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Abstract: Recently, green structures turned into a huge path to an economic future. Green building
outlines include finding the harmony between agreeable home living and a maintainable environment.
Furthermore, the usage of modern technologies is seen as part of greener construction changes to
make the urban environment more viable. This paper introduces an exhaustive state-of-art review
and current practices to look for the ideal green arrangement’s models, procedures, and parameters
utilizing the genetic algorithms innovations to help for settling on the most ideal choice from various
options. The integrated Genetic Algorithm (GA) along with the Nondominated Sorting Genetic
Algorithm strategy GA-NSGA-II is considered to be more accurate for predicting a viable future. The
above methodology is widely relevant for its humility, ease of execution, and enormous durability.
Besides other approaches, the GA was incorporated as well as the Neural Network (NN), Simulated
Annealing (SA), Fuzzy Set theory, decision-making multicriteria, and multi-objective programming.
The most fashionable methods are moderately the embedded GA-NSGA-II approaches. This paper
gives an outline of the capability of GA-based MOO in supporting the advancement of methodologies
of the techniques and parameters to find the best solution for the building decision-making cycle.
The GA combined schemes can fulfill all the requirements for finding the optimality in the case of
multi-objective problem-solving.

Keywords: genetic algorithms; optimization; green architecture; technologies; strategies techniques;
models

1. Introduction

Building structures that offer agreeable, flexible, vitality efficient, and living environ-
ment at a lower cost are desired by building proprietors and occupiers. To accomplish
this, enhancing the building performance to fulfill an assortment of human needs and
natural sustainability is needed [1]. Green strategies are a part of the outline procedure in
engineering, scene design, and urban planning [2]. The ecological compositional model
is regularly listed as follows: finding achievable solutions for an arrangement of interre-
lated variables, for example, renewable energies [3], eco-designs [4], solar energy [5–7],
lighting [8], compressed shopper waste blocks [9], waste disposal [10], air-conditioning
facilities [11], ventilation designs [12,13], shading designs [14], heating systems [15,16],
green roofs [17], building envelopes [18], wall insulation for buildings, and double-skin
facades [19–21]. These not only fulfill the preconditions of the outline, but also maximize
the quality of the plan, as outlined preferences further satisfy both stylish and convenience
requirements. The potential utilization of data, innovations, and Artificial Intelligence
(AI) calculations in preference of enabling decision-making networks are well known in
urban planning. With the approach of fast web advances, enhanced graphical automa-
tion, and complex AI systems, spatial appraisal and optimization are currently viewed
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as noteworthy regions of research [22]. Likewise, in looking at a vast state-space, multi-
model, or n-dimensional surface as the analysis of the building portrayed here, the GA
may offer noteworthy that is portrayed here, the GA may provide significant benefits over
the most growing set of optimization procedures [23,24]. This paper is a profitable survey
of different GA advances that are utilized as a part of green building enhancement and
evaluation, inside the extent of environment effect appraisal, and decision support. The
GA is merged into this inquiry because it is different than some regular AI since it is better,
whereas GAs are stochastic optimization techniques that can solve the multi-objective
optimization problem. Also, it assesses the past research in the zone of urban planning and
recharging as far as data representation and choice support tools as well as strategies and
models for urban subsystems. The discussion makes determinations over the present best
in class using the various GA and the developmental calculations methods in the natural
virtual simulation and recognize pertinent learning knowledge. At last, the paper presents
a few reviews with a view to the ultimate goal of developing an optimization solution to
assess different socioeconomic deprivation factors. In doing so, the same approach of [25]
is adopted in this paper to extend and update the review of computational optimization
methods, particularly those based on GA.

The paper is categorized according to the following sections: Section 2 clarifies the
genetic algorithm as an optimum search-technique with the GA issues and approaches that
were combined with green architectural optimization techniques. In Section 3, the results
and discussion, we investigate the issues that can be tended to by all the work alongside
the outline of the survey. Finally, the article finishes with Section 4, concluding that the
genetic algorithm (GA) is the most common approach in the construction of performance
analysis. The GA algorithm calculation impersonates the procedure of the advancement
of populaces by selecting just fit individuals for propagation. Thusly, the GA is an ideal
pursuit procedure despite the ideas of daily decision-making and the most suitable survival.
A genetic algorithm uses three main hereditary administrators: selection, crossover, and
mutation [26]. Amid each generation in the propagation procedure, the people in the
present generation are assessed by their fitness ability, which is a measure of how well
the person handles the situation. By then, every individual met in the extent to its fitness:
the higher the wellness, the higher its opportunity to take part in mating (hybrid), and to
create an offspring, a limited percentage of infant posterity witness the change mutation
behavior [27]. After numerous generations, people who have the best hereditary qualities
survive, the people that rise out of this “survival of the fittest” procedure is what speaks the
perfect solution for the issue determined by the wellness capacity and the limitations [28].
A GA meets expectations by specific reproducing of a populace of “people” could of these
be a possible solution to the query [29]. The structure of the standard GA is shown in
Figure 1.

Buildings 2021, 11, x FOR PEER REVIEW 3 of 32 
 

proprietors in the reasonable outline organize. For instance, most of the building simulation 
tools were at first produced for Heating, Ventilation, and Air Conditioning (HVAC) engineers. 

  
(a) (b) 

Figure 1. Standard Genetic Algorithm, (a) GA Structure; (b) GA Algorithm. 

Gaps: Several scholars introduced multi-objective GA schemes that were imple-
mented in the construction sector. They considered the particular priorities for the design 
of buildings to make the building optimization design easy and more feasible [33–36]. But 
they did not fulfill all the required parameters to get the most optimal solution for future 
GA problems. 

Motivations: Multitarget improvement formed into a massive research field where 
significant works incorporate many kinds of research that attempted to help designers to 
create powerful outlines. The formulation for all the GA parameters helped the users and 
designers to mitigate all their problem in any case. 

2. GA Combination Approaches 
A good review in research should include an underlying quest for pertinent works 

that utilize the web of science, e.g., Elsevier, Springer, Scopus, Library Genesis scientific 
papers (LibGen), Egyptian Universities Library (EUL), and Egyptian Knowledge Bank 
(EKB). The research uses the best idioms that formulate the review as some of the research 
words in the building field like architecture, green, energy, building, optimization, and 
sustainability. Advanced searches are performed in the journal papers and proceedings. 
The articles are referred to by the research found were likewise checked for pertinence. 
Gathering papers from proceedings are incorporated except if comparative journals diary 
papers exist. 

The inquiry is subject to all ranges of reasonable building plans (e.g., thermal com-
fort, energy consumption resulting in greenhouse gas, and water utilization). Also, this 
research focusses on technologies used in buildings, where there is noteworthy data on 
the outline of numerous frameworks like aerating and cooling frameworks, a critical uti-
lization of computational streamlining, and that utilize the term enhancement where it 
performs just mathematical or manual procedures. A brief overview of the different com-
putational development techniques and their mixes are given, including regular calculations. 

Chiranjib et al. [37] conducted surveying for the multiple assessment and selection 
approaches to energy management from 1957 to 2017 as classification literature of the dif-
ferent articles. They researched the comprehensive sustainable development green energy 
planning to discover the most convenient energy management approach using GA to re-
alize which methods were implemented in the region, assessing sustainable development 
requirements in that area. This research helps scientists and decision-makers to apply the 
processes. It was discovered from the study that many individuals, integrated, and other 
methods were suggested to solve the issue of energy planning and scheduling. They indi-
cated that there are numerous integrated methods for evaluating and selecting sustainable 

Figure 1. Standard Genetic Algorithm, (a) GA Structure; (b) GA Algorithm.

Regarding Figure 1, in every generation, individuals are chosen for propagation
as shown by the results of the wellness capability. Determination gives a higher shot of
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survival to better individuals. Consequently, genetic operations are connected to frame new
and conceivably better offspring. The calculation is ended either after a specific number
of generations or when the solution was found in the case of one global minimum, or we
utilize other AI techniques to be combined with the GA to find the optimal solution [30,31].
Computer simulations and numerous software applications for the building design process
are presented as an example, such as Ecotect, Energyplus, DOE-2, and TRNSYS [32]. PC
simulation is advantageously utilized and was well designed; regardless, it has a few
setbacks. Hence, it cannot satisfactorily meet the necessity of the planners or proprietors in
the reasonable outline organize. For instance, most of the building simulation tools were at
first produced for Heating, Ventilation, and Air Conditioning (HVAC) engineers.

