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Abstract: The demand for categorising technology that requires minimum manpower and equip-
ment is increasing because a large amount of waste is produced during the demolition and remod-
elling of a structure. Considering the latest trend, applying an artificial intelligence (AI) model for 
automatic categorisation is the most efficient method. However, it is difficult to apply this technol-
ogy because research has only focused on general domestic waste. Thus, in this study, we delineate 
the process for developing an AI model that differentiates between various types of construction 
waste. Particularly, solutions for solving difficulties in collecting learning data, which is common in 
AI research in special fields, were also considered. To quantitatively increase the amount of learning 
data, the Fréchet Inception Distance method was used to increase the amount of learning data by 
two to three times through augmentation to an appropriate level, thus checking the improvement 
in the performance of the AI model. 
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1. Introduction 
The construction industry is a pivotal player in the national economy in terms of 

gross domestic production and employment. According to the World Bank statistics [1], 
the construction industry is responsible for approximately 24.7% of the gross domestic 
product on average globally. Similarly, the construction industry in the South Korean 
economy plays a key role, accounting for approximately 26.8% of the gross domestic pro-
duction in 2019 [2]. Additionally, it is indicated that the construction industry provided 
approximately two million jobs, accounting for approximately 7.5% of the overall employ-
ment in all manufacturing sectors in South Korea [2]. 

Behind the positive role of this industrial sector in the national economy, it has been 
pointed out that this industry not only consumes a large amount of natural resources and 
energy, but also emits a large amount of greenhouse gases (GHGs) for the production of 
various building materials and operation of a building or facility during the entire life 
cycle. According to the Intergovernmental Panel on the Climate Change report, the con-
struction industry consumes approximately 40% of the total global energy and accounts 
for approximately 30% of the overall GHG emissions per annum [3]. Additionally, the 
construction industry generates a vast amount of construction and demolition waste, 
thereby contributing a significant portion to the overall waste generated globally [4–6]. In 
South Korea, construction and demolition waste represent approximately 50% of the total 
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waste, including municipal solid waste and commercial and industrial waste from all in-
dustrial sectors [4,7,8]. Similarly, the Australian National Waste Report suggests that ap-
proximately 37% of the core waste in 2016–2017 was generated by the construction indus-
try. In Europe, various construction and demolition activities produce approximately 8.2 
million tons of waste, accounting for approximately 46% of the total waste [9]. As dis-
cussed above, the generation of construction and demolition waste would not only cause 
several environmental problems (e.g., GHG emissions, rainwater leaching, and infiltration 
of surface water caused by landfilling), but also financial problems, such as disposal costs, 
including the demolition, classification, and transportation of construction waste. 

Various countries, including South Korea, have implemented various measures to 
mitigate the adverse impacts of construction and demolition waste. The 3R approach 
which stands for Reduction, Reuse, and Recycling is one of the most popular approaches 
to mitigate the potential impact of the waste [10]. Recycling is one of the effective strate-
gies to minimise waste as well as to achieve sustainable construction waste management. 
Although there are several advantages of recycling waste, it would be arduous as time 
and human resources are required to segregate the waste into predetermined categories. 
Moreover, it has been found that manual involvement and the sorting of waste is error-
prone, inconsistent, related to health and safety issues, and expensive [11]. In order to deal 
with such difficulties to recycle construction waste, artificial intelligence-based technolo-
gies have emerged for alternatives. In particular, vision-based methods would make it 
possible to minimise human errors and reduce the time consuming methods [12,13]. The 
purpose of this research is to develop an automated waste segmentation and classification 
system for recycling construction and demolition waste on real construction sites. As the 
practical application to real-world construction sites is a significant factor, high accuracy 
and speed of detecting and classifying objects in an image are essential factors in selecting 
an appropriate architecture among various Convolutional Neural Network (CNN) algo-
rithms. Based on this consideration, a You Only Look At CoefficienTs (YOLACT) algo-
rithm, which is one of the fastest fully convoluted models for real-time instance segmen-
tation and classification, was chosen for the experiment [14]. It is expected that the pro-
posed system would make it possible to enhance the productivity and cost efficiency by 
reducing the manpower for construction and demolition waste management at the site. 
The remainder of this paper is organised as follows: first, relevant works on waste man-
agement and classification are described in Section 2. The research methods for the seg-
mentation and classification of construction and demolition waste using deep neural net-
works are described in Section 3. Finally, the experimental results and discussion of this 
study are presented in Section 4, and the conclusions and further research directions are 
provided in Section 5. 

