tamer@ecf.utoronto.ca (T.E.E.-D.)

2 Department of Civil Engineering, Tsinghua University, Beijing 100084, China;
zhouyc19@mails.tsinghua.edu.cn

* Correspondence: lin611@tsinghua.edu.cn

Abstract: This research reviews recent advances in the domain of Automated Rule Checking (ARC)
and argues that current systems are predominantly designed to validate models in post-design stages,
useful for applications such as e-permitting. However, such a design-check-separated paradigm
imposes a burden on designers as they need to iteratively fix the fail-to-pass issues. Accordingly,
the study reviews the best-practices of IFC-based ARC systems and proposes a framework for
ARC system development, aiming to achieve proactive bottom-up solutions building upon the
requirements and resources of end-users. To present and evaluate its capabilities, the framework is
implemented in a real-life case study. The case study presents all the necessary steps that should be
taken for the development of an ARC solution from rule selection and analysis, to implementation
and feedback. It is explained how a rule checking problem can be broken down into separate modules
implemented in an iterative approach. Results show that the proposed framework is feasible for
successful implementation of ARC systems and highlight that a stable data standard and modeling
guideline is needed to achieve proactive ARC solutions. The study also discusses that there are some
critical limitations in using IFC which need to be addressed in future studies.

Keywords: Automated Rule Checking (ARC); Building Information Modeling (BIM); Industry
Foundation Classes (IFC); proactive design; smart design

1. Introduction

Automated Rule Checking (ARC) is the practice of developing tools that can auto-
matically capture and check a set of rules against a model or design. Research into ARC
goes back to the 1960s when Fenves pioneered the idea with a decision table [1]. The
advent of Building Information Modeling (BIM) facilitated ARC by providing access to
a considerable amount of information regarding a project in a single model. In addition,
Industry Foundation Classes (IFC) promoted open BIM, creating an interoperable data
platform by formalizing modeling and exchange of data. This common data standard
enabled interoperability in the AEC industry and allowed BIM systems to be a platform
for collaboration and data exchange. In general, ARC approaches mostly consist of all
or some of the following stages: rule interpretation, model preparation, rule execution,
reporting, and correction [2]. Several technical and non-technical challenges must be dealt
with for automating these processes. Substantial research has been conducted to address
these challenges, especially on the technical side. One trend in recent years has been
applying new innovations in other fields in the automation processes of ARC, particularly
in rule interpretation [3]. For instance, natural language processing (NLP) has helped in
automated codification of rules or ontological approaches have been used to develop a
formalized machine-readable taxonomy of rules [4,5].

However, the non-technical aspects, the business processes and stakeholder engage-
ment, have received less attention. Given that construction projects are usually conducted

Buildings 2021, 11, 456. https://doi.org/10.3390/buildings11100456 https://www.mdpi.com/journal/buildings

https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0001-5797-6221
https://orcid.org/0000-0003-2195-8675
https://doi.org/10.3390/buildings11100456
https://doi.org/10.3390/buildings11100456
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/buildings11100456
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings11100456?type=check_update&version=2

Buildings 2021, 11, 456 2 of 20

in a fragmented environment, this might become a critical issue. A building is usually
designed by several designers and engineers from different backgrounds (e.g., architecture
and mechanical) [6]; and progress is often monitored by code experts who make sure
that the design satisfies regulatory requirements. This means that the automation of rule
checking should consider the views of several parties. If designers are not adequately
involved in the development of an ARC system, developers might become overly focused
on technical issues rather than the user experience side of the product. Currently, research is
mostly focused on how to translate rules or implement rule-checking but does not address
the question of “how to engage all the different stakeholders in the development process”.
The result of this approach has been uncoordinated progress and implementation, where
ARC solutions do not really meet the industry’s needs. Practitioners would prefer small,
dedicated checkers to minimize or replace specific manual tasks accurately and reliably,
rather than complex, all-encompassing systems [7].

However, in recent years, research is starting to answer why the extent of automation
is relatively low in construction projects. More often than not, we see the stakeholder
engagement as the main issue. For instance, in a recent review by Hamidavi et al. (2019), a
number of experts were asked to outline existing challenges on design automation. Interest-
ingly, the top issues identified by experts were not the technical ones and were the lack of
coordination and misinterpretation. A key takeaway from their work is that “automation
without supervision brings out wrong data” [8]. It is crucial to enable a collaborative
environment between different disciplines in the early stages. This is especially important
in the case of developers and designers as they do not speak the same language. The
study also highlights that automation should allow some room for creativity, which means
it should support the preliminary design stages and help designers to choose the best
option to take forward for detailed design [8]. The preliminary stage is where most of
the discrepancies and mistakes in hand calculations occur. Additionally, a mistake in the
early stages will have a much higher impact on the whole project than one made in the
final stages.

Currently, the extent of ARC applications in real projects, particularly in the private
sector, is very low. One explanation can be that most of these efforts focus on the technical
side of ARC, whereas there is a need to improve the practicality of these solutions and
showcase the business value of ARC [7]. Currently, ARC solutions are intended for rule
verification, whereas they should be more oriented towards designer needs [7]. Most
ARC systems are designed to validate models in post-design stages and are useful for
post-design applications such as issuing e-permits. As discussed above, to achieve a
practical automation solution, ARC systems should be more involved in the preliminary
stages. In practice, designers need to know the regulatory requirements in advance before
designing a model (e.g., what should be the dimensions of windows); whereas the current
ARC systems mostly check whether these regulations are met in a design model (e.g.,
whether the dimensions of windows are correct or not). Checking rules after the design
is completed can guarantee the accuracy and completeness of the model. However, this
design-check-separated paradigm may impose a burden on the designers because the
fail-to-pass issues will result in rework, likely in an iterative way. As a result, we observe a
relatively higher adoption of ARC in public sectors, where ARC is used for permits, than in
private sectors. ARC systems need to be proactively providing feedback for design-specific
issues during the design process, rather than passively approving or disapproving design
decisions. Design decisions in the early design stages have the most profound effects on
construction projects [9]. As a result, the incorporation of expert feedback in these stages
will result in decreasing the discrepancies that lead to design or even construction reworks.

Studies show that ARC systems, designed based on user requirements, not only
succeed in terms of rule checking but also result in additional benefits originated from
cultural shifts and changes in practice. For instance, if ARC is designed and implemented
successfully, it might result in wider adoption of BIM, which then improves many other
aspects of design and construction [10]. Furthermore, users working with well-designed

Buildings 2021, 11, 456 3 of 20

ARC systems are more likely to gain a better tacit understanding of the codes (rules) [11].
Such studies highlight the need for research on the business and governance side of ARC
applications. To this end, this research first provides a review of ARC applications. The
review helps identify the main challenges associated with ARC applications. Next, based
on industry best practices, a framework is proposed to categorize the main processes,
stakeholders, and their interrelations in each step. The framework aims to bring ARC
development as close as possible to the design and engineering team, and by doing so,
result in a bottom-up approach, building upon the requirements and resources of end-
users. The proposed approach is then implemented in a real project to showcase how
it can coordinate different stakeholders to address development challenges. Finally, this
research takes a critical standpoint and uses the review and case study to highlight the key
limitations in ARC, and proposes a path for future research.

2. Literature Review

ARC has been extensively studied in the past decades. In this section, these studies
are analyzed. The traditional and recent applications of ARC are reviewed, and the main
issues of ARC are outlined.

2.1. Automated Rule Checking

Decision tables are the first method used for ARC applications and were first studied
in the 1960s. Several studies applied this approach and added more complex knowledge-
based aspects to it. For instance, Garret and Fenves [12] developed a knowledge-based
standard processor for the automated design of structural components. Delis and Delis [13]
developed a knowledge-based expert system for automatic fire code checking. Their pro-
posed method includes a set of rules in IF-Then format. In fact, the follow-up approaches
on Fenves’s work have almost unanimously used IF-Then approaches for rule representa-
tion [14,15]. More sophisticated logic-based methods were later developed with different
approaches such as object-oriented modeling, question and answer interfaces, MVD based
approaches, visual programming language, and so on.

Garret and Hakim [16] presented a modeling methodology for design standards based
on object-oriented modeling in which design standards are linked to the rules applicable to
them. Yabuki and Law [17] combined the object-oriented paradigm with predicate logic to
represent and process building codes. In another work, Kerrigan and Law [18] developed
a formal infrastructure for regulatory information management by designing a document
repository called REGNET, built upon an XML framework. The proposed regulation
assistant system (RAS) uses regulation metadata in a web interface communicating with
compliance checking systems. Model View Definitions (MVD) applies a set of rules to
check the compliance of BIM data and can automatically assure that BIM has all the
required data. Therefore, MVDs can be used in a variety of ARC applications. For instance,
Pinheiro et al. [19] developed a standardized method based on a MVD that defines a
subset of IFC related to building energy performance simulation. The proposed system can
check on HVAC objects, operating schedules, controls, and simulation parameters. Finally,
visual programming languages were used for rule checking mainly to address insufficient
transparency and promote user incorporation. For instance, Preidel and Borrmann [20]
proposed using a flow-based visual code checking language for ARC. The system is
represented by graphs using elementary nodes having higher interpretation capability.