Gaps: Several scholars introduced multi-objective GA schemes that were implemented
in the construction sector. They considered the particular priorities for the design of
buildings to make the building optimization design easy and more feasible [33–36]. But
they did not fulfill all the required parameters to get the most optimal solution for future
GA problems.

Motivations: Multitarget improvement formed into a massive research field where
significant works incorporate many kinds of research that attempted to help designers to
create powerful outlines. The formulation for all the GA parameters helped the users and
designers to mitigate all their problem in any case.

2. GA Combination Approaches

A good review in research should include an underlying quest for pertinent works
that utilize the web of science, e.g., Elsevier, Springer, Scopus, Library Genesis scientific
papers (LibGen), Egyptian Universities Library (EUL), and Egyptian Knowledge Bank
(EKB). The research uses the best idioms that formulate the review as some of the research
words in the building field like architecture, green, energy, building, optimization, and
sustainability. Advanced searches are performed in the journal papers and proceedings.
The articles are referred to by the research found were likewise checked for pertinence.
Gathering papers from proceedings are incorporated except if comparative journals diary
papers exist.

The inquiry is subject to all ranges of reasonable building plans (e.g., thermal comfort,
energy consumption resulting in greenhouse gas, and water utilization). Also, this research
focusses on technologies used in buildings, where there is noteworthy data on the outline
of numerous frameworks like aerating and cooling frameworks, a critical utilization of
computational streamlining, and that utilize the term enhancement where it performs
just mathematical or manual procedures. A brief overview of the different computational
development techniques and their mixes are given, including regular calculations.

Chiranjib et al. [37] conducted surveying for the multiple assessment and selection
approaches to energy management from 1957 to 2017 as classification literature of the
different articles. They researched the comprehensive sustainable development green
energy planning to discover the most convenient energy management approach using
GA to realize which methods were implemented in the region, assessing sustainable
development requirements in that area. This research helps scientists and decision-makers
to apply the processes. It was discovered from the study that many individuals, integrated,
and other methods were suggested to solve the issue of energy planning and scheduling.
They indicated that there are numerous integrated methods for evaluating and selecting
sustainable green energy, and 89.32% of the specific methods were slightly more appealing
than the 7.28% of integrated approaches.

The most popular individual method is mathematical programming by using various
algorithms. Then, it is followed by the fuzzy methods, physical hybrid energy manage-
ment system, Analytic Network Process (ANP), ZigBee technology, Analytic hierarchy
process (AHP), Data Envelopment Analysis (DEA), Artificial neural network (ANN), GA,
Supervisory Control and Data Acquisition SCADA, game theory method, and other tech-
niques [37].
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Here, we survey all the best techniques that are valuable for green building technology
in case of decision-making and to find the high-performance parameters for green structure.
The techniques are based on the GA and its combinations to get the best solution for green
building optimization systems.