2. Related works 
2.1. Waste Management 

According to Tam and Tam [15], an intensive policy with a gradual increase in ben-
efits would be an effective approach to encourage employees to participate in waste re-
duction activities. On the other hand, Lu and Yuan [11] suggested that detailed regula-
tions on waste management at construction sites are essential for successfully reducing 
construction waste. While waste management through incentive policies and regulations 
would be an effective method from a short-term perspective, the reduction of waste 
through recycling would make it possible to decrease waste generation and achieve a cir-
cular economy [16–18]. According to Edwards [16], recycling, which would be an effective 
strategy for waste minimisation, would reduce the demand for new resources, reduce 
transportation and production energy costs, and prevent land loss for landfills. Previous 
studies claimed that automation systems for recycling would be a potential solution for 
sorting and classifying waste [19–21]. For example, Picon et al. [19] adopted hyperspectral 
images for sorting non-ferrous metal waste from electric and electronic equipment. Their 
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proposed system achieved approximately 98% accuracy in classifying waste, thereby 
making it possible to replace the existing manual sorting procedures. Similarly, Aleena et 
al. [22] proposed an automatic waste segregator using inductive proximity sensors and 
robotic arms for classifying solid waste into three main categories: metallic, organic, and 
plastic. 

Likewise, on-site automated waste separation and classification is an essential func-
tion for recycling construction and demolition waste in the construction industry. For ex-
ample, Xiao et al. [23] proposed an online construction waste classification system, which 
used industrial cameras to capture the region of the objects and hyperspectral cameras to 
obtain spectral information to discern the waste materials into concrete, rubber, black 
brick wood, plastic, and brick. Similarly, Hollstein et al. [6] developed a new compact 
hyperspectral camera, which could overcome the existing problems of hyperspectral im-
agers, for automatic construction waste sorting. Although there are several advantages of 
using hyperspectral images for automated construction and demolition waste classifica-
tion, it has several problems, such as a high initial investment cost and insufficient robust-
ness of optical sensors. Recently, the advances in computer vision-based object detection 
and classification techniques have provided potential solutions for automatic construction 
and demolition waste classification [5,20,21,24–27]. 

2.2. Convolutional Neural Network (CNN) 
Convolutional neural networks (CNNs) are widely adopted models for classifying 

objects in images in various fields, such as medical diagnosis, autonomous driving, facial 
recognition, and so forth [25–28]. CNNs are applied to various fields in the construction 
industry, such as structural health monitoring and prediction, health and safety monitor-
ing on a construction site, workplace assessment, and activity recognition of construction 
workers for predicting hazards [29–32]. Zhang et al. [30] proposed a posture recognition 
method that used deep CNN-based 3D ergonomic posture recognition to enhance the 
health and safety of construction workers. Additionally, several studies attempted to 
adopt this model to predict structural safety. Deng et al. [33] developed a CNN-based 
model for predicting the compressive strength of recycled concrete by learning deep fea-
tures of the water–cement ratio, recycled coarse aggregate replacement ratio, recycled fine 
aggregate replacement ratio, fly ash replacement ratio, and their combinations. Cha et al. 
used CNN in a vision-based approach for detecting cracks in concrete images [25]. In this 
research, the test results of crack detection using the CNN model showed better perfor-
mance compared to the conventional edge detection methods. Gopalakrishnan et al. [34] 
used a deep CNN model to detect the pavement distress from digitised pavement surface 
images. In this research, the authors applied the VGG-16 deep CNN model, which yielded 
the best performance compared to other machine learning classifiers. Similarly, Dung [35] 
proposed a fully convolutional network-based concrete crack detection and density eval-
uation method, which showed an accuracy rate of more than 90% for concrete surface 
crack detection. Although CNN has established itself as the core of machine learning tech-
nology and is expanding the scope of applications in the construction industry, studies on 
the classification of construction and demolition waste using the CNN method are rela-
tively scarce. 

Since a deep learning model called AlexNet won the ImageNet Large Scale Visual 
Recognition Challenge championship in 2012, CNNs have become the mainstream image 
recognition model among different computer vision algorithms. Vision-based object de-
tection is a technology that recognises certain objects directly from image data without 
any programs or commands [36–38]. Object recognition and detection technology have 
progressed from just determining the existence of an object to distinguishing the location 
and category of an object. The application of CNN models for waste management is di-
vided into two major approaches in the research domain: (1) creating and validating the 
viability of the dataset, and (2) applying CNN algorithms to classify waste into various 
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categories and verifying and comparing the performance of different algorithms to ex-
plore the best approaches. 