BIM and IFC improved ARC applications by allowing computers to access a consid-
erable amount of information regarding a project in an interoperable way. For instance,
Motamedi et al. integrated facilities management (FM), Knowledge Management (KM),
and BIM to help technicians identify FM problems and detect failure root causes [21].
Motawa and Almarshad presented a knowledge-based BIM system that utilizes infor-
mation modeling techniques to provide access to information required for maintenance
works. In their study, a case-based reasoning model was used for capturing knowledge [22].
Luo and Gong developed a BIM-based code checking system to support deep foundation

Buildings 2021, 11, 456 4 of 20

construction projects. They developed a library of knowledge checking and a standard
of required information for these projects [23]. Martins and Monteiro developed LicA,
a BIM-based ARC application for water distribution systems [24]. The system is based
on Portuguese regulations. Patlakas et al. presented a BIM-based framework for ARC
applications in the structural design domain. To compress the complex engineering calcu-
lations into one single equation, they implemented multi-dimensional data fitting into a
BIM-based system [25].

With less attention required to assure compliance with design codes, researchers
started to use ARC to include more complex aspects, such as safety and energy performance,
into design processes. With all the limitations in the design stages (time and budget), this
line of research gained attention in the past few years. For instance, Sulankivi et al.
investigated the possibility of identifying safety hazards in the construction schedule by
developing automated safety rule-checking on top of a BIM system [26]. The platform was
used to detect and eliminate fall-related hazards. Cooke et al. integrated the management
of occupational health and safety risks into the design process by developing a decision
support tool called ToolSHeD [27]. This method deployed argument trees to represent
the reasoning of experts to assess the risk of falling from height during roof maintenance
work. Some of these works improved the qualitative factors of BIM-based design projects.
For instance, Choi et al. developed an automated system, called InSightBIM-Evacuation,
to allow designers to check the evacuation regulation compliance of BIM data within the
scope of high-rise buildings [28]. Cheng and Das [29] presented a BIM-based web service
framework to provide an integrated platform for ARC and building energy simulation,
which allowed users to update a building model in a distributed manner.

Recently, the complexity of rule interpretation has encouraged several researchers
to work on the semantics of ARC. Some studies proposed the use of ontologies for for-
malizing and semantically representing building codes. For example, Yurchyshyna and
Zarli proposed an ontology-based approach for formalization and semantic organization of
conformance requirements in construction [30]. They developed a formal representation of
requirements via SPARQL queries based on an IFC-based conformance checking ontology.
Beach et al. utilized regulation and domain ontologies and RASE markup techniques to
allow domain experts to specify their regulatory compliance systems without the need for
extensive software development [31].

Researchers also focused on developing ontologies to link the IFC data model to
domain knowledge or improving the schema of the IFC itself. IfcOWL is an attempt to
enrich the semantic aspect of BIM-based systems. It is an ontology written in the Web
Ontology Language equal to the schema of IFC, which enables the representation of IFC
attributes in the Resource Description Framework (RDF) format. The main contribution
of ifcOWL to ARC applications is the advanced query language that can be used with the
RDF format (e.g., SPARQL language). As a result, retrieving information from BIM files,
which is a critical requirement for ARC, becomes easier [32]. Pauwels et al. identified the
expression range limitations of IFC and demonstrated how the deployment of semantic
web languages (namely, ifcOWL) could overcome these limitations [5].

In addition to semantic web technologies, recent studies are also investigating Natural
Language Processing (NLP) for automating the formalization of specifications into rules.
NLP techniques focus on analyzing information inside natural languages, such as text
classification, part-of-speech tagging, chunking, etc., which benefits the automation of rule
transformation. For instance, Salama and EI-Gohary utilized machine learning and NLP
techniques to automatically classify the different documents and parts of documents into
predefined categories to prepare them for further text analysis and rule extraction [4]. To
enable a fully automated ARC, Zhang and EI-Gohary proposed a framework that mainly
utilizes information Extraction (IE) and Information Transformation (ITr) for supporting
ARC [33]. They also proposed a semantic, rule-based NLP approach for automated in-
formation extraction from construction regulatory documents, using a set of IE rules and
conflict resolution (CR) rules [34]. By combining IE, pattern-matching-based ITr, and logic

Buildings 2021, 11, 456 5 of 20

reasoning into a unified system, they presented an approach for a fully automated ARC
system [35]. It should be noted that additional studies are required to investigate the
limitations of these systems in wide-scale implementations.

In summary, ARC solutions provide numerous advantages, the most important of
which is improving designer productivity [36]. ARC helps designers ensure that their
work complies with the existing codes and as a result reduces rework for fixing non-
compliant design errors. As a result, designers can focus on more important matters such
as comparing different design scenarios. However, productivity is not the only benefit
of ARC adoption. Given that an ARC system captures all the necessary steps needed for
checking a code, it allows designers to easily understand the codes and rules they must
comply with. This is especially important for cases where several rules need to be combined
together. A major benefit is that designers who do not have regulatory background on the
rules, do not have to spend countless hours discovering what each rule means and how to
map it to other rules. This in turn improves communication between designers and other
sectors such as code experts.

However, ARC comes with its own issues and disadvantages as well. To begin
with, developing an ARC system requires trained experts who understand regulatory
requirements and design processes, and are equipped with technical development skills. A
successful development requires the participation and engagement of parties that are by
nature fragmented and distanced. This might induce substantial initial investments which
may not be feasible given the already tight budget that design and construction projects
usually deal with. However, the challenge is not only limited to initial developments;
maintaining ARC systems can become challenging too. Given the increasing technological
advances in the AEC industry, an ARC product might become obsolete too soon. For
instance, a change in the data formats that an ARC system is based on, might impose signif-
icant redevelopments in the design of the whole system. Additionally, developing an ARC
system often requires certain assumptions based on the target rules. These assumptions
might not be in line with other rules or even conflict with them. Consequently, expanding
the system to include other rules is not easily done and the system becomes non-scalable.
Another consequence might be that the ARC system might be entirely useless for a different
region with different regulatory assumptions, and the system becomes non-generalizable.

2.2. Traditional Application of ARC: Validation

Because of the increasing demand for the efficiency of permitting processes, there
has been a push for e-governance for years. As a result, traditionally, BIM-based ARC is
mainly used for e-permitting processes and has progressed to be a tool for validation and
post-design checking. Today, we have many national platforms that have implemented
e-permitting systems based on ARC tools, a few of which are highlighted in the following.

CORENET, short for COnstruction and Real Estate NETwork, was initiated in 1995
by the Singapore Ministry of national development. The intention behind developing
CORENET was to optimize the interactions between all parties involved in a building
project [37]. CORENET consists of three platforms: e-Submission, e-PlanCheck, and e-
Info [38]. e-Submission is for project submission and document approval, e-PlanCheck
automatically checks regulations against the submitted project, and e-Info is a repository for
construction-related information in Singapore. The e-PlanCheck module was introduced
in 2002 for quality control of designs, which included code compliance checking [20]. The
platform is implemented on top of the FORNAX library (in C++), the main component of the
e-PlanCheck module. It was developed by a private company called novaCITYNETS [39].
FORNAX is a BIM-based system and can be considered one of the most successful and
earliest works of ARC in regulatory compliance. Its objects include additional attributes
that allow it to generate extended IFC views, necessary for code checking [2].

BCAider is a non-BIM system developed by CSIRO to support the compliance of
designs against the Building Code of Australia (BCA) [40]. In another project, CSIRO collab-
orated with the University of Sydney to develop a BIM-based version, called DesignCheck.

Buildings 2021, 11, 456 6 of 20

The system uses IFC to transfer 3D CAD models into a DesignCheck internal model, which
allows description mapping to building codes that are encoded into object-based rules
using Express language. DesignCheck is also equipped with a semantic interpretation to
support design performance verification and has an interactive reporting interface that
offers a variety of viewing options. Initially, the system was used to support compliance
with disability access codes [41].

For checking occupant circulation rules of the US court design guide, Lee et al. [42]
developed an approach as a plug-in on top of a Solibri model checker (SMC) called universal
circulation network (UCN), where length-weighted graphs are used to model the distance
between buildings. Some earlier works pioneered automated occupant management in the
area of accessibility, such as that of [43]. In their work, Han et al. (2002) proposed a hybrid
approach combining perspective-based provisions and performance-based methods to
support compliance analysis for accessibility regulations of the Americans with Disabilities
Act (ADA) [43].

ByggSøk and SMART code are also examples of public ARC projects. ByggSøk aims
to deliver better and more efficient public services and improve industrial competitiveness
through a nationwide standardization of zoning proposals and building applications [44].
SMARTcode is being developed by the International Code Council (ICC), serving as a
platform for rule checking and providing methods of translation from written language
rules to computer code [2]. All these projects, with more than 40 years of history, are a
testament to a global need for ARC. Nevertheless, there are some limitations that prevent
the widespread adoption of ARC in the private sector. The next section discusses possible
issues with ARC that potentially prevent its widespread adoption.