2.1. GA Approach

Wang S. et al. [38] and Prendes et al. [39] demonstrated that GA measurement is
a beneficial method in the quest for optimal settings to reduce the total cost of online
ventilation systems regulation. TRNSYS is utilized as the stage for the dynamic emulation
of aeration and cooling systems that include design areas and monitoring systems. This
work is based upon a past study [40], which included three texture properties as factors.
The building’s texture elements are the extent of the HVAC framework. They argued the
GA could locate a practical arrangement, and it showed an exponential meeting on an
answer. Caldas L. et al. [41] introduced a generative tool to improve the design compo-
nents of buildings and their natural performances. They use GA as a search tool, a thermal
and lighting program that utilizes a definite thermal examination program DOE2.1E, and
an AutoLisp routine to represent results. The strategy proposed was initially approved
in connection to a hand-worked case for the optimal solution to be computed manually.
Wright et al. [42] led a multicriteria improvement of the HVAC framework outline and
control utilizing a GA. The paper investigated a multi-standard GA search algorithm in the
recognizable proof of the ideal result trademark between the energy cost of buildings and
the tenant thermal discomfort. The results are exhibited for the result qualities between
energy cost and zone thermal comfort for three plan days and three building weights. The
approach research showed that the GA should find the best outcome trademark between
the day-to-day energy cost and thermal zone comfort. A neural system was additionally
used to measured framework performance information [43], and it then reduced chiller
running expenses with the incorporation of a GA. A populace-based improvement algo-
rithm (GA) is coupled to a dynamic thermal model with recognizing expansive quantities
of different extraordinary low-energy designs [44]. The oddity of this work was the mix of a
GA with individual decisions to create an optimal minimization of energy consumption in
buildings. Thus, a GA optimization methodology is utilized to minimize the life-cycle eco-
logical effects on buildings [45] in case of considering natural efficiency in the construction
of buildings. The life-cycle natural effects are assessed as far as extended combined energy
utilization. The ideal solution is discovered utilizing organized GA. In a comparative
study, an adaptive network-based fuzzy inference system (ANFIS) scheme is utilized to
model conduit and pipe organization to acquire optimal setpoints because of restricted
sensor data [46]. The findings revealed that the GA technique ultimately increased system
efficiency. Wang et al. [47] revealed a multitarget GA enhancement model that can help
the architects in green building outline where the approach’s viability is shown for iden-
tifying the effectiveness of the solutions from various Pareto solutions. Wright et al. [48]
examined the vigor of the GA search strategy in tackling an unconstrained building opti-
mization issue when the amount of construction models used for the upgrade is limited.
The GA strategies may be assigned to streamlining agents dependent on probabilistic
populations [49]. The usage of the GA scheme with aging to synthesize HVAC systems
resulted in a modern design approach having lower energy use than the best of ordinary
framework designs. Wang et al. [50] exhibited an object-oriented framework that locates
numerous specific qualities of green building design advancement issues, for example, var-
ious leveled factors and the coupling with simulation programs. The structure actualized
GAs to comprehend unconstrained and compelled single and multitarget optimization
issues. The use of this approach is illustrated by a theoretical analysis to explore the
comparison of relationships between life-cycle expense and life-cycle ecological effects on
green building design. Tanaka et al. [51] detailed the Combined Heat and Power (CHP)
framework optimization issue and applied a GA technique with two organize improve-
ment systems (combinatorial and operation advancement). The numerical investigations
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revealed that the methodology suggested is essential for the optimal construction of CHP
frameworks. Verbeeck et al. [52] established a regional plan to automate low-energy homes
in a wide measure, considering energy utilization, ecological effect, and money-related
expenses throughout the systemic life-cycle of the structure. They utilized a multitarget
optimization method to handle this issue by consolidating genetic algorithms and the
Pareto idea. The outcomes demonstrated that the GA algorithm is extremely productive if
there should be an occurrence of multitarget advancement frameworks. Torres et al. [53]
decided the applicability of the GA for the optimization of daylighting frameworks, and
preconditions for lighting tests use a few parameters to check the daylight efficiency. The
objective of the optimization was to expand energy savings by reducing visual discomfort
while retaining massive infiltration of sunlight. The GA demonstrated the reasonability of
the technique that connects to daylighting frameworks, even with the generally complex
reproduction strategies. Znouda et al. [54] introduced an enhancement algorithm that
couples pseudo-arbitrary advancement systems based on the GA with a disentangled
instrument for building thermal assessment to reach the end goal of minimizing the en-
ergy utilization of Mediterranean structures. The GA represented a fundamental and
exceptionally productive approach for addressing non-direct combinatorial enhancement
problems, and it can discover great solutions without investigating the entire space of
research. Caldas [55] created diverse uses of GENE_ARCH, and advancement-based gener-
ative outline frameworks went for helping designers to accomplish energy-efficient and
practical building solutions. The framework applies an objective situated plan, joining a
GA as the search tool, creating energy modeling technology for DOE2.1E as an assessment
tool. The GA functions as a regular GA or as a Pareto GA for checking and advancing
multicriteria. Wright et al. [56] built up a model-based advancement technique to combine
novel heating, ventilating, and cooling framework setups. The advancement issue consid-
ered three sub-enhancement issues; the decision of a part set, the outline of the topological
associations between the segments, and the plan of a framework working procedure. Also,
a multi-objective GA scheme was utilized to build up the ideal outline strategy for the
energy system of single working for the initial step going for building up an ideal design
technique for disseminated energy framework [57]. The outcomes demonstrated that GA
could manage nonlinear optimization issues. In the study [58], an approach in which a
building façade is divided into separate cells is depicted; each cell possesses one from
two possible states, a strong wall or a window. A GA seeking technique was utilized to
optimize the condition of every cell, and the number or angle proportion of the windows
being compelled were attractive. The GA approach brought about outline solutions with
intriguing creative compositional structures to minimize the building energy utilized [59].
The improvement comes in conjunction with a Building America Benchmark, which found
that the rectangle and the trapezoid shapes were optimal consistently. Congradac et al. [60]
exhibited the enhancement of chillers working utilizing counterfeit neural systems and GA.
The consequences of the utilization of human-made brainpower and GA techniques in the
advancement of chiller operation are checked through an office building model made in
the recreation programming EnergyPlus and through a progression of investigations on a
genuine office building. Sahu et al. [61] proposed a strategy by consolidating the building’s
thermal model and an enhancement procedure (GA) to permit energy effective plan for
aerated and cooled working in a tropical atmosphere. The GA is a reasonable improvement
tool for the outline due to its ability to tackle various forms of building plans considered
all the time and its commitment to the optimal solutions worldwide. Huang et al. [62]
introduced a strategy for an ideal solid outline of indoor humidity with moisture buffering
materials. The outline framework was produced utilizing GA and transient moisture
modeling for indoor climate. The Pareto-ideal solution sets were breaking down, and the
technique had proved helpful in raising indoor humidity. Stanescu et al. [63] examined
an HVAC framework outline enhancement utilizing a definite GA simulation technique.
This strategy enhanced the HVAC application setup to eliminate the usage of resources
simulated in DOE-2 programming. The elements of a GA created to take care of simulation-
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based advancement issues for the ideal design of building parameters (heat, construction)
are described in the study [64]. The simulation method IDA-ICE and the enhancement
method GenOpt were used to discover the ideal estimates of the house envelope prefer-
ence factors and the HVAC structure. Certifiable enhancement issues in the simulation
building performance are completed to check the GA’s performance. Chantrelle et al. [65]
displayed a multicriteria tool to improve the redesign activities centered on the building of
envelopes, heating and cooling pressures, and management techniques. The optimization
was performed utilizing a GA, with the simulation of TRNSYS and COMIS. An altered
multitarget advancement approach in light of GA [66] is proposed with IDA ICE. The
blend should minimize the carbon dioxide comparable outflows, the investment cost for
a building, and its HVAC framework. Warming/cooling energy source, warm recovery
sort, and six building envelope parameters are considered. The simulation-based develop-
ment methods showed an immense ability for multitarget resolution of design problems.
Evins et al. [67] upgraded the cost and energy utilization of a measured building unit for
various atmosphere types. The destinations were carbon emanations and development
costs, and the enhancement was performed utilizing a multitarget GA. The considerations
guaranteed the properties of sunshine and shape and warming and cooling systems and
sustainability, while the imperatives reflected the rooftop area and comfort. The results
showed that the GA gives a profitable guide to the basic leadership preparation in both
general and particular terms. Hamdy et al. [68] presented a strategy for investigating
the characterized solution space by a proficient multitarget GA. The solution is used to
discover financially energy productive mixes of the design variations, which affect the
thermal execution of the house as the building envelope and the warmth recovery unit.
The multi-optimization strategy can minimize study effort and enable a very efficient and
clear review. Jin et al. [69] presented a recently developed entire life esteem-based façade
outline and improvement tool GA on a genuine façade redesign extend. They represented
the way toward distinguishing the advanced façade. The significant consequence of the
study was the best façade advancement solutions that enhance the social, natural, and
monetary estimation of the working at a reasonable capital financial cost. Evins et al. [70]
estimated a multitarget streamlining given the GA for the highly important considerations
of a private building in terms of the accuracy of UK building controls. The targets were cost
and carbon emanations, where the carbon discharges were figured utilizing the Standard
Assessment Procedure (SAP). Ahmadi and Dincer [71] illustrated an evolutionary genetic
algorithm for the cogeneration scheme producing electricity for combined heat and power
plants. The findings indicated that the specification parameter values increase with the
increase in net energy output as expected for a given unit fuel price. Shaikh et al. [72]
developed a multiagent control scheme under stochastic optimization using a genetic
algorithm for building power management. The software was used to represent effective
energy management and customer comfort. The advanced control system significantly
improved energy consumption and interior environment comfort. Tong [73] indicated
that the GA-based distribution index (IOD) technique can generate a building scheme that
offered significant flexibility in the location of the dwellings. The model’s findings are con-
sidered a beneficial reference in the case of planning green space buildings. Yang et al. [74]
incorporated simulation-based energy consumption optimizing for complex construction
based on stochastic algorithms. They submitted a web-based parallel GA optimization for
a test structure in Spain using distributed computing environment facilities to reduce the
running time of complex energy optimization systems. The findings obtained for the test
construction demonstrated a substantial reduction in computation time while still achieving
acceptable optimal outcomes. Rafiq & Russell [75] incorporated an Interactive and Visual
Genetic Clustering Algorithm (IVCGA) into the Building Information Modeling (BIM)
environment to improve design data and enable approaches as information model building.
The suggested structure helps architects, structural engineers, and building physicists to
determine multidisciplinary construction specifications allowing a wide variety of concept
models. They executed a case study to locate the efficiency of the multi-objective search
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engine to optimize the model. Wright et al. [42] used a multi-objective genetic algorithm to
determine trade-offs between energy costs and Thermal Comfort (TC) in designing a single
zone HVAC system. Results of the cost-off features are provided for three design days
and three building weights between energy cost and heat area convenience. The results
indicated that multicriteria of genetic algorithm search techniques offer excellent potential
to identify the pay-off between building heat design components and the design process
of the construction. Hamdy et al. [66] incorporated an updated GA-based optimization
technique by IDA-ICE (Building performance Simulation Program). The scheme is used to
minimize (CO2) emissions and investment costs for a two-story building with its HVAC
units. Their results indicated 32% less CO2 emissions and 26% reduced investment price
compared to the original design. Also, the scheme minimizes much overheating in the
summer and extra shading option costs. Yoon, E.J., [76] researched a timing model to
assess the position and form of greens based on their various effects (e.g., cooling and
connectivity improvement) and uses metaheuristic optimization algorithms to calculate
execution costs. They acquired 30 Pareto-optimal plans for hypothetical neighborhood
landscapes. Their results demonstrated a synergistic connection between the cooling and
the improving connectivity of buildings, as well as a trade-off between the greenery effects
and the cost of execution. Zahra et al. [77] used a multi-objective optimization GA with the
SPEA2 sustainability approach to optimize an office building facade based on the cooling
load, the heating load, and the natural light given to the building. The results indicated
that without considering the effect of openings, the optimization results in a decreased
thermal load and an increase in internal space.

2.2. GA, Monte-Carlo

Garshasbi et al. [78] designed a novel hybrid Genetic Algorithm and Monte Carlo
simulation strategy to predict instantaneous and cumulative net renewable energy balance
and the hourly quantity of energy grid receives and supplies. The remodeled model was
able to adjust and modify the energy use habits in buildings by the legislation objectives
and well-designed control systems.

2.3. GA-NSGA-II

Yang et al. [74] displayed a high-through measurement system expressed electronically
in parallel NSGA-II to calculate the time of simulation-based building energy streamlining
issues. The improvement structure was used as a portion of an EU FP7 extension—SportE2
(Sports Facilities Energy Efficiency) to lead broad-scale structures energy utilization im-
provements for a testing building, KUBIK in Spain. The results demonstrated a significant
calculation time reasoning while still obtaining adequate ideal results.

Inyim P. et al. [79] presented building plans utilizing life cycle appraisal and vitality
simulation. They used SimulEICon with NSGA-II as a tool to improve the building
plans to enhance the ability of vitality. They used a Monte Carlo simulation to address
data instability and availability, and EnergyPlus as a part of a demand to figure out the
arrangement of energy use.

Wei Yu et al. [32] presented a multitarget optimization model that helps planners in
green building outlines. This approach employed to consider a course of action perfect
solutions for building outline advancement and utilizations an enhanced multi-objective
GA (NSGA-II) as a theoretical reason for building plan multitarget enhancement shows.
The findings for the inquiry revealed changes for energy execution and unimportant change
to conduct indoor thermal comfort.

Germán et al. [80] provided a procedure to solve one of the big problems with the
use of comprehensive energy construction models in Simulation-based Model Predictive
Control (MPC) procedures. Three primary novel methods are created: a reduction of the
genetic algorithm search room (NSGA-II) due to the use of the free oscillation curve; a
decrease in convergence moment based on a two-stage method; and finally, a methodology
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for evaluating the algorithm’s spatial consistency and the precision of the answer obtained
in a combined manner.