The TrshNet dataset, which was released by Yang and Thung [39] in 2016, is one of 
the most frequently used datasets for training waste images. They applied a support vec-
tor machine (SVM) and CNN to classify the trash images into six categories: glass, paper, 
cardboard, plastic, metal, and trash. The test results showed that the SVM and CNN mod-
els achieved accuracies of 63% and 22%, respectively. In this study, the authors found that 
it would be possible to classify various types of trash into predefined categories using 
machine learning and computer vision algorithms. Furthermore, they pointed out that 
although the accuracy rate of this study was relatively low, continuously growing the da-
taset would improve the accuracy of trash classification using machine learning and com-
puter vision algorithms. Similarly, Proença and Simões [40] introduced an open image 
dataset containing photos of litter taken from various environments. In this dataset, the 
pictures were manually labelled and segmented in accordance with a hierarchical taxon-
omy to train and evaluate object detection algorithms. All the images were labelled with 
objects and backgrounds to easily detect images in various contexts, such as grass, road, 
and underwater. According to Liang and Gu [26], existing artificial intelligence-based 
waste classification methods only deal with single-label waste classification rather than 
multiple stacked wastes, as in real-world situations. To overcome such problems and to 
enhance the applicability of waste classification systems, they suggested a multi-label 
waste classification model that would detect and localise several types of waste in images. 
Furthermore, they established a new dataset, which contained more than 56,000 images 
in four categories, and improved the efficiency of learning. The results of their study 
showed that the F1 score for assessing multi-label waste classification was approximately 
96% and the average precision score was approximately 82%. 

2.3. Comparison of Artificial Intelligence Models 
Along with building a new dataset for waste classification, several studies have dealt 

with the performance comparison of different CNN algorithms. With the development of 
computer technology, there is a growing interest in developing optimised AI models to 
yield a better performance. For example, Ahmad et al. [41] tried to improve the reliability 
and accuracy of waste classification by combining state-of-the-art deep learning algo-
rithms. The authors proposed a method that combined multiple deep learning models 
using a feature and score-level fusion method named double fusion. In previous studies, 
one of the most common difficulty in training images for recognising objects was to iden-
tify them at various positions. Wang et al. [42] classified plastic bottles with different po-
sitions and colours during the recycling process on a conveyor belt. The ReliefF algorithm 
was applied to select the colour features of recycled bottles, and the colour was identified 
using SVM. The accuracy of the colour recognition of the recycled bottles was 94.7%. Ad-
ditionally, research areas related to waste classification attempted to apply various newly 
proposed image detection and classification algorithms to enhance its capability for prac-
tical implementation. Adedeji and Wang [24] suggested a waste classification system that 
could classify different components of waste. The purpose of this system was to minimise 
human intervention to separate the waste in sorting facilities, thereby reducing the harm-
ful influence on humans. The system was developed using a 50-layer residual net (Res-
Net), which is a CNN algorithm used to classify waste materials. The accuracy of the pro-
posed model was 87% for the dataset. 

The speed of object detection and classification is an essential factor in general appli-
cations in real-time waste classification. De Carolis et al. [43] proposed YOLO TrashNet 
by applying YOLOv3 for real-time waste detection in video streams. The suggested 
method would not only help alleviate waste reporting in a city requiring labour-intensive 
tasks, but also achieve the goal of a smart city. YOLOv3 is a CNN composed of 106 layers. 
The first 53 layers refer to the Darknet-53 network used as a feature extractor, and it was 
pre-trained on ImageNet, allowing deep transfer learning. The successive 53 layers allow 
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object detection on 3 scales of size (small, medium, and large objects). Moreover, an im-
portant feature of YOLOv3 is the use of the anchor box, which is predetermined by using 
the k-means clustering algorithm on the training set. This improvement allows for faster 
and more stable network training. In this research, the authors trained the last 53 layers 
of YOLOv3 using their dataset. They called the proposed neural network YOLO Trash-
NET. According to Liang and Gu [26], the existing AI-based waste classification methods 
only deal with single-label waste classification rather than multiple stacked wastes in real-
world situations. To overcome such problems and enhance the applicability of waste clas-
sification systems, they suggested a multi-label waste classification model that would de-
tect and localise several types of waste in images. Furthermore, they established a new 
dataset, which contained more than 56,000 images in 4 categories, and improved the effi-
ciency of learning. The results of their study showed that the F1 score for assessing the 
multi-label waste classification reached approximately 96%, and the average precision 
score was marked over 82%. 