2.3. Challenges of ARC

ARC challenges range from data incompleteness and black-box solutions to non-
scalable system rule conflictions. Here we summarize the most critical challenges and focus
the rest of the article on possible solutions to these issues. In order to properly implement
ARC, information extraction is arguably the most critical step. Every rule requires a specific
set of information to be checked. For instance, rules related to the energy performance of a
building require information about the HVAC systems. As a result, the level of available
information in the design (or design details) has a significant impact on how successful
ARC is. However, several factors, from design complexity to design errors, can contribute
to an incomplete design environment with insufficient data. This will adversely affect
the implementation of ARC. It is important to simplify the ability to find the required
information for a feasible ARC. Even with complete designs with complete data, BIM
hides the information in its complex and layered data model. Users typically have limited
abilities to conduct meaningful queries and retrieve the data out of BIM. Consequently, we
find different studies trying to develop more simplified data schemas for querying the BIM
data [45].

Another crucial factor for the successful implementation of ARC is the knowledge
of designers on the implementation processes. Designers need to know what to expect
from the system and what is expected from them. Current ARC practices lack transparency
as the process is mostly hard-coded checking routines. This functionality is known as
black-box development [46,47]. A black-box solution is usually difficult to scale as users
are not aware of the development process and developers are unfamiliar with design best
practices. Scaling such solutions requires high-level programming expertise and, therefore,
limits the ability of users to add/change the rules. As a result, most ARC systems are hard
to maintain, as any change in the rules necessarily means a change in the ARC system. For
instance, it happens quite often that a number of different rules about the same subject are
not easily map-able. In fact, rule conflict is itself a major problem in ARC applications. Now,
if users and developers are not in close collaboration (which is often the case), developers
who are not familiar with the context of rules will find it very difficult to scale and maintain
an ARC solution.

Buildings 2021, 11, 456 7 of 20

Such complex challenges originate from the lack of semantics in rules and have led
researchers to use complex systems such as ontology-based systems and NLP to enrich
models with semantics. These systems are hard to scale and use by the typical users
in the AEC industry (engineers and architects), who are not often familiar with such
concepts; therefore, their industrial scalability and implementation remain a challenge.
Additionally, these systems are rarely usable in pre-design stages and are most useful in
ex-post analysis. The increasing complexity of ARC systems potentially results in the lack
of practical solutions for industrial problems. The consequence is that the extent of ARC
applications in real projects will remain very limited.

Nevertheless, the main challenge of the adoption of ARC is not the technological
side but its governance and business management side [48]; socio-organizational issues
are causing considerable resistance to change in the industry. Experience with other
technologies such as BIM demonstrates that the complex, fragmented structure of the
industry makes it difficult to make a new technology usable. Even after the technical
issues are resolved, the main challenge is convincing the industry to use it. Issues such as
lack of trust in the new technology, variations in practitioners’ skills, and lack of training,
understanding, and awareness prevent major changes in the AEC industry, which tends
to adopt traditional practices more frequently [49]. Today, many studies have advanced
the technical capabilities of ARC; however, sufficient demand from the industry is not
observed, which is particularly important since we now know that private clients are one
of the main change agents in the AEC industry [50]. Therefore, the next frontier of research
should focus on overcoming the inertia that exists in adopting ARC.

3. Methodology

This section proposes a framework for the development of ARC systems using best
practices identified in the literature, and expert experiences. The framework is proposed
with the consideration of challenges identified in Section 2.3 and aims to resolve them as
much as possible. However, existing practices and technologies might not be adequately
capable of addressing ARC development requirements. As such, it is critical to evaluate
the proposed framework in the context of a real-life project and identify its limitations. The
main purpose is to explore: (1) the challenges of ARC projects, (2) whether the proposed
framework can establish a guideline for solving these challenges, and (3) provide a reference
for future studies and implementations of ARC solutions. Figure 1 displays the key steps
of the study.

Buildings 2021, 11, 456 7 of 22

instance, it happens quite often that a number of different rules about the same subject are
not easily map-able. In fact, rule conflict is itself a major problem in ARC applications.
Now, if users and developers are not in close collaboration (which is often the case), de-
velopers who are not familiar with the context of rules will find it very difficult to scale
and maintain an ARC solution.

Such complex challenges originate from the lack of semantics in rules and have led
researchers to use complex systems such as ontology-based systems and NLP to enrich
models with semantics. These systems are hard to scale and use by the typical users in the
AEC industry (engineers and architects), who are not often familiar with such concepts;
therefore, their industrial scalability and implementation remain a challenge. Addition-
ally, these systems are rarely usable in pre-design stages and are most useful in ex-post
analysis. The increasing complexity of ARC systems potentially results in the lack of prac-
tical solutions for industrial problems. The consequence is that the extent of ARC applica-
tions in real projects will remain very limited.

Nevertheless, the main challenge of the adoption of ARC is not the technological side
but its governance and business management side [48]; socio-organizational issues are
causing considerable resistance to change in the industry. Experience with other technol-
ogies such as BIM demonstrates that the complex, fragmented structure of the industry
makes it difficult to make a new technology usable. Even after the technical issues are
resolved, the main challenge is convincing the industry to use it. Issues such as lack of
trust in the new technology, variations in practitioners’ skills, and lack of training, under-
standing, and awareness prevent major changes in the AEC industry, which tends to
adopt traditional practices more frequently [49]. Today, many studies have advanced the
technical capabilities of ARC; however, sufficient demand from the industry is not ob-
served, which is particularly important since we now know that private clients are one of
the main change agents in the AEC industry [50]. Therefore, the next frontier of research
should focus on overcoming the inertia that exists in adopting ARC.

3. Methodology
This section proposes a framework for the development of ARC systems using best

practices identified in the literature, and expert experiences. The framework is proposed
with the consideration of challenges identified in section 2.3 and aims to resolve them as
much as possible. However, existing practices and technologies might not be adequately
capable of addressing ARC development requirements. As such, it is critical to evaluate
the proposed framework in the context of a real-life project and identify its limitations.
The main purpose is to explore: 1) the challenges of ARC projects, 2) whether the proposed
framework can establish a guideline for solving these challenges, and 3) provide a refer-
ence for future studies and implementations of ARC solutions. Figure 1 displays the key
steps of the study.

Following the discussion provided in section 2.3, the proposed framework must fol-
low the requirements outlined in Table 1.

Figure 1. The overall methodology of the research. Figure 1. The overall methodology of the research.

Following the discussion provided in Section 2.3, the proposed framework must
follow the requirements outlined in Table 1.

Buildings 2021, 11, 456 8 of 20

Table 1. Key requirements for developing an ARC product.

No. Requirement References

1 It should avoid developing black-box solutions. Designers and code
experts should be aware of all processes and be dynamically
involved in developing them.

[7,8,46–48,50]

2 Hard coding should be minimized to avoid hard to maintain systems. [31,48,49]
3 Information exchange should be managed at three levels of

information modeling, model exchange, and information query
systems. The role of each participant in providing and retrieving
information in each phase must be clear.

[5,21,22,32,33,45]

4 The final system should enable proactive design. [20,48]

Each rule encompasses several hidden semantics that must be captured in order to be
properly automated. When translating these rules into algorithms, a close collaboration
between developers and code experts should be established. As such, an expert panel is
needed to:

- Clarify expectations (e.g., what can/should the ARC be used for).
- Define the requirements (e.g., how much change in users’ practices can be expected).
- Establish the baseline: understanding the current framework of checking a rule, the

roles and responsibilities of designers and code experts, best practices, and common
mistakes in checking a rule.

Having these considerations in mind, Figure 2 displays the proposed framework in
this study. The framework is designed to engage the expert panel in an iterative bottom-
up design process ensuring that all parties have an effective role in the process. Each
iteration consists of three steps: analysis, implementation, and testing/feedback. Each
iteration ends with evaluating the implemented system, resulting in a set of feedbacks
analyzed in the next iteration. The outcome of each iteration is a sub-system of a more
complex system developed in the next iteration. Feedback from users, developers, and
test cases will be used to determine the path of the next iteration, resulting in a bottom-
up approach. As demonstrated, the framework divides parties into two categories of
experts and developers. The experts encompass architects, engineers, code experts, and
experienced consultants either from the industry or academia. Developers include the
backend developers responsible for developing algorithmic approaches to automated rules,
and front-end and user experience designers. The level of engagement of each group in
each of the development steps is displayed in Figure 2.

Given that developers and experts usually do not have similar perspectives on the
rules, a close collaboration between developers and code experts should be established
when translating rules into algorithms. It is critical for the developers to be aware of
the baseline status of the project. In other words, developers need to be aware of how
experts deal with rules prior to automation. In the analysis step, the experts analyze the
requirements for system implementation and determine what considerations the devel-
opment team should consider for rule translation and implementation. As for the rule
selection, the expert panel determines the rules most valuable for automation, with the
following criteria:

- Rules that are used repeatedly in a project.
- Rules that are checked by different users/designers throughout the project (requires

different experts to communicate and exchange results and, therefore, is susceptible
to error).