Yu-Hao et al. [81] studied the air conditioning system and the building envelope
configurations by recommending a decision model (MOBELM) multi-objective optimal
building envelope. The first refers to the lowest possible construction cost, while the second
is concerned with minimizing CO2 emissions during the manufacturing and application
of envelope materials. The results indicated that the optimized design saves lower an-
nual energy consumption by 58.3% of the CO2 emissions, while increasing 5.3% of the
construction cost.

2.4. GA-NSGA-II, Fuzzy, AHP

Yifang et al. [82] simulated an indoor comfort model based on heat weights and air
quality using the multi-objective optimization methodology NSGA-II. The findings showed
that indoor comfort and energy consumption are decreased based on the simulator on
the elevated occupancy density rooms in summer for government buildings. The study
objects are university offices, classrooms, and reading rooms in Xi’an, China. The important
variables are air quality, thermal environment, weights, indoor relative humidity, indoor
air temperature, and the concentration of indoor CO2.

2.5. GA-PA-NSGA-II

Salminen et al. [83] led a multitarget Pareto Archive PA-NSGA-II streamlining of cost
against change over the LEED gauge. They combined energy modeling and improved
multicriteria for the building that was LEED-affirmed. The simulation utilized was IDA
ICE, which is a product acknowledged for LEED energy recreation. Many factors were
settled for the advancement to diminish incredibly energy utilization.

2.6. GA-NSGA-II, ANNs, MFNN, MOPSO, MOGA

Badr Chegari et al. [84] created a novel multi-objective optimization approach based on
the Building Performance Optimization (BPO) strategy, which combines (ANNs), (MFNN),
(NSGA-II), (MOPSO), and (MOGA) to reduce calculation time. The goal was to increase
residential buildings’ internal thermal comfort and energy consumption, using the TRN-
SYS software in a Moroccan building. The findings demonstrate that this technique leads
to a variety of recommended building envelope design options. The heating and cool-
ing requirements were decreased to 74.52%, and the internal thermal comfort improved
by 4.32%.

2.7. GA-NSGA-II, ANN

Yukai Zou et al. [85] established a complete technique based on ANN and NSGA-II for
improving building performance by optimizing the design of typical architectural spaces.
They offer a reliable styling for a popular classroom space using 30 design characteristics
as a case study. The computation is roughly 2570-times faster than the typical optimization
approach based on simulation. The overall objectives energy demand, thermal environ-
ment, and daylight environment of the cases were improved by 24.6%, 18.7%, and 14.2%,
respectively, in the integrated solution.

2.8. GA, Harmony Search

Seyed Rouhollah et al. [86] examined the green roof system to reduce building energy
consumption using the green roof concept and two genetic optimization and harmony
search methods. The results revealed that green roofs save 3987 kWh or 89.5% more than
solar panels. On the other hand, the amount of the saved energy per square meter of
building per year (350 m2), according to the building’s usable infrastructure, is roughly
23.54 kWh for green roof usage, and 12.72 kWh for the use of solar panels. In addition, the
green roof saves 15.94 kWh, and the solar panel saves 8.35 kWh in the cooling part, while
the green roof saves 7.6 kWh, and the solar panel saves 4.36 kWh in the heating portion.
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2.9. GA, PSO, Brute Force

A comprehensive study [87] was conducted to ideally choose building envelope
components, heating, and cooling framework design. The simulation for this environment
could decide the building configuration highlights that minimize the life cycle funds. They
used the GA, the Particle Swarm Algorithm, and the sequential search measurement (GA,
PSO, Brute Force). The results indicated that the ideal choice could decrease the life cycle
costs relying on the atmosphere and the type of homes.

Harish Garg [88] investigated a mixed technique that performed the PSO with a
GA scheme to solve any problem for constrained optimization requirements. The results
indicated that this method gets the best solutions for any engineering problem to achieve
the best objectives for any constraint.

2.10. Micro GA

Gange et al. [89] utilized a smaller scale micro-GA that uses a low percentage of the
population compared with a typical GA to decrease the computational time of the simula-
tion. This strategy merges a small-scale micro-GA calculation with an innate arrangement
of inputs, including a unique 3d massing model and client particular execution objectives
and changed exterior component development, geometry, and shading. The full building
remains the same, while facade parts may differ. Such a method is used for the analysis of a
boundless range of possible design circumstances utilizing a specific system for buildings.

2.11. GA-MOGA-II

Manzan et al. [90] used the advanced Multi-objective Genetic Algorithm (MOGA-
II) for the external shading gadget to minimize the general essential energy in an office
room. They considered the energy utilization for cooling, heating, and inner light. The
enhancement was paired with the commodity radiance for sunshine figure estimation
with an ESP-r energy production application. For every design, an alternate solution was
acquired with a lessening of essential energy utilization. The results indicated that how
MOGA-II optimization can be a capable tool for the planner.

2.12. GA-MIGA

OoKa et al. [91] proposed another perfect energy management approach for buildings.
This strategy enhanced hardware limit and operational control arranging by utilizing an
altered GA called Multi-Island Genetic Algorithm (MIGA), which included the GA distribu-
tion. The brilliant element of this technique was that the population of one group is divided
into a few sub populaces called “Islands”. The results showed that the suggested strategy
was adequately suited for determining the optimal program and could be connected to
exceptionally complex energy frameworks with proper changes.

2.13. GA-Genetic Solver

Fanny et al. [92] created an advancement strategy managing a few goals as energy
utilization, monetary cost, comfort, and the natural effect of the building. They used
the Real Coded GA (Genetik Solver) that considers the multicriteria part of the building
repair based on the Pareto principle to direct their answers. The solutions to improve
restoration problems are viewed as a decisive approach given the GA (Genetik Solver). The
retrofit choices of schools in France are streamlined to meet expressed energy focuses as
inexpensively as could reasonably be expected.

2.14. GA, SPEA2

Pountney et al. [93] studied measurement for CO2 emissions from buildings. The
advancement issue inspected the exchange among carbon reduction and cost and some
other factors as protection values, air density, framework efficiencies, lighting controls, and
Photo-Voltaic (PV). The arrangement revealed the appropriateness of GAs to the assembled
environment Marginal Abatement Cost (MAC) issue, a model was developed actualizing
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the Strength Pareto Evolutionary Algorithm (SPEA2). The SPEA 2 tool can give a more
precise and nitty detailed arrangement of ideal solutions for buildings.

2.15. GA, SA

Romero et al. [94] streamlined the thermal conduct of a building by method for the
best possible determination of some of its plan parameters, for example, thickness, warm
properties, and reflectivity of dividers and rooftop utilizing a tropical building. They
reduced overheating by changing technologies using two techniques for change, a Genetic
Algorithm and Simulated Annealing (GA, SA). The findings showed how a suitable choice
of design parameters might improve the warm conduct of the building.

Zhou et al. [95] displayed a portrayal of the execution of an enhancement algorithm
inside EnergyPlus for building thermal capacity. A few parametric investigations were
completed utilizing EnergyPlus with an interior enhancement module to decide the best
control techniques for building thermal capacity stock in structures. The effects of the
enhancement procedure are assessed under different working and configuration conditions.
The best development approaches are found using Genetic and Simulated Annealing (GA,
SA) schemes in assessment analysis.

Junghans et al. [96] examined hybrid single target building advancement calculation,
which joins a transformative GA calculation with an altered SA calculation. Their findings
revealed that the hybrid GA along with the updated SA offered solutions similar to the
ideal worldwide in all the studies. The proposed algorithm, in this way, gives more solid
results than the GA without the expansion of the adjusted SA.

Farshad Kheiri [97] investigated how hybridization with simulated annealing (SA)
improved the GA’s reliability, consistency, and robustness by different cooling strategies
in the SA, to optimize the daylight and glazing in the building designs. Based on the
mean values and variances of the objective function values, an analysis of the optimization
methods’ reliability, consistency, and robustness revealed that there is a significant differ-
ence between the hybrid GA/SA with higher temperature and the GA, where the hybrid
algorithm performed better than the GA.

Harish Garg [98,99] investigated a new hybrid GA-GSA technique for analyzing the
reliability of any system to raise the performance through uncertainties for data utilization.
The results indicated that this method maximizes the availability parameters to increase
the productivity of any design.