Previous studies suggest that many studies regarding waste classification are related 
to municipal solid waste segregation, rather than construction and demolition waste clas-
sification. Although research on the classification of construction and demolition waste 
using deep neural networks has been increasing, it is relatively rare compared to munici-
pal solid waste classification. 

3. Development of Recognition Model for Five Types of Construction Waste 
3.1. Development Procedure 

Developers generally follow the process shown in Figure 1, to prepare an AI model 
that recognises objects. This process is in line with the guidebook on establishing a dataset 
for AI learning published by the National Information Society Agency, an affiliated or-
ganisation of Ministry of Science and ICT (Information and Communication Technology) 
of South Korea, and made quality evaluation on datasets mandatory, unlike the existing 
research methods [44,45]. There are several reasons for publishing the guidebook at the 
government level. First, as the amount of learning data increases, inappropriate learning 
data are included in the dataset, leading to an increase in cases when the models are not 
learned properly. Furthermore, there have been frequent cases of development failure, 
where the model outputted inaccurate results owing to the lack of development of human 
resources or unskillfulness. Thus, the model was unable to verify the dataset properly or 
randomly deformed the dataset without a specific standard with augmentation, such that 
even the developer could not identify the created data, which were included in the dataset 
without additional verification. The first two issues can be solved when skilled manpower 
is acquired, but the last one needs an adequate program to solve it. 

 
Figure 1. Current AI R&D process in academia and industry. 
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3.2. Constructing the Dataset and Selecting the Learning Model 
According to the “Enforcement decree of the wastes control act” in South Korea, con-

struction waste is divided into 18 categories to enhance the recycling rate. Among these 
categories, the research team collected image data on five typical types of construction 
waste, which constitute a major proportion of the total construction waste [46]. The five 
types of waste, which include concrete, brick, lumber, board, and mixed waste, as shown 
in Table 1, were sequentially selected from the most emitted waste at the construction site. 
Data were labelled during segmentation through the processing process, and the prepared 
three were designated to transfer learning to the YOLACT model. The backbone of the 
YOLACT model was ResNet-50, which was assumed to be capable of processing real-time 
segmentation with small computation to enable operation on on-site computers or edge 
computers. The standard for real time is Closed-Circuit Television (CCTV) under 30 fps, 
which is usually used in real life and on construction sites. The YOLACT model is ex-
pected to operate at 30 fps if there are no network problems [14]. 

Table 1. Type of work performed in each category and work index in accordance with the time and 
manpower consumed for processing. 

Super Cate-
gory 

Labelling 
Method 

Amount 
of time 

Step 
Man-

power/hour 
Working 

Time 
Metrics per 

Data 
Average 

Brick 

Segmentation 

112 
Acquisition-

cleansing 
2 6 9.3 

7.89 

Labelling 1 31 3.6 

Concrete 113 
Acquisition-

cleansing 
2 6 9.4 

Labelling 1 32 3.5 

Wood 139 
Acquisition-

cleansing 
2 6 3.5 

Labelling 2 11 6.3 

Board 129 
Acquisition-

cleansing 
2 6 10.7 

Labelling 1 23 5.6 

Mixed bag 158 
Acquisition-

cleansing 
2 6 13.2 

Labelling 1 22 7.1 

In this study, we established two hypotheses. The first hypothesis is that the research 
team performed research focusing on processing and labelling the learning data, which 
are unlike images of objects with clean backgrounds, as used in the existing research. 
When there are various objects mixed in the background, the model capacity is expected 
to have no difference if the designated object is accurately segmented. Another hypothesis 
is that the function of the AI network changes according to the quantity and quality of the 
learning data. The remaining sections of this chapter deal with our hypotheses regarding 
labelling and the performance of the AI model. 

3.3. Constructing the Learning Dataset 
The images used for learning included 500 images directly taken at the waste dump 

site located at a semiconductor manufacturing facility construction site and 288 images 
acquired by web crawling. The collected source data were cropped into 512 × 512 pixels 
with the size of approximately 100 kB considering the Graphics Processing Unit (GPU) 
memory (Nvidia GTX3080, NVIDIA, Santa Clara, CA, USA). Since the YOLACT model is 
based on instance segmentation, each image was segmented in polygonal shape using 
“LableMe” programme, as shown in Figure 2 [47]. 
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Figure 2. Labelling by applying instance segmentation to the collected construction waste images 
and the result of learning. 