- Rules that require extensive calculations (and are, therefore, error-prone).
- Rules that incur high costs and delays if implemented incorrectly.
- Rules that have complex structures (such as having other rules embedded within them).

Buildings 2021, 11, 456 9 of 20Buildings 2021, 11, 456 9 of 22

Figure 2. The proposed framework for developing proactive ARC systems.

Given that developers and experts usually do not have similar perspectives on the
rules, a close collaboration between developers and code experts should be established
when translating rules into algorithms. It is critical for the developers to be aware of the
baseline status of the project. In other words, developers need to be aware of how experts
deal with rules prior to automation. In the analysis step, the experts analyze the require-
ments for system implementation and determine what considerations the development
team should consider for rule translation and implementation. As for the rule selection,
the expert panel determines the rules most valuable for automation, with the following
criteria:
‐ Rules that are used repeatedly in a project.
‐ Rules that are checked by different users/designers throughout the project (requires
different experts to communicate and exchange results and, therefore, is susceptible to
error).
‐ Rules that require extensive calculations (and are, therefore, error-prone).
‐ Rules that incur high costs and delays if implemented incorrectly.
‐ Rules that have complex structures (such as having other rules embedded within
them).

After the rules with the highest automation value are identified, the expert panel
thoroughly analyzes them. In this step, the main purpose is to achieve a common under-
standing of the meaning of the rules and how they are implemented. The designers and
code experts will explain the best practices, hidden semantics, and the information they
require in the beginning design stages to the development team. This will help the devel-
opment team to better design an algorithm that captures the semantics of the rules and
the best practices for checking them.

In the technical analysis, the development team will examine the information that is
necessary for checking the rules (e.g., data tables and building elements). After analyzing
data requirements, the development team assesses the processes and determines the

Figure 2. The proposed framework for developing proactive ARC systems.

After the rules with the highest automation value are identified, the expert panel
thoroughly analyzes them. In this step, the main purpose is to achieve a common un-
derstanding of the meaning of the rules and how they are implemented. The designers
and code experts will explain the best practices, hidden semantics, and the information
they require in the beginning design stages to the development team. This will help the
development team to better design an algorithm that captures the semantics of the rules
and the best practices for checking them.

In the technical analysis, the development team will examine the information that is
necessary for checking the rules (e.g., data tables and building elements). After analyzing
data requirements, the development team assesses the processes and determines the
parts/processes of the rule that would be valuable for automation. This is important for two
reasons: (1) sometimes a single input from the user would facilitate the checking process
significantly and help the development team to avoid designing complex algorithms, and
(2) rules tend to change over time. This means that if every part of the rule is hard coded
in an algorithm, once the rule changes, even slightly, the algorithm will have to change
as well. As a result, the proposed framework identifies the main structure of rules for
automation and leaves the remaining processes (with little automation value) to users. This
way, the developed algorithm will be flexible enough to accept the possible changes that
may occur in the future, without leaving too much work to the users.

Another purpose of this step is to determine the information exchange processes. The
data required for checking a rule should first be modeled in some format in design models
(e.g., BIM), and then accessed using a specific standard. Given that most of the previous
works have been built on IFC, this research will also use this format as the data input for
rule checking. As such, a common understanding between designers and developers is
needed so that designers embed the right information in the right place, and developers
capture that information using the right method. The main criterion for determining the
former (how to embed the required information into BIM) is that the designers’ works
must be minimally interrupted. The main criteria for the second part (IFC export) are using

Buildings 2021, 11, 456 10 of 20

the lightest model view (MVD) to capture only the necessary information, and keeping the
exporting process as simple as possible (e.g., avoid asking users to set up complex export
settings). Programming with IFC and extracting information from entities and attributes
can be very complex. There are a number of open-source toolkits available that might
facilitate this process. To name a few, IfcOpenShell (Python), IfcPlusPlus (C++), and xBIM
toolkit (.Net) are the most well-known toolkits. IfcOpenShell is based on OpenCascade
technology and it features other tools such as a blender importer, and xBIM has full support
for visualization and geometric operations in desktop and web formats [51].

The technical analysis results in a generalized algorithm for automating the most
valuable rule checking processes, and a standard for model design and exchange. Once
the panel agrees on the algorithm, the development team proceeds to design software
architecture and determines factors such as what input data is expected/needed, and how:
data completeness will be checked, data will be stored, needed values will be extracted,
which rules will be written and checked, and how the results will be reported. The proposed
architecture should be scalable to accommodate future developments (in the following
iterations). In addition, a user interface (UI) will be developed that provides an easy-to-
understand report for designers. One key criterion is to design the UI in a way that is
usable for both proactive design processes and post-design verifications.

In each iteration, after a subsystem is designed, it should be tested by the expert panel.
Their feedback and the test results will be analyzed in the analysis component of the next
iteration. The following includes the tests that will be conducted at this stage:

- Evaluate whether the tool correctly checks the rules (algorithm test).
- Assess the performance and usability of the tool (e.g., run time and user input).
- Evaluate the user interface and the generated report (e.g., easy to use features and

adequate information in the report).

The testing procedure should include two components of post-design verification
and pre-design requirement identification. The latter tests the proactivity of the system by
testing how it can help designers identify the requirements of a design scenario according
to a set of rules, before initiating the design. User feedback of this step will be analyzed
in the next iteration and used to help the development team to improve/fix the tool. In
addition, the testing process provides other valuable insights such as understanding the
potential business values of the tool and identifying extension potentials to include other
rules. In the following iteration, the issues that were identified in the previous step will be
addressed, and the system performance is improved based on the feedback provided by the
users; secondly, the next system components will be designed using the same procedure in
the first iteration. The cycle will iterate until there is no other component to add and no
issues in the existing components identified.

4. Case Study

The proposed framework is used to develop an ARC solution for an architectural firm
located in Canada. Since the client is a private company, the priority was to decrease the
time and errors in rule checking processes, especially in the design and planning phases. As
a result, simplicity and functionality were the key requirements of the project. The project
requirements fit well with the recommendations made in this article and provide a unique
opportunity for evaluating those recommendations. The requested project deliverable
was an IFC-based software prototype capable of capturing rules and automatically and
proactively checking a proposed design against them.

4.1. Rule Selection and Analysis

The rule considered in this project is the code “3.7.4—Plumbing and drainage systems”
from the Ontario Building code (OBC). The code determines plumbing fixture requirements
and consists of over 100 complex interconnected rules. As an example, the following is a
clause that determines water closet requirements for a specific class of buildings. “Except
for motion picture theaters, the number of water closets required for Group A division

Buildings 2021, 11, 456 11 of 20

1 occupancies shall conform to table 3.7.4.3.B.” In order to check this rule, one first needs
to know what group A division 1 means. This refers to the classification system in clause
3.1.2.1 of the OBC. Once the building classification is identified, the relevant code for the
building class and usage should be determined. These requirements are determined in a
set of tables in code 3.7.4. However, the tables require the occupancy load to determine the
number of washrooms. As such, another code is needed to determine the occupancy load
of the building, based on which the number of water closets is determined. The occupancy
load is determined according to OBC clause 3.1.17.1 and is calculated using the net floor
area of the building.

Given that the process requires using different rules, it is prone to error. According to
the designers, simple calculation mistakes such as miscalculating floor area can cause dis-
crepancies between one designer’s work and another. Further, different floors of a building
and even different parts of the same floor can be used for different purposes (e.g., office or
eatery). This requires using different rules for each part, which, in addition to being time
consuming, will increase the chance of error. To provide a common understanding of the
flow of checking the rule, designers and code experts walked the developers through the
checking process and developed a general framework for how the rule should be checked.
The proposed framework is displayed in Figure 3.

Buildings 2021, 11, 456 11 of 22

the users; secondly, the next system components will be designed using the same proce-
dure in the first iteration. The cycle will iterate until there is no other component to add
and no issues in the existing components identified.

4. Case study
The proposed framework is used to develop an ARC solution for an architectural

firm located in Canada. Since the client is a private company, the priority was to decrease
the time and errors in rule checking processes, especially in the design and planning
phases. As a result, simplicity and functionality were the key requirements of the project.
The project requirements fit well with the recommendations made in this article and pro-
vide a unique opportunity for evaluating those recommendations. The requested project
deliverable was an IFC-based software prototype capable of capturing rules and automat-
ically and proactively checking a proposed design against them.

4.1. Rule selection and analysis
The rule considered in this project is the code “3.7.4—Plumbing and drainage sys-

tems” from the Ontario Building code (OBC). The code determines plumbing fixture re-
quirements and consists of over 100 complex interconnected rules. As an example, the
following is a clause that determines water closet requirements for a specific class of build-
ings. “Except for motion picture theaters, the number of water closets required for Group
A division 1 occupancies shall conform to table 3.7.4.3.B.” In order to check this rule, one
first needs to know what group A division 1 means. This refers to the classification system
in clause 3.1.2.1 of the OBC. Once the building classification is identified, the relevant code
for the building class and usage should be determined. These requirements are deter-
mined in a set of tables in code 3.7.4. However, the tables require the occupancy load to
determine the number of washrooms. As such, another code is needed to determine the
occupancy load of the building, based on which the number of water closets is deter-
mined. The occupancy load is determined according to OBC clause 3.1.17.1 and is calcu-
lated using the net floor area of the building.