2.16. GA, PM

Turrin et al. [100] examined the advantages determined by consolidating Parametric
Modeling and genetic (GA, PM) to accomplish an execution situated process in the building
design, with a particular concentrate on architectural plan. They utilized a parametric
model as a part of generative segments to advance a weighted entirety, sun-powered, and
daylighting objectives. Recreations included Finite Element Analysis utilizing STAADPro
and sunshine and light turn up in Ecotect. They investigated some auxiliary morphologies
including multilayer NURBS frameworks and vaults. The parametric modeling upgrades
an early structure of the plan issues by constraining the designer to deteriorate complex
outline perspectives and their interrelations at an early stage.

2.17. GA, BPO

Attia et al. [101] compressed a study to reveal potential challenges and open entryways
for joining advancement techniques within the Net Zero Energy Buildings (NZEB) outline.
They utilized the GA technique of replication-dependent Building Performance Optimiza-
tion (BPO), which is a procedure that aims for the determination of the ideal solutions
from an arrangement of accessible options for a given outline as indicated by the execution
standards for decision and evaluation. The measured quality, adaptability, and capacity to
choose from a scope of advancement systems make the GA-BPO a robust scheme.
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2.18. GA, MOEA, ANN

Asadi et al. [102] presented a multitarget advancement model utilizing GA and Artifi-
cial Neural Network (ANN) to evaluate innovation decisions in a building retrofit venture.
This model joins the quickness of the ANN assessment with the improvement force of the
Multi-objective Evolutionary Algorithm (MOEA) to build the GA-MOEA-ANN technique.
A school building is utilized as a contextual analysis to display the practicability of the
suggested plan and feature likely issues that may emerge. The study began with the indi-
vidual streamlining of target capacities concentrating on building’s qualities and execution:
energy consumption, retrofit cost, and thermal discomfort hours.

2.19. GA, MDO

Lin et al. [103] introduced a theoretical foundation of an organizer masterminded
Multidisciplinary Design Optimization (MDO) construction that identified as an Evolu-
tionary Energy Performance Feedback Design (EEPFD). The capacity of EEPFD to quickly
help in deciding the execution capability of different contending outlines for similar plan
prerequisites that are increasingly suitable to applied engineering plan, which requests
assorted qualities. Using the GA-MDO plan was all the more remarkable for a multidis-
ciplinary configuration structure. EEPFD is created into an MDO framework that gives
imperativeness execution as a contribution to affecting creators’ decision making more
easily and sooner than various approaches to manage the date.

2.20. GA, MOO

Inês Costa et al. [104] provided a comprehensive review that assesses the possibility
of multi-objective optimization (MOO) using the Genetic algorithm (GA) for supporting
the development of retrofitting techniques. They focused on the outcomes, challenges,
method potential, and limitations for the 57 studies that were chosen. Due to time and
efficiency problems, the results suggest that ideal retrofit solutions may need GA-mixed
methods or modified GA. Heritage buildings, when defining qualitative objective functions
is particularly difficult, have received little attention. They evaluated the study’s merits
and weaknesses as well as the gaps in the current literature and future research needs.

2.21. GA, HLGA

Chang et al. [105] proposed a strategy to discover the heuristic arrangements in the on-
time choice stages for maintainable building outlines. This technique coordinates element
programming and hereditary calculation into the configuration work process, by isolating
outline criteria into three choice stages to lessen the multifaceted nature. For performance,
they develop a parametric layout system with Hyper Learning Genetic Algorithm (HLGA)
to give a graphical configuration environment, in which heuristic answers for every choice
stage are discovered and consolidated. In every stage, the planner setups parameters
identified with subrules and target abilities to improve by HLGA strategy.

2.22. GA, ANN

Jonathan et al. [106] studied two strategies for optimizing district energy management;
one for optimizing district heat generation from a multi-vector energy center, and the
other for directly controlling construction requirements through temperature set-points
concerning heat generation. Several Artificial Neural Networks based on GA were used
to forecast factors counting interest for structures, indoor temperature, and sun-based
photovoltaic generation. Optimizing the district’s heat generation resulted in a rise in profit
of 44.88%, contrasted with a standard-based benchmark request approach. There was an
additional achievement of about an 8.04% increase when the optimization directly controls
a proportion of building demand.

Moazzami et al. [107] proposed an interesting hybrid strategy for everyday pinnacle
load gauge dependent on Wavelet decomposition, neural network, and GA in Iran National
Grid (ING). The ING maximum load information in the time horizon was used in this study



Buildings 2021, 11, 507 12 of 32

from 4 February 2006 to 22 July 2011. In this exploration, the climate data for three major
Iranian, Tehran, Tabriz, and Ahvaz towns with mild, cold, and hot climates were also used
in the same period. The advised procedure with Generalized Feed Forward (GFF) based on
ANN formed the smallest Mean Absolute Percentage Error MAPE of 1.2 percent. The MAPE
of the suggested technique is 1.076% for the EUNITE test situation. Magnier et al. [108]
studied multi-objective optimization in the construction using GA (NSGA-II) and ANN.
Such optimization techniques are aimed primarily at reducing computational time. They
used a Response Surface Approximation Model (RSA) to know the basic construction
model conduct and then use it for the GA to evaluate people. The calculation time for GA
optimization is reduced, a considerable amount of time is required to create baseline cases
to train the ANN model for running the building simulations. The results were in good
agreement with the data measured, while the relative errors were 3.7%, 3.4%, and 7.3%
for heating, cooling, and fan monthly energy consumptions, respectively. Petri et al. [109]
addressed the effectiveness of a modular-based optimization scheme for operating energy
simulation and optimization to meet several energy-related goals. The modular system
of optimization combined three distinct objectives where the ANN embraces the genuine
enhancement process. The solution can tackle the variability in building dynamics and
assist in developing energy-effective optimization plans for building managers. They
provided the optimization scheme implemented based on power-saving requirements from
the EU FP7 initiative—SportE2 (Energy Efficiency for Sports Facilities) and assessed the
system’s efficiency over several appropriate use-case scenarios.

This review includes all the GA varieties and their combinations to magnify the
performance for solving many problems related to the decision for any parameters in the
architecture design field. Also, we utilize other AI techniques to be combined with the GA
to find the optimal solution to avoid the local minimum problem and get the best solution
in the global minimum.

3. Results and Discussion

The primary goal of all GA-based model predictive control methods is to acquire
future alternatives to an issue based on real and future model-based information. These
choices ought to be made accessible in a coherent time and at a certain qualifying rate.
A GA optimization with an extensive analysis was carried out in this context. Through
the review analysis, a precise assessment proved a novel methodology for measuring
the convergence precision of the alternatives. These values can be extrapolated to other
comparable issues while looking for a perfect setpoint bend.

Table 1 presents the statistic basic summary for all the parameters and the schemes
that help in the building design included in 72 studies.

Figure 2a shows that the most used techniques for optimization are GA, which repre-
sents 45.8%, and the NSGA-II, which represents 15.3%.

In Figure 2b, the most widely recognized objectives for these papers to utilize the GAs
implementation for energy (65.3%), total cost, and the life cycle cost are 11.1%. The most
common variables used are construction (15.3%), shaping (11.1%), and shading and HVAC
(7%), as shown in Figure 2c.

Figure 2d shows that the greatest area of research is inside the entire structure (47.2%)
and inside the envelope (16.6%), with the remaining 36.2% for the rest of the area searched
as typical zone, indoor building, and others.

A total of 44.4% of papers focused on environmental applications, whereas 30.5% fo-
cused on energy applications, and the rest of applications represents 25.1%, as in Figure 2e.

Figure 2f shows the multi-objective functions used through the GA technique, which
represents 53%, whereas the single-objective functions represent 44%, and 3% used the
weighted sum (WS) function.

Figure 2g shows the software tools utilized in simulations; represented here is Energy-
plus (18%), whereas papers that used no simulation tool represents 21.2%, and TRN-SYS
is 13.8%.
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Table 1. Basic statistic summary of the GA and its combinations.

Scheme Objective Variables Area of
Research Application MO Software Country Authors Year Ref.