The time consumed for labelling tasks for the images of construction waste in each 
category is shown in Table 1. The labelling tasks required 22–32 h with at least 2 men every 
hour to complete the composition of learning data sets. When these were calculated using 
Equation 1, which shows the level of difficulty, data collection and processing showed 9–
11 and labelling showed 4–6, with an efficiency rate of 60% compared to the previous 
research [48]. Since similar objects, such as the concrete and brick, are difficult to differen-
tiate based on colour and shape, it took additional time to sort. Therefore, the work index 
of brick and concrete were low compared to other categories as the labelling difficulty was 
high. Work index ൌ  Total amount of dataDegree of input manpower ൈ  Work hours (1) 

3.4. Optimal Data Labelling Method 
As a result of transfer learning to the YOLACT model through labelling, it was veri-

fied that transfer learning to the dataset was performed normally, as discussed in Section 
3.3. Based on the results of the transfer learning, we describe the results of variable re-
search conducted to find the optimal labelling method in this section. 

When collecting learning data, if the images with a clean background and a single 
object would be collected, it is possible for the workers to mitigate the confusion during 
labelling and create a robust AI learning model for the purposes. However, the images for 
the learning data with such conditions would be difficult to obtain. On the other hand, the 
images or video clips that would be easily able to collect might contain variety of unnec-
essary objects for learning. In addition, in order to construct a data set for learning, it 
would take a lot of time and cost to remove unnecessary objects on one image and to label 
objects necessary for learning. Thus, it is required to explore an appropriate method to 
reduce time and manpower for creating a suitable learning data set. 

By considering the cases that utilised learning data that were collected by only con-
sidering classification as there are numerous studies that have a significant amount of 
data, it is possible to decrease the learning data collection time by using them appropri-
ately. Although the possibility of applying it to the latest AI method has not been verified, 
researchers tend to avoid its usage. Therefore, the previous learning dataset is simply 
stored and eventually treated as digital waste. Thus, it is necessary to verify the data usage 
level, and a variable study was conducted by categorising four cases. 
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Table 2 summarises the results of the labelling and optimal instance segementaion 
method for the construction waste. In Case A, a pixel labelling method was used by taking 
pictures on a clean background with the designated waste, whereas in Case B, individu-
ally labelled designated waste on a picture taken at the dumpsite were used (see Figure 
3). Therefore, both cases differentiated the designated wastes well, but in Case B, the al-
gorithm tended to not recognise some wastes when several types of waste were mixed in 
the image. The parts that could not be recognised were hidden behind other wastes or had 
different colours and shapes to previously learned data. This was considered as a lack of 
learning data. Case C comprised the dataset by simultaneously labelling two to five clas-
ses from the pictures taken at the dumpsite, whereas Case D classified one class per image, 
thereby increasing the overall dataset quantity. Consequently, even if several images were 
mixed, class classification was possible by forming learning data with accurate labelling. 
For Case C, it was unable to recognise the pixel boundary of the classified class. However, 
when the amount of data increased in Case D, this phenomenon seemed to disappear. 
Thus, the amount of learning data was important in terms of AI recognition. Moreover, 
the work index was 2.39 for Case D and 1.73 for Case C, which showed a lower level of 
difficulty. Case A was similar to the data collected to develop the existing classification 
model. Considering the model learning results, the existing data could be used by the 
latest AI model. 

 
Figure 3. Representing the image and labelling methods per case. 
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Table 2. Method and result to find the optimal instance segmentation labelling method. 

Case Category Quantity Labelling Method 
Work Hour 

(work index) mAP Result 

A 

Class 1 

100 
Labelling of one object with 
one category using a clean 
background 

1 man/40h 
(2.5) 34 

Masking was formed 
generally in a good 
shape with a waste 
boundary 

B 100 
Labelling of one category in 
an image with various ob-
jects 

1 man/4.h 
(2.5) 

24 
Able to classify but una-
ble to recognise some 
complex images 

C 

Class 5 

153 
Labelling by classifying all 
five categories in an image 
with various objects 

4 men/22h 
(1.73) 

33 

Well recognised, but ex-
perienced confusion in 
most classes and could 
not follow the boundary 

D 153 
Labelling by classifying