Given that the process requires using different rules, it is prone to error. According
to the designers, simple calculation mistakes such as miscalculating floor area can cause
discrepancies between one designer’s work and another. Further, different floors of a
building and even different parts of the same floor can be used for different purposes (e.g.,
office or eatery). This requires using different rules for each part, which, in addition to
being time consuming, will increase the chance of error. To provide a common under-
standing of the flow of checking the rule, designers and code experts walked the develop-
ers through the checking process and developed a general framework for how the rule
should be checked. The proposed framework is displayed in Figure 3.

Figure 3. A general framework for how the rule should be checked. Figure 3. A general framework for how the rule should be checked.

4.2. Requirement Analysis and Initial Algorithm

This step relates to the technical assessment of rules by the development team. In this
step, the development team will examine the information that is necessary for checking
the rules (e.g., data tables, floor areas, and building elements). A key purpose of this step
is to determine the information exchange processes. The required information should
be embedded into the design models (BIM), extracted into an IFC format, and retrieved
(queried) by the checking software. The requirements that are determined in the first
step will play an important role. For instance, the use of the latest IFC version model
views (MVD) to capture the necessary information is recommended. After analyzing
data requirements, the development team assesses the processes and determines the
parts/processes of the rule that would be valuable for automation. As a result, this
step identifies the main structure of rules, develops a generic rule checking algorithm,
and establishes information exchange standards. In this project, the following technical
requirements were established:

- The rules should be checked for women’s and men’s washrooms separately. The
results will determine other types of washrooms (e.g., universal).

- Minimal interference with the designer’s usual practices.
- A simple IFC export procedure (using predefined MVDs).
- A minimum IFC file size.

Buildings 2021, 11, 456 12 of 20

- Software independency.

Once the requirements are established, the rule checking process was assessed, and key
considerations were highlighted for the development team. The following considerations
were identified to be embedded in the algorithm:

- The checking process should be able to decompose a floor into separate usage spaces
so that it can account for different usages in one floor.

- For the system to be proactive, it should be able to identify the required number
of water closets in advance before the design is initiated (i.e., the initial stage of
the design).

- Most of the numbers are subject to change in the future. The numbers and tables
should not be hardcoded, and users should be able to adjust them.

- The level of automation: Area and occupancy load calculation should be automated.
Users can manually input building specific features (such as intended use).

In this project, given that only coordination and item type information is needed, the
Reference View MVD is used, which has a relatively smaller size than other model views.
The development team suggested a modular design of the software, in which each module
is used to address a specific requirement of the final product. The proposed software
architecture consisted of five main modules for (1) model decomposition, (2) occupancy
load and plumbing fixture requirement calculator, (3) plumbing fixture counter, (4) rule to
database convertor, and (5) rule checker and reporting module. The decomposer module is
needed to break down an IFC file into floors and spaces, or a washroom module is needed to
identify which spaces are used for washrooms, whether the washroom is for men, women,
or other, and how many water closets/urinals are in the washroom. Figure 4 displays the
modularized architecture of the proposed product by the developers. As demonstrated,
the user interacts with the UI and provides preliminary information required for checking
processes. The input data is then used in subsequent modules to check the rule. As
displayed, the approach converts the requirements into relational databases, which are
used by the checking software. Here, two main databases are used to contain the code
requirement information: one for water closet requirements and the other for occupancy
load. This approach provides adequate flexibility for the users to change the requirements
as needed (in case of rules changing).

The proposed architecture evaluates each space by first looking for specific tags made
by designers (e.g., men’s washroom). However, this approach requires designers to tag
and label every space which is not according to their previous practices in this project.
To avoid too many interruptions, they were asked to only label a washroom that has no
urinals in it, and is not intended for women. This way, tagging is reduced considerably.
The software uses the “IFCContainedInSpatialStructure” relationship to automatically
detect the existence of urinals in a space and assign the water closets under the men’s
requirements. Figure 5 provides an example of how this relationship is used in this project.

4.3. Evolutionary Development Approach

The implementation process was carried out in an iterative process (as determined
by the proposed workflow), in which the software was gradually developed, tested, and
refined based on the panel’s feedback. In each iteration, after a subsystem was designed, it
was tested by the expert panel. The evaluation included an algorithm test (whether the tool
correctly checks the rules), performance test (e.g., run time), and UI test (e.g., easy to use
features and readable report). The testing procedure included both post design verification
applications and pre-design requirement identification. The latter tests the proactivity of the
system by testing how it can help designers identify the design requirements according to
a set of rules before initiating the design. In this project, the final prototype was developed
in a total of six iterations. In the first step, the main purpose was to capture the main
algorithm and create a basic system capable of translating the rules into code. This system
lacked proactive performance. To address proactivity, the software was refined to provide
a set of information (e.g., occupancy load and expected number of required water closets)

Buildings 2021, 11, 456 13 of 20

based on minimum design information (such as floor perimeter). Next iterations addressed
performance issues such as unit conversion, calculation errors (e.g., number rounding),
and report details. In addition, a user guide was added in a “Help” tab. The product
development process can be observed in Figure 6.

Buildings 2021, 11, 456 13 of 22

software uses the “IFCContainedInSpatialStructure” relationship to automatically detect
the existence of urinals in a space and assign the water closets under the men’s require-
ments. Figure 5 provides an example of how this relationship is used in this project.

Figure 4. Modularized architecture of the proposed product by the developers. Figure 4. Modularized architecture of the proposed product by the developers.

Figure 7 demonstrates how the system can be used proactively. In the initial stages
of design, designers will only need to determine the expected building perimeter and its
type (e.g., office or residential). An empty box BIM model will be sufficient for the system
to calculate the expected occupancy and the required number of water closets for the
building. This way, designers can avoid erroneous and difficult calculations to determine
the required water closets and the ARC system will be used in the design processes to help
designers (proactively).

Buildings 2021, 11, 456 14 of 20
Buildings 2021, 11, 456 14 of 22

Figure 5. An example relationship between water closets and the washrooms they are located in.

4.3. Evolutionary Development Approach
The implementation process was carried out in an iterative process (as determined

by the proposed workflow), in which the software was gradually developed, tested, and
refined based on the panel’s feedback. In each iteration, after a subsystem was designed,
it was tested by the expert panel. The evaluation included an algorithm test (whether the
tool correctly checks the rules), performance test (e.g., run time), and UI test (e.g., easy to
use features and readable report). The testing procedure included both post design veri-
fication applications and pre-design requirement identification. The latter tests the proac-
tivity of the system by testing how it can help designers identify the design requirements
according to a set of rules before initiating the design. In this project, the final prototype
was developed in a total of six iterations. In the first step, the main purpose was to capture
the main algorithm and create a basic system capable of translating the rules into code.
This system lacked proactive performance. To address proactivity, the software was re-
fined to provide a set of information (e.g., occupancy load and expected number of re-
quired water closets) based on minimum design information (such as floor perimeter).
Next iterations addressed performance issues such as unit conversion, calculation errors
(e.g., number rounding), and report details. In addition, a user guide was added in a
“Help” tab. The product development process can be observed in Figure 6.

Figure 7 demonstrates how the system can be used proactively. In the initial stages
of design, designers will only need to determine the expected building perimeter and its
type (e.g., office or residential). An empty box BIM model will be sufficient for the system
to calculate the expected occupancy and the required number of water closets for the
building. This way, designers can avoid erroneous and difficult calculations to determine
the required water closets and the ARC system will be used in the design processes to
help designers (proactively).

Figure 5. An example relationship between water closets and the washrooms they are located in.
Buildings 2021, 11, 456 15 of 22

Figure 6. ARC systems, their features, and issues after iterations 1,2,4, and 6. Figure 6. ARC systems, their features, and issues after iterations 1,2,4, and 6.

Buildings 2021, 11, 456 15 of 20Buildings 2021, 11, 456 16 of 22

Figure 7. An example of using the system to promote proactive design.

5. Discussion
In the final iteration, the tool successfully worked on BIM models and a code expert

from the firm approved its performance. Once the product was technically approved in
the expert panel, the tool was presented to a group of five designers for a simple qualita-
tive evaluation. Three of the designers were from Canada, one from the UK, and one from
the US, all with over 5 years of experience in industrial work. In the session, the tool was
showcased and then the designers were asked to participate in an open discussion on the
possible advantages and challenges of the tool. Their feedback is briefly summarized in
the following.

The most prominent feature that was acknowledged in the session was that the soft-
ware is very useful in training the user on how to check the rules. Since the product was
practically designed by designers, it has a very understandable process for another de-
signer, who has not previously worked with the software. The proactivity of the software
was also recognized as a major advantage as compared to other rule checking tools. An-
other advantage recognized by the audience was the ability of the software to prevent
conflicts between architects in rule checking processes. Since everyone uses the same sys-
tem, issues such as rule miscomprehension or calculation errors will no longer occur. The
major downside mentioned by the designers was the fact that repeating the same process
for a different region would require fundamental changes in the software. This is mainly
because different codes use different approaches for similar issues; for instance, the Amer-
ican version of the same code does not calculate the occupancy load the same way. This
further highlights the necessity for regulatory agencies to codify their code.