1 GA Energy, Comfort Set Points HVAC
System System WS TRN-SYS China Wang & Jin 2000 [38]

Operational Cost Constructions, Set
Points, Flow Rate Typical Zone

Environment,
System,

Continuous
N UK Wright &

Farmani 2001 [40]

Energy Window dim. Envelope Form N DOE-2 USA Caldas &
Norford 2002 [41]

Operational Cost,
Comfort

Flow Rate, System
Properties

HVAC
System

System,
Continuous Y UK Wright et al. 2002 [42]

Energy Construction Envelope Environment N EXCALIBUR UK Coley et al. 2002 [44]
Life Cycle Cost,

Energy Shape, Construction Envelope Environment,
Form WS ASHRAE

toolKit, LCA Canada Wang et al. 2003 [45]

Energy Control Parameters HVAC System N
GA

Simulation
Tool

Theoretical
study Lu et al. 2005 [46]

Life Cycle Cost,
Energy Shape, Construction Envelope Environment,

Form Y ASHRAE
toolKit Canada Wang et al. 2005 [47]

Energy Widow Dim., Shading,
Set Points

Whole
Building Form N Energy + Theoretical

study
Wright &

Alajmi 2005 [48]

Energy System Configuration HVAC
System System N Theoretical

study
Wright &

Zhang 2005 [49]

Life Cycle Cost,
Energy Shape Envelope Form Y GenOpt,

DAKOTA Canada Wang et al. 2005 [50]

Energy Plant Capacities,
Operational Strategy CHP System Renewable N Theoretical

study Tanaka et al. 2007 [51]

Life Cycle Cost,
Energy

Constructions,
Ventilation, Renewable

Whole
Building

Environment,
Renewable Y TRN-SYS,

COMIS Belgium Verbeeck &
Hens 2007 [52]

Day light Constructions, Window
Dim., Shading Envelope Environment,

Form N Radiance japan Torres &
Sakamoto 2007 [53]

Energy, Total Cost Shape, Construction,
Shading

Whole
Building

Environment,
Form N CHEOPS Tunisia Znouda

et al. 2007 [54]

Construction Cost,
Energy

Layout, shape,
construction

Whale
Building Form Y DOE-2 Portugal Caldas 2008 [55]
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Table 1. Cont.

Scheme Objective Variables Area of
Research Application MO Software Country Authors Year Ref.

Energy System Configuration,
Operation Strategies

HVAC
System System N Theoretical

study Wright et al. 2008 [56]

Total Cost, Energy Plant Capacities CHP system Renewable Y Theoretical
study

Kayo &
Ooka 2009 [57]

Energy Window Grid Whole
Building Form N Energy + USA Wright &

Mourshed 2009 [58]

Life Cycle Cost Shade, Construction Whole
Building

Environment,
Form N DOE-2 USA Tuhus,

Dubrow 2010 [59]

Energy Constructions Envelope Environment N Matlab India Sahu et al. 2012 [61]

Construction cost,
Humidity

Humidity, materials,
location and Thickness

Humidity
Level Environment Y transient Theoretical

study Huang et al. 2012 [62]

Energy HVAC Zone Whole
Building System N DOE-2 Montreal Stanescu

et al. 2012 [63]

building energy
consumption

building profiles and
HVAC configurations

Whole
Building Energy Y Energy+ Spain Petriet al. 2014 [109]

Integrated
Analysis of

Building Designs

component quantity,
initial construction cost,

labor cost, and
equipment cost, daily

productivity,
environmental

emissions

Whole
Building Energy N Energy+ USA Inyim P 2013 [79]

Energy

construction cost, such
as material cost, labor
cost, and equipment

cost, daily

Whole
building Energy N Matlab Canada Ahmadi

et al. 2010 [71]

Energy
Temp& CO2

concentration &
illumination

Whole
building Energy N Malaysia Shaikh et al. 2014 [72]

Index of
distribution building layout Whole

building Environment N ArcGIS
Desktop China Tong et al. 2016 [73]

Energy
window shading& glass
thickness &outdoor air

flow

Whole
building Energy N Energy+ Spain Yang et al. 2014 [74]
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Table 1. Cont.

Scheme Objective Variables Area of
Research Application MO Software Country Authors Year Ref.

Cost of Greening Colling effect,
connectivity, cost Typical zone Environment N (NSGAII,) Korea Yoon et al. 2019 [76]

window to wall
ratio, form finding

solar radiation, Exterior
wall, Interior floor,
Glazing type, Zone

Whole
building

window to wall
ratio Y SPEA-2 Iran Zahra Jalali

et al. 2019 [77]

2 GA, Monte-
Carlo Energy

load power& usage rate
& photovoltaic

&PV&generators

Whole
building Energy N NZEBs Paris Garshasbi

et al. 2016 [78]

3 GA
(NSGA-II)

Life Cycle Cost,
Energy

Constructions, Heat
Recovery Envelope Environment Y Genopt, IDA

ICE Finland Palonen
et al. 2009 [64]

Cons. C., Energy,
Comfort Controls, Constructions Whale

Building
Environment,
Continuous Y TRN-SYS,

COMIS France Chantrelle
et al. 2011 [65]

Construction cost,
CO2

Constructions, Glazing
systems

Whole
Building

Environment,
Form, System,

Renewable
Y TRN-SYS Finland Hamdy

et al. 2013 [66]

Construction cost,
Energy

Shape, Constructions,
systems, renewable Typical Zone

Environment,
Form, System,

Renewable
Y SAP Theoretical

study Evins et al. 2012 [67]

Life Cycle Cost,
Energy

Constructions, Glazing
systems, Renewables

Whole
Building

Environment,
Form, System,

Renewable
Y IDA ICE Finland Hamdy

et al. 2012 [68]

Total Cost, CO2,
Comfort

Renovation strategies,
Constructions

Whole
Building

Environment,
System Y Energy + UK Jin &

Overend 2012 [69]

Total Cost, Energy Shape, Constructions,
systems, renewable

Whole
Building

Environment,
Form, System,

Renewable
Y SAP UK Evins et al. 2012 [70]

Energy, Comfort Day Light, ventilation Indoor
Building

Environment,
System Y Energy + China Wei Yu et al. 2014 [32]

Energy, Comfort temperature set-points,
indoor thermal comfort

Whole
building Energy Y OpenStudio

& EnergyPlus Spain Germán
Ramos et al. 2019 [80]

Envelope Energy
Load, Air condi-
tioning system

Window Dim.,
Sunshade (style, board
length), Glass material,

Glass curtain
material, Roof

Whole
building Energy, Comfort Y MOBELM Taiwan Yu-Hao Lin

et al. 2020 [81]
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Table 1. Cont.

Scheme Objective Variables Area of
Research Application MO Software Country Authors Year Ref.

4
GA (PA-

NSGA-II),
Fuzzy, AHP

Energy, Comfort
Indoor Temp & Indoor
relative humidity& co2

concentration

Whole
building Energy, Comfort Y Design-

Builder China Yifang Si
et al. 2019 [82]

5 GA, PA,
NSGA II

Energy,
Construction cost

Constructions, Lighting
control, Ventilation

Whole
Building

Environment,
Continuous Y IDA ICE Finland Salminen

et al. 2012 [83]

6 GA, PSO,
BruteForce Life Cycle Cost Shape, Construction Building

Environment,
System,

Continuous
N DOE2 USA Bichiou and

Krarti 2011 [87]

7 GA (Micro) Daylight, Glare Constructions, Shading Envelope Environment Y Light Solve
Viewer Boston Gagne &

Anderson 2011 [89]

8 GA
(MOGA-II) Energy Shading Envelope Environment N ESPr,

Radiance Italy Manzzn &
Pinto 2009 [90]

9 GA (MIGA) Energy, CO2
Plant Capacities,

Operational Strategies CHP system Renewable N Japan Ooka &
komanura 2009 [91]

10
GA

(Genetik
Solver)

Total Cost, Energy Constructions, Lighting Envelope Environment,
Continuous Y TRNSYS France Pernod

et al. 2009 [92]

11 GA (SPEA2) Construction cost,
CO2

Constructions, Lighting,
control system

Whole
Building

Environment,
System, Renewable Y SBEM UK Pountney 2012 [93]

12 GA, SA Comfort Constructions Envelope Environment N Venezuela Romero
et al. 2001 [94]

building façade

Type of glazing, amount
of insulation,

air-tightness of the
façade, and geometry of

the shading system.

Whole
Building Environment Y Energy+ Chicago Junghans

et al. 2015 [96]

Energy Set Points Whole
Building Continuous N Energy + Theoretical

study Zhou et al. 2003 [95]

13 GA, PM

creation of design
solutions&
knowledge

extraction from the
generated
solutions

design and performance
passive solar

behavior&
HVAC

Environment Y ParaGen Theoretical
study Turrin 2011 [100]
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Table 1. Cont.

Scheme Objective Variables Area of
Research Application MO Software Country Authors Year Ref.