5.1. Limitations
The case study shows that a close collaboration by end-users can potentially result in

successful proactive systems. Nevertheless, there were limitations as well. The main lim-
itation can be considered the lack of a stable data standard and modeling guideline. IFC
has made significant advances in terms of interoperability and data sharing, but it is not
very useful by itself. EXPRESS and STEP languages do not fit well with the formal rule
checking languages. As a result, even a simple query for data retrieval requires hard-cod-
ing. In addition, the large diversity of IFC formats result in case-dependent non-scalable
ARC systems. This means that, eventually, an ARC system that is solely based on IFC will
turn into a non-scalable product, as it might not be able to merge easily with other emerg-
ing technologies.

Figure 7. An example of using the system to promote proactive design.

5. Discussion

In the final iteration, the tool successfully worked on BIM models and a code expert
from the firm approved its performance. Once the product was technically approved in the
expert panel, the tool was presented to a group of five designers for a simple qualitative
evaluation. Three of the designers were from Canada, one from the UK, and one from
the US, all with over 5 years of experience in industrial work. In the session, the tool was
showcased and then the designers were asked to participate in an open discussion on the
possible advantages and challenges of the tool. Their feedback is briefly summarized in
the following.

The most prominent feature that was acknowledged in the session was that the
software is very useful in training the user on how to check the rules. Since the product was
practically designed by designers, it has a very understandable process for another designer,
who has not previously worked with the software. The proactivity of the software was
also recognized as a major advantage as compared to other rule checking tools. Another
advantage recognized by the audience was the ability of the software to prevent conflicts
between architects in rule checking processes. Since everyone uses the same system, issues
such as rule miscomprehension or calculation errors will no longer occur. The major
downside mentioned by the designers was the fact that repeating the same process for a
different region would require fundamental changes in the software. This is mainly because
different codes use different approaches for similar issues; for instance, the American
version of the same code does not calculate the occupancy load the same way. This further
highlights the necessity for regulatory agencies to codify their code.

5.1. Limitations

The case study shows that a close collaboration by end-users can potentially result
in successful proactive systems. Nevertheless, there were limitations as well. The main
limitation can be considered the lack of a stable data standard and modeling guideline.
IFC has made significant advances in terms of interoperability and data sharing, but it is
not very useful by itself. EXPRESS and STEP languages do not fit well with the formal
rule checking languages. As a result, even a simple query for data retrieval requires hard-
coding. In addition, the large diversity of IFC formats result in case-dependent non-scalable
ARC systems. This means that, eventually, an ARC system that is solely based on IFC
will turn into a non-scalable product, as it might not be able to merge easily with other
emerging technologies.

Buildings 2021, 11, 456 16 of 20

Furthermore, as soon as designers export an IFC file, they are disconnected from the
design environment. In general, IFC toolchains push designers away from their usual
design environment and prevent simple user-intuitive checks. This has two downsides.
First, it complicates the process of understanding rules, and, second, it results in continuous
interruptions in s designer’s workflow, no matter how fluent the process is designed. In
contrast, tools such as Dynamo and Grasshopper can embed checking processes into a
designer’s work environment, thus allowing them to conduct implicit checks; nevertheless,
IFC remains the only software-independent solution. Perhaps, efforts in the development
of ifcOWL or semantic-based solutions in general can address this problem, although this
is yet to be investigated [52].

Lastly, given that this study was mostly focused on identifying critical challenges and
exploring ways to address the business challenges of ARC practices, the impact of different
types of rules has not been comprehensively analyzed. With this regard, Solihin and
Eastman classified BIM rules based on their computational complexity [3]. The integration
of their proposed classification and the proposed framework in this study should be
investigated in future studies to see how adaptable the proposed framework is, and where
it should be improved.

5.2. Implications

The review provided in this research implies that end-users of ARC systems are often
not engaged in the development processes. The outcome is black-box non-scalable systems
that cannot be easily integrated in the complex processes of a daily designer. Consequently,
ARC faces several impediments when it comes to real-life implementations, especially in
the private sector. These findings suggest that business requirements are just as important
as the technical requirements. Herein, the integration of the different parties involved
can be arguably the greatest challenge of an ARC project. For several years, IFC has been
advertised as the key solution to the fragmentation issues of the AEC industry. However,
the findings of this study suggest that IFC is not the silver bullet it was once considered
to be. It imposes several challenges to adapt all the design processes within an IFC-based
platform (Section 5.1). Given that IFC is the sole solution for a much-needed open-BIM
environment, it should be used as the main information exchange technology. However,
future practices should focus the encoding of the rule-checking directly into the design
or common data environment (CDE) rather than into an IFC-based platform. This would
be useful, in particular, if the CDE consists of a live web-based database. In other words,
the rule-checking is implemented in the highest layer where information is already stored,
but IFC is used as the software communication protocol. The following section further
discusses the key implications for the theoretical side.

5.3. Perspectives of ARC in the Future

We are moving to an era of intelligent machines where machines understand the
requirements and do the work themselves. Concepts such as smart cities, smart homes,
and intelligent facilities are becoming the center of attention, and savvy companies see
their business sustainability severely reliant on how much they invest in these domains.
Business processes are becoming more and more automated, and rule-based systems are
increasingly demanded. As a result, it can be observed that the role of technologies is
no longer passive, and they are having a more active role in utilizing data-based smart
systems. Technologies are now smart enough to engage in the processes prior to and during
their occurrence; particularly, this can be observed in the recent advances in BIM systems.
Through integration with IoT and Machine learning algorithms, BIM is becoming more
intelligent, and soon it will be able to detect patterns and propose solutions all by itself.
Occupants’ role is gaining more attention as it is now possible to include their behavior and
preferences in the design, construction, and operation stages. At the core of such works,
rule-based systems are particularly needed [48]. We can see such systems in different areas

Buildings 2021, 11, 456 17 of 20

from occupant tracking systems [53] to construction site task automation [51], all of which
require a set of rules to assess data and make/propose decisions.

Such technological shifts must also be reflected in how we perceive rules as a more
proactive concept rather than a passive regulatory concept. ARC must be viewed not
as a technical tool for quality control but as a service for automated design, on-demand
analysis, and, ultimately, for establishing intelligent buildings and smart cities. ARC
should be considered a form of machine learning tool, beyond an expert system. Such a
standpoint pushes the value of ARC beyond just checking rules but in generating them itself.
Therefore, the key value of ARC is beyond quality control, and is in its role in transforming
organizations to AI initiatives, by imposing the sophisticated cultural changes necessary to
develop and deploy ARC systems [48].

Arguably, the long-term perspective of the role of ARC systems in the AEC industry
is complete design automation. As a result, it can be expected that future ARC studies will
focus on reversing the traditional approach in which the design is checked against the rules
into a new approach, in which designs will be automatically generated by the rules. The
future ARC systems will be able to understand the requirements and rules, identify design
constraints, and accordingly generate an optimal design scenario. In other words, rules
will build the building themselves rather than just checking them. Of course, such a shift
requires a significant cultural transition from passive ARC systems to active ones.

We argue that a proactive perspective is needed to shift from traditional quality-
control ARC to future automated-design ARC; a perspective in which the role of ARC first
transforms from a passive technology to a semi-active one as a proactive tool. Figure 8
demonstrates the three approaches of ARC implementations considered in this study. The
AEC industry must create an incentive for private clients to demand and use ARC systems
proactively in their daily projects. Proactive design approaches can ultimately set the path
for the widespread adoption of ARC by (1) educating the AEC community, (2) pushing
the technical edges of rule-based systems to active technologies from passive ones, and
(3) increasing client awareness, and motivating them to invest in the next generation of
bottom-up, AI-enabled ARC systems.

Buildings 2021, 11, 456 19 of 22

Figure 8. Three perspectives on the role of ARC in AEC applications.

6. Conclusions
In this study, the concept of IFC-based ARC and its applications in the AEC industry

are analyzed. It is argued that deploying ARC systems requires sophisticated cultural
changes among the AEC community, which can only be achieved through wide-scale us-
age of these systems. As a result, encouraging both public and private clients to adopt
ARC systems as a key service in their organizations is critical. It is further discussed that
because of the post-design verification nature of the current ARC systems, they mostly
address the needs of public clients, and the private sector lags far behind in adopting ARC.
We observe that many studies have advanced the technical capabilities of ARC; neverthe-
less, sufficient demand from the industry is not found. In fact, the increasing complexity
of ARC systems has resulted in the lack of practical solutions for industrial problems.

As a result, arguably, the main challenge of the adoption of ARC is not the techno-
logical side, but is its governance and business management side [48]. It is not that we
cannot translate rules into algorithms, it is that, with current approaches, the final product
does not really serve the needs of an everyday designer. Th current design-check-sepa-
rated paradigm imposes a burden on designers because, iteratively, the fail-to-pass issues
will only result in rework. To this end, this study attempts to investigate the existing best
practices in previous IFC-based ARC projects, and develop a framework. The framework
focuses mostly on pushing ARC as close as possible to the design and engineering team.
The objective is to enable a bottom-up approach, building upon the requirements and re-
sources of end-users to achieve proactivity.

To evaluate the framework, it is implemented in a real case study to develop an ARC
solution for an architectural firm located in Canada. The case study demonstrates that the
proposed framework is feasible, and a close collaboration by the end-users can potentially

Figure 8. Three perspectives on the role of ARC in AEC applications.

Buildings 2021, 11, 456 18 of 20

6. Conclusions

In this study, the concept of IFC-based ARC and its applications in the AEC industry
are analyzed. It is argued that deploying ARC systems requires sophisticated cultural
changes among the AEC community, which can only be achieved through wide-scale usage
of these systems. As a result, encouraging both public and private clients to adopt ARC
systems as a key service in their organizations is critical. It is further discussed that because
of the post-design verification nature of the current ARC systems, they mostly address the
needs of public clients, and the private sector lags far behind in adopting ARC. We observe
that many studies have advanced the technical capabilities of ARC; nevertheless, sufficient
demand from the industry is not found. In fact, the increasing complexity of ARC systems
has resulted in the lack of practical solutions for industrial problems.

As a result, arguably, the main challenge of the adoption of ARC is not the technologi-
cal side, but is its governance and business management side [48]. It is not that we cannot
translate rules into algorithms, it is that, with current approaches, the final product does
not really serve the needs of an everyday designer. Th current design-check-separated
paradigm imposes a burden on designers because, iteratively, the fail-to-pass issues will
only result in rework. To this end, this study attempts to investigate the existing best
practices in previous IFC-based ARC projects, and develop a framework. The framework
focuses mostly on pushing ARC as close as possible to the design and engineering team.
The objective is to enable a bottom-up approach, building upon the requirements and
resources of end-users to achieve proactivity.

To evaluate the framework, it is implemented in a real case study to develop an
ARC solution for an architectural firm located in Canada. The case study demonstrates
that the proposed framework is feasible, and a close collaboration by the end-users can
potentially result in successful proactive systems. The study also revealed that enabling
easy understanding of rules is essential. This is especially important, given that complete
automation of some rules might be difficult or impossible. In such cases, the best alternative
is to enable an easy definition of rules for the end users, which the proposed framework
can achieve.

Author Contributions: Conceptualization, S.S. and Y.-C.Z.; methodology, S.S.; software, Y.-C.Z.;
validation, S.S. and Y.-C.Z.; formal analysis, S.S.; investigation, S.S. and Y.-C.Z.; resources, S.S.; data
curation, S.S.; writing—original draft preparation, S.S. and Y.-C.Z.; writing—review and editing, S.S.,
Y.-C.Z. and J.-R.L.; visualization, S.S.; supervision, J.-R.L. and T.E.E.-D.; project administration, J.-R.L.
and T.E.E.-D.; funding acquisition, J.-R.L. All authors have read and agreed to the published version
of the manuscript.

Funding: The research was funded by the National Natural Science Foundation of China (grant
number 72091512 and 51908323), and the Tsinghua University Initiative Scientific Research Program
(grant number 2019Z02UOT).

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fenves, S.J. Tabular Decision Logic for Structural Design. J. Struct. Div. 1966, 92, 473–490. [CrossRef]
2. Eastman, C.; Lee, J.M.; Jeong, Y.S.; Lee, J.K. Automatic rule-based checking of building designs. Autom. Constr. 2009, 18, 1011–1033.

[CrossRef]
3. Solihin, W.; Eastman, C. Classification of rules for automated BIM rule checking development. Autom. Constr. 2015, 53, 69–82.

[CrossRef]
4. Salama, D.M.; El-Gohary, N.M. Semantic text classification for supporting automated compliance checking in con-struction. J.

Comput. Civ. Eng. 2013, 30, 04014106. [CrossRef]
5. Pauwels, P.; Van Deursen, D.; Verstraeten, R.; De Roo, J.; De Meyer, R.; Van de Walle, R.; Van Campenhout, J. A semantic rule

checking environment for building performance checking. Autom. Constr. 2011, 20, 506–518. [CrossRef]
6. Lin, J.-R.; Zhou, Y.-C. Semantic classification and hash code accelerated detection of design changes in BIM models. Autom. Constr.

2020, 115, 103212. [CrossRef]

http://doi.org/10.1061/JSDEAG.0001567
http://doi.org/10.1016/j.autcon.2009.07.002
http://doi.org/10.1016/j.autcon.2015.03.003
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000301
http://doi.org/10.1016/j.autcon.2010.11.017
http://doi.org/10.1016/j.autcon.2020.103212

Buildings 2021, 11, 456 19 of 20

7. Hjelseth, E.; Lassen, A.K.; Dimyadi, J. Development of BIM-based model checking solutions. In Proceedings of the 33rd
International Conference of CIB W78, Brisbane, Australia, 31 October–2 November 2016.

8. Hamidavi, T.; Abrishami, S.; Ponterosso, P.; Begg, D.; Nanos, N. OSD: A framework for the early stage parametric optimisation of
the structural design in BIM-based platform. Constr. Innov. 2020, 20. [CrossRef]

9. Mekawy, M.; Petzold, F. BIM-based model checking in the early design phases of precast concrete structures: Learning, Prototyping
and Adapting. In Proceedings of the 23rd International Conference on Computer-Aided Architectural Design Research in Asia,
Beijing, China, 17–19 May 2018; pp. 71–80.

10. Beach, T.H.; Hippolyte, J.-L.; Rezgui, Y. Towards the adoption of automated regulatory compliance checking in the built
environment. Autom. Constr. 2020, 118. [CrossRef]

11. Clayton, M.; Fudge, P.; Thompson, J. Automated plan review for building code compliance using BIM. In Proceedings of the 20th
International Workshop: Intelligent Computing in Engineering (EG-ICE 2013), Vienna, Austria, 1–3 July 2013.

12. Garrett, J.H.; Fenves, S.J. A knowledge-based standards processor for structural component design. Eng. Comput. 1987, 2, 219–238.
[CrossRef]

13. Delis, E.A.; Delis, A. Automatic Fire-Code Checking Using Expert-System Technology. J. Comput. Civ. Eng. 1995, 9, 141–156.
[CrossRef]

14. Rosenman, M.A.; Gero, J.S. Design codes as expert systems. Comput. Des. 1985, 17, 399–409. [CrossRef]
15. Dym, C.; Henchey, R.; Delis, E.; Gonick, S. A knowledge-based system for automated architectural code checking. Comput. Des.

1988, 20, 137–145. [CrossRef]
16. Garrett, J.H.; Hakim, M.M. Object-oriented model of engineering design standards. J. Comput. Civ. Eng. 1992, 6, 323–347.

[CrossRef]
17. Yabuki, N.; Law, K.H. An Object-Logic model for the representation and processing of design standards. Eng. Comput. 1993,

9, 133–159. [CrossRef]
18. Kerrigan, S.; Law, K.H. Logic-based regulation compliance-assistance. In Proceedings of the 9th International Conference on

Artificial Intelligence and Law, Edinburgh, UK, 24–28 June 2003; pp. 126–135.
19. Pinheiro, S.; Wimmer, R.; O’Donnell, J.; Muhic, S.; Bazjanac, V.; Maile, T.; Frisch, J.; van Treeck, C. MVD based information

exchange between BIM and building energy performance simulation. Autom. Constr. 2018, 90, 91–103. [CrossRef]
20. Preidel, C.; Borrmann, A. Automated code compliance checking based on a visual language and building information modeling.

In Proceedings of the 32nd International Symposium on Automation and Robotics in Construction (ISARC), Oulu, Finland,
15–18 June 2015; IAARC Publications: Oulu, Finland, 2015.

21. Motamedi, A.; Hammad, A.; Asen, Y. Knowledge-assisted BIM-based visual analytics for failure root cause detection in facilities
management. Autom. Constr. 2014, 43, 73–83. [CrossRef]

22. Motawa, I.; Almarshad, A. A knowledge-based BIM system for building maintenance. Autom. Constr. 2013, 29, 173–182.
[CrossRef]

23. Luo, H.; Gong, P. A BIM-based Code Compliance Checking Process of Deep Foundation Construction Plans. J. Intell. Robot. Syst.
2014, 79, 549–576. [CrossRef]

24. Martins, J.P.; Monteiro, A. LicA: A BIM based automated code-checking application for water distribution systems. Autom. Constr.
2013, 29, 12–23. [CrossRef]

25. Patlakas, P.; Livingstone, A.; Hairstans, R.; Neighbour, G. Automatic code compliance with multi-dimensional data fitting in a
BIM context. Adv. Eng. Inform. 2018, 38, 216–231. [CrossRef]

26. Sulankivi, K.; Zhang, S.; Teizer, J.; Eastman, C.M.; Kiviniemi, M.; Romo, I.; Granholm, L. Utilization of BIM-based automated
safety checking in construction planning. In Proceedings of the 19th International CIB World Building Congress, Brisbane,
Australia, 5–9 May 2013; pp. 5–9.