14 GA, BPO Energy System Configuration HVAC
System

Environment,
System Y GenOpt Theoretical

study Shady et al. 2013 [101]

15 GA (MOEA-
ANN) building retrofit

The external wall
insulation materials;

roof insulation
materials; windows
type; solar collectors’
type; HVAC systems.

CHP system Energy Y TRNSYS Portugal Ehsan
Asadi et al. 2014 [102]

16 GA-MDO performance
boundaries

energy domain and
geometric exploration Typical zone Energy Y Revit Theoretical

study
Shih-Hsin

Lin 2014 [103]

17 GA, HILGA sustainable
architecture design

construction materials &
construction costand
energy consumption

Whole
Building Energy Y DIVA 2.0 Taiwan Mei-Chih

et al. 2014 [105]

18 GA, ANN Energy, CO2
emissions

Thermal capacity,
electrical capacity,
thermal storage,

indoor temp.

Typical zone Energy Y EnergyPlus UK Jonathan R.
et al. 2019 [106]

Energy Indoor Temp & Air
flow rate Typical zone Energy N EnergyPlus Theoretical

study Petri et al. 2014 [109]

Energy Load demand &
weather-variable Typical zone Energy N Iran Moazzami

et al. 2013 [107]

Operational cost Supply & Returns flows
& Temp. HVAC system System N China Chow et al. 2002 [43]

Energy Water Temp. HVAC system System N Energy + New
Belgrade

Congradac
et al. 2012 [60]

Energy HVAC& building
envelope Typical zone Energy N TRNSYS Canada Magnier

et al. 2010 [108]

19

NSGA-II,
ANNs,
MFNN,
MOPSO,
MOGA

Energy, Comfort
Opaque walls, Glass
walls, Shading, Air

change rate

Whole
Building Energy Y TRNSYS Morocco

Badr
Chegari

et al.
2021 [84]
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Table 1. Cont.

Scheme Objective Variables Area of
Research Application MO Software Country Authors Year Ref.

20 NSGA-II,
ANN

Energy, Comfort,
daylight

environment

orientation, space
length, space

dimensions, shading
device, outdoor

sidewall, corridor
sidewall, outdoor side

window, corridor
side window

Typical zone Energy,
Environment Y Geatpy China Yukai Zou

et al. 2021 [85]

21
GA,

harmony
search

Energy None Whole
Building Energy Y None Iran

Seyed
Rouhollah

et al.
2020 [86]

22 GA, SA,
H-EA Energy

Window height,
Window sill, Number of

slats, Angle of slats,
Projection of slats

Typical zone Energy Y Grasshopper Texas Farshad
Kheiri 2021 [97]

23 GA, MOO Energy, Cost all genes Whole
Building Energy Y EnergyPlus,

TRNSYS
Theoretical

study
Inês Costa

et al. 2019 [104]
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The GA techniques are built as a theoretical solution to some problems like optimiza-
tion at 20.8%, but most countries that used these techniques are UK (11.1%) and China
(8.3%); see Figure 2h.

Figure 2i shows that the algorithms are widely used during the last 21 years, where
the highest numbers of research based on the GA schemes are in 2012, representing 13.8%,
and in 2014 (12.5%), whereas the least were in 2000, 2006, and 2015 which are 1.4%. There
were more worries about the depletion of energy resources and the enhancement of indoor
comfort as well as the enhanced time spent in construction. Building activity requires more
energy in large inhabitance rooms in summertime government structures because most
energies were consumed to make the indoor environment comfortable.
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In Table 2, we extracted the state-of-art research articles to investigate the tools,
and the simulation processes were used to solve the optimization problems and their
parameters, which affect the buildings’ design and decision-making processes. Table 2
shows that the algorithm has the highest impact on the decision-making process is the
NSGA-II technique in the field of building design. Also in Table 2 are many parameters
of the NSGA-II technique, which can be variated as population size, iteration numbers,
crossover section, and mutation section based on the objective and the constraints in each
optimization problem.
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Table 2. Extraction of data studies for analysis, and GA parameters.

Authors/Publisher/
Journal

Reference
Number

Optimization
Tool

Simulation
Tool Objective Function Constrains Parameters Parameters Values Population

Size
Iteration

No.
Crossover

Section
Mutation
Section

Case Study
Location

Research
Goal

(Scope)

Eun Joo Yoon et al.
Urban Forestry & Urban

Greening
Elsevier

2019

[76] NSGA II IDM

- cooling effect
(Maximum)

- connectivity
(Maximum)

cost
(Minimum)

Cooling effect location, Area, type of
green spaces

30 30 1 2 general residential
buildingConnectivity

Distance of green spaces,
Area, type of green

spaces

Cost $

Germán Ramos Ruiz et al.
Energies

mdpi
2019

[80] NSGA-II
OpenStudio,
EnergyPlus

- energy
consumption (Min.)
- thermal comfort

(Maximum)

Algorithm
computational

time
(Minimum)

temperature
set-points 12 ◦C−17 ◦C

User define User define binary polynomial Spain residential
buildingindoor thermal

comfort Temp

Yifang Si et al.
Intelligent Buildings

International
Taylor & Francis

2019

[82]
GA(PA-NSGA-

II),
Fuzzy, AHP

Design-Builder

- indoor comfort
(Maximum)

- energy
consumption
(Minimum)

indoor CO2
concentration
(Minimum)

The indoor air
temperature 24 ◦C–28 ◦C

100 200 none none China Public
building

relative
humidity 30%–70%

Jonathan Reynolds et al.
Applied Energy

Elsevier
2019

[106]
GA + ANN

Applied
Energy

EnergyPlus

- energy
consumption
(Minimum)

- CO2 emissions
(Minimum)

none

thermal
capacity 207 KW

200 100 1 1 UK district

electrical
capacity 138 KW

thermal
storage 95%

indoor
temperature 23 ◦C–28 ◦C

Zahra Jalali et al.
Taylor & Francis

Science and Technology
for the Built Environment

2019

[77] GA SPEA-2
- window to wall

ratio
- Form-finding

none

solar radiation Cooling Load KWh/m2 ,
Heating Load KWh/m2

50 100 Crossover
rate = 0.8

Mutation
probability

= 0.1
Iran office

building

Exterior wall brick, concrete

Interior floor Acoustic tile Ceiling air
space resistance

Glazing type Triple

Zone Rotation, Width, Length,
Height

Inês Costa Carrapiço et al.
Energy & Buildings

Elsevier—review paper
2019

[104] GA-MOO EnergyPlus,
TRNSYS

- retrofit cost
(Minimum)

- Energy (Minimum)
retrofit time

(year) all genes decision variables 105–161 Max. popu-
lations Pc Pm general general

building
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Table 2. Cont.

Authors/Publisher/
Journal

Reference
Number

Optimization
Tool

Simulation
Tool Objective Function Constrains Parameters Parameters Values Population

Size
Iteration

No.
Crossover
Section

Mutation
Section

Case Study
Location

Research
Goal

(Scope)

Yu-Hao Lin et al.
Sustainable Cities and

Society
Elsevier

2020

[81] NSGA-II MOBELM

- Envelope Energy
Load (Minimum)

construction cost
(Minimum)

Window
(number,

width, and
length)

Number = (1, L); width =
[6 × 20 cm. 14 × 20 cm];
length = [6 × 20 cm.14 ×

20 cm]

200 200 0.85 0.05 Taiwan
government

buildings

- air conditioning
systems (Minimum)

CO2 emissions
(Minimum)

Sunshade
(style, board

length)

style = (1 for horizontal,2
for vertical, and 3 for

grid); board length = (3 ×
20 cm.18 × 20 cm)

Glass material
material = (1 for Single

-layer 11 for off-line glass
with blue)

Wall material material = (1, 13) Wmi

Glass curtain
material material = (1, 14) Gcmi

Roof material material = (1, 14) rmi

Seyed Rouhollah et al.
PAIDEUMA
JOURNAL

University of Maine
2020

[86] GA,
HSA None building energy

consumption None

Air
temperature 2.44 ◦C –5.88 ◦C

60 100 0.95 0.50% Tehran
(Iran)

Residential
BuildingSun radiation 3.8 W/m2–4.7 W/m2

Rain 238.8 mm

Badr Chegari et al.
Elsevier

Energy & Buildings
2021

[84]
ANNs, MFNN,

NSGA-II,
MOPSO,
MOGA

TRNSYS
software

- energy
performance of

residential buildings
(Maximum)

- indoor thermal
comfort (Maximum)

computation time
(Minimum)

Opaque walls, - The upper & lower limit
of heat transfer

25–100 25–100 0.9 0.50%
Marrakech
(Morocco)

Residential
building

Glass walls single glazing up to
5 levels

Shading Low at 0%, upper limit at
100%

Air change rate

lower limit, upper limit
(defined according to the

reference building
situation
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Table 2. Cont.