27. Cooke, T.; Lingard, H.; Blismas, N.; Stranieri, A. ToolSHeDTM: The development and evaluation of a decision support tool for
health and safety in construction design. Eng. Constr. Archit. Manag. 2008, 15, 336–351. [CrossRef]

28. Choi, J.; Choi, J.; Kim, I. Development of BIM-based evacuation regulation checking system for high-rise and complex buildings.
Autom. Constr. 2014, 46, 38–49. [CrossRef]

29. Cheng, J.C.; Das, M. A BIM-based web service framework for green building energy simulation and code checking. J. Inf. Technol.
Constr. 2014, 19, 150–168.

30. Yurchyshyna, A.; Zarli, A. An ontology-based approach for formalisation and semantic organisation of conformance requirements
in construction. Autom. Constr. 2009, 18, 1084–1098. [CrossRef]

31. Beach, T.H.; Rezgui, Y.; Li, H.; Kasim, T. A rule-based semantic approach for automated regulatory compliance in the construction
sector. Expert Syst. Appl. 2015, 42, 5219–5231. [CrossRef]

32. Beetz, J.; Van Leeuwen, J.; De Vries, B. IfcOWL: A case of transforming EXPRESS schemas into ontologies. Ai Edam 2009, 23, 89.
[CrossRef]

33. Zhang, J.; El-Gohary, N.M. Automated information transformation for automated regulatory compliance checking in construction.
J. Comput. Civ. Eng. 2015, 29, B4015001. [CrossRef]

34. Zhang, J.; El-Gohary, N.M. Semantic NLP-Based Information Extraction from Construction Regulatory Documents for Automated
Compliance Checking. J. Comput. Civ. Eng. 2016, 30, 04015014. [CrossRef]

http://doi.org/10.1108/CI-11-2019-0126
http://doi.org/10.1016/j.autcon.2020.103285
http://doi.org/10.1007/BF01276414
http://doi.org/10.1061/(ASCE)0887-3801(1995)9:2(141)
http://doi.org/10.1016/0010-4485(85)90287-8
http://doi.org/10.1016/0010-4485(88)90021-8
http://doi.org/10.1061/(ASCE)0887-3801(1992)6:3(323)
http://doi.org/10.1007/BF01206345
http://doi.org/10.1016/j.autcon.2018.02.009
http://doi.org/10.1016/j.autcon.2014.03.012
http://doi.org/10.1016/j.autcon.2012.09.008
http://doi.org/10.1007/s10846-014-0120-z
http://doi.org/10.1016/j.autcon.2012.08.008
http://doi.org/10.1016/j.aei.2018.07.002
http://doi.org/10.1108/09699980810886847
http://doi.org/10.1016/j.autcon.2013.12.005
http://doi.org/10.1016/j.autcon.2009.07.008
http://doi.org/10.1016/j.eswa.2015.02.029
http://doi.org/10.1017/S0890060409000122
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000427
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000346

Buildings 2021, 11, 456 20 of 20

35. Zhang, J.; El-Gohary, N.M. Integrating semantic NLP and logic reasoning into a unified system for fully-automated code checking.
Autom. Constr. 2017, 73, 45–57. [CrossRef]

36. Dimyadi, J.; Amor, R. Automated building code compliance checking—Where is it at? In Proceedings of the 2013 World Building
Congress (CIB WBC), Brisbane, Australia, 5–9 May 2013.

37. Lin, T.A. Building Smart–A Strategy for Implementing BIM Solution in Singapore. Synth. J. 2006, 5, 117–124.
38. Khemlani, L. CORENET e-PlanCheck: Singapore’s Automated Code Checking System, AECbytes (Building the Future). 2006.

Available online: https://www.aecbytes.com/feature/2005/CORENETePlanCheck.html (accessed on 29 September 2021).
39. novaCITYNETS Pte. Ltd. Available online: http://www.novacitynets.com/company_aboutus.htm (accessed on 30 October 2020).
40. Drogemuller, R.; Woodbury, R.; Crawford, J. Extracting representation from structured text: Initial steps. In Proceedings of the

36th CIB W78 Conference on Information and Communication Technologies, Reykjavik, Iceland, 28–30 June 2000; pp. 302–307.
41. Ding, L.; Drogemuller, R.; Rosenman, M.; Marchant, D.; Gero, J. Automating Code Checking for Building Designs-DesignCheck;

University of Wollongong: Wollongong, Australia, 2006.
42. Lee, J.M. Automated Checking of Building Requirements on Circulation Over a Range of Design Phases. Ph.D. Thesis, Georgia

Institute of Technology: Atlanta, GA, USA, 2010.
43. Han, C.S.; Kunz, J.C.; Law, K.H. Compliance analysis for disabled access. In Advances in Digital Government; Springer: New York,

NY, USA, 2002; pp. 149–162.
44. Eberg, E.; Heieraas, T.; Olsen, J.; Eidissen, S.H.; Eriksen, S.; Kristensen, K.H.; Christoffersen, O.; Lê, M.A.T.; Mohus, F. Experiences

in Development and Use of a Digital Building Information Model (BIM) According to IFC Standards from the Building Project of Tromsø
University College (HITOS) after Completed Full Conceptual Design Phase; Statsbygg: Oslo, Norway, 2006.

45. Solihin, W.; Eastman, C.; Lee, Y.-C.; Yang, D.-H. A simplified relational database schema for transformation of BIM data into a
query-efficient and spatially enabled database. Autom. Constr. 2017, 84, 367–383. [CrossRef]

46. Dimyadi, J.; Pauwels, P.; Amor, R. Modelling and accessing regulatory knowledge for computer-assisted compliance audit. J. Inf.
Technol. Constr. 2016, 21, 317–336.

47. Nawari, N.O. A Generalized Adaptive Framework (GAF) for Automating Code Compliance Checking. Buildings 2019, 9, 86.
[CrossRef]

48. buildingSMART, Framing the Business Case for Automated Rule Checking. Available online: https://www.buildingsmart.org/
wp-content/uploads/2020/06/buildingSMART-RR-TR1012-Framing-the-Business-Case-for-Automated-Rule-Checking-v1.1
-Final-Dec-2019.pdf (accessed on 30 October 2020).

49. Krystallis, I.; Vernikos, V.; El-Jouzi, S.; Burchill, P. Future-proofing governance and BIM for owner operators in the UK. Infrastruct.
Asset Manag. 2016, 3, 12–20. [CrossRef]

50. Erfani, A.; Tavakolan, M.; Mashhadi, A.H.; Mohammadi, P. Heterogeneous or homogeneous? A modified decision-making
approach in renewable energy investment projects. AIMS Energy 2021, 9, 558–580. [CrossRef]

51. Zhong, R.Y.; Peng, Y.; Xue, F.; Fang, J.; Zou, W.; Luo, H.; Ng, S.T.; Lu, W.; Shen, Q.; Huang, G.Q. Prefabricated construction
enabled by the Internet-of-Things. Autom. Constr. 2017, 76, 59–70. [CrossRef]

52. Sobhkhiz, S.; Taghaddos, H.; Rezvani, M.; Ramezanianpour, A.M. Utilization of semantic web technologies to improve BIM-LCA
applications. Autom. Constr. 2021, 130, 103842. [CrossRef]

53. Park, J.W.; Chen, J.; Cho, Y.K. Self-corrective knowledge-based hybrid tracking system using BIM and multimodal sensors. Adv.
Eng. Informatics 2017, 32, 126–138. [CrossRef]

http://doi.org/10.1016/j.autcon.2016.08.027
https://www.aecbytes.com/feature/2005/CORENETePlanCheck.html
http://www.novacitynets.com/company_aboutus.htm
http://doi.org/10.1016/j.autcon.2017.10.002
http://doi.org/10.3390/buildings9040086
https://www.buildingsmart.org/wp-content/uploads/2020/06/buildingSMART-RR-TR1012-Framing-the-Business-Case-for-Automated-Rule-Checking-v1.1-Final-Dec-2019.pdf
https://www.buildingsmart.org/wp-content/uploads/2020/06/buildingSMART-RR-TR1012-Framing-the-Business-Case-for-Automated-Rule-Checking-v1.1-Final-Dec-2019.pdf
https://www.buildingsmart.org/wp-content/uploads/2020/06/buildingSMART-RR-TR1012-Framing-the-Business-Case-for-Automated-Rule-Checking-v1.1-Final-Dec-2019.pdf
http://doi.org/10.1680/jinam.15.00015
http://doi.org/10.3934/energy.2021027
http://doi.org/10.1016/j.autcon.2017.01.006
http://doi.org/10.1016/j.autcon.2021.103842
http://doi.org/10.1016/j.aei.2017.02.001

	Introduction
	Literature Review
	Automated Rule Checking
	Traditional Application of ARC: Validation
	Challenges of ARC

	Methodology
	Case Study
	Rule Selection and Analysis
	Requirement Analysis and Initial Algorithm
	Evolutionary Development Approach

	Discussion
	Limitations
	Implications
	Perspectives of ARC in the Future

	Conclusions
	References