Authors/Publisher/
Journal

Reference
Number

Optimization
Tool

Simulation
Tool Objective Function Constrains Parameters Parameters Values Population

Size
Iteration

No.
Crossover
Section

Mutation
Section

Case Study
Location

Research
Goal

(Scope)

Yukai Zou et al.
Elsevier

Energy Reports
2021

[85] ANN,
NSGA-II

Geatpy

- energy demand
- thermal

environment
- daylight

environment

the universality of the
research, (the architects
face reference value to

similar situations)

orientation 0◦ , 360◦

100 10,000 1 1
Guangzhou

(China)
classroom,

universality

space length Length, width, height

corridor width 1.5 m, 4.0 m

shading device Type, dimension

outdoor
sidewall brick

Conductivity, density,
specific heat, thickness,
insulation, absorptance

corridor
sidewall brick

Conductivity, density,
specific heat

corridor
sidewall

thermal insulation,
thermal insulation

thickness, solar
absorptance

outdoor side
window

-to-wall ratio, U-value,
SHGC, VT

corridor side
window

-to-wall ratio, U-value,
SHGC, VT

Farshad Kheiri
Indoor and Built

Environment
SAGE
2021

[97]
GA,
SA,

H-EA
Grasshopper energy-efficiency

- Window height
(0.40 m–2.20 m)

- Window sill (0.20 m
–2.40 m)

- Number of slats (1–20)
- Angle of slats (0◦–89◦)

- Projection of slats
(0.10 m–1.40 m)

Office
geometry

Length, width, height,
window width,

220 250 0.9 0.043 Houston
(TX)

single office
room

Material
reflectance

Wall, Ceiling, Floor,
Shading, Ground,

Glazing
(Double Pane

Low E)
Properties

SHGC, U-value,
Transmittance
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4. Conclusions and Future Work

This paper presented a complete state of art review for the current late AI-based
applications (2000–2021) utilizing methodologies, innovations, strategies, and models that
were utilized in green building engineering to examine ideal green arrangements and
models. The paper proved that there is an increasing trend of interest in optimization.
The builders and industries are realizing the high potential of GA approaches, such as
GA schemes and GA-NSGA-II approach, because they are confronting more stringent
difficulties than any other time recently, with an expanding interest for outlines to perform
well environmentally and monetarily.

The GA-incorporated strategies are relevant, compelling, and proficient in the field of
green/economical structure across a wide scope of examination fields and environmental
problems related to green architecture/building. The GA technique, when combined with
other techniques/approaches/models, such (NS), PA, PSO, BF, MOEA, MOGA, MIGA, GS,
SPEA, SA, PM, BPO, ANN, MIDO, and HL, yields a more convenient approach for many
practical quantitative and/or qualitative applications, such as quantitative evaluation
model for sustainable community construction and low-carbon development effectiveness.
Based on the current survey, these recent technologies are widely used in developed
countries such as UK, China, the USA, Canada, Portugal, France, and Italy, while in
developing countries it is still not widely used.

Because of the worldwide sustainability drive, the increasing trend in power efficiency
construction studies is anticipated to continue. This makes energy data monitoring and
forecasting of energy information in real-time relevant and essential in this area.

This paper includes all the GA varieties and its combinations to magnify the per-
formance for solving many problems related to the decision of any parameters in the
architecture design field. AI techniques can be combined with the GA to find the optimal
solution to avoid the local minimum problem and get the best solution in global minimum
that maximizes optimality.

Future Work: we could study some of the new AI techniques like Machine Learning
(ML) and Deep Learning (DL) to build a data set related to the design building method to
get a model to solve more complex problems.
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Nomenclature

AI Artificial Intelligence
ANP Analytic Network Process
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network
AHP Analytic hierarchy process
ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers
BPO Building Performance Optimization
BIM Building Information Modeling
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BKP Back-propagation
RBFNN Radial-Basis-Function Neural Network
CCHP Combined Cooling, Heating, and Power
CHP Combined Heat Power
COMIS Multizone Air Flow Modeling
CSW compressed shopper waste blocks
CBM Conceptual Building Modeler
DOE-2 Freeware building energy analysis program
DEA Data Envelopment Analysis
EcoTect Building energy analysis tool
EUFP7-SportE2 Energy Efficiency for Sport Facilities
Energyplus Energy analysis and thermal load simulation program
EKB Egyptian Knowledge Bank
ESP-r Simulation Program.
EUL Egyptian Universities Librar
eunite European network on intelligent technologies
EEPFD Evolutionary Energy Performance Feedback for Design
Envelope Building envelope
Form An architectural design, stylish, structural with sustainability influences
GA Genetic Algorithm
GAF genetic algorithm using fuzzy system
GenOpt Generic Optimization Program

GENE_ARCH
Generative Design System uses adaptation to shape energy-efficient,
sustainable architecture solutions

GNN Generalized Neural Network
GFF Generalized Feed Forward
H-EA Hybrid Evolutionary Algorithms
HAS Harmony Search algorithm
HQENN Hybrid Quantized Elman Neural Network
HPSO Hybrid Particle Swarm Optimization
HLGA Hybrid Learning Automata Genetic Algorithm
HVAC Heating, Ventilation, and Air Conditioning

IDA ICE
IDA Indoor Climate and Energy (simulation tool for making the whole
building energy)

IDM Interactive Decision Maps technique
IOD Index of Distribution
IVCGA incorporated The Interactive and Visual Genetic Clustering Algorithm
KPI Key performance indicators
In. of dis. Index of distribution
ING Iran National Grid
Int. An. Of B. D. Integrated Analysis of Building Design
qu Air quality
retrofit Building retrofit
F. Building façade
B. E. cons. Building Energy consumption
Cr. of D. sol. Creation of Design solution
Cons. C. Construction cost
Of green. Cost of greening
D. G. Daylight Glare
E. Energy
Ex. Eff. Exegetic efficiency
Hum. Humidity
LEED Leadership in Energy & Environmental Design
LibGen Library Genesis scientific papers
LT Lighting and Thermal
LS least error Squares
LAVF least Absolute Value Filtering
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MAC Marginal Abatement Cost
MO Multi-objective
MOPSO Multi-objective Particle Swarm Optimization
MFNN Multilayer Feedforward Neural Networks
MIGA Multi-Island Genetic Algorithm
MWh Megawatthour
MOEA Multi-objective Evolutionary Algorithm
MDO Multidisciplinary Design Optimization
MOGA-II Multi-objective Genetic Algorithm-II
MPC Simulation-based Model Predictive Control procedures
MAPE Mean absolute percentage error
NSGA-II Nondominated Sorting Genetic Algorithm

NURBS
Nonuniform Rational Basis spline A Number of Structural Morphologies
with Multi-layer

NZEB Net Zero Energy Buildings.
NN-SVM Neural Network with Vector Support Machine
PA Pareto Archive
PC Personal Computer
PM Parametric Modeling
PV Photovoltaic
PSO Particle Swarm Algorithm
Ren Renewable energy
RMSE Root-Mean-Square comparative mistake
RGA Real-valued Genetic Algorithm
RTE Réseau de Transport d’Électricité (Electricity Transmission Network)
RSA Response Surface Approximation Model
SAP Standard Assessment Procedure
SimulEICon A Multi-objective Decision-Support Tool for Sustainable Construction
STAAD Pro Structural Analysis & Design software
SPEA2 Strength Pareto. Evolutionary Algorithm
SA Simulated Annealing
SGAS Sorting Genetic Algorithm strategy
SCADA Supervisory Control and Data Acquisition
SHGC Solar Heat Gain Coefficient
SVM Support Vector Machine
TRNSYS TRaNsient SYstem Simulation Program
TC Thermal Comfort
VT Visible Transmittance
WS Weighted-Sum

ZigBee technology
wireless technology to meet the distinctive requirements of low-cost,
low-power wireless IoT networks as an accessible worldwide standard

Kn. Ext. of sol. Knowledge extraction from the solution
L. Lighting
Mo. Multi Objective
N. V. Natural Ventilation
Oper. C. Operational cost
P. boun. Performance boundaries
Sus. Arch. D. Sustainable Architecture Design
T. C. Total Cost
Th. Env. Thermal Environment
Y. N. Yes, No
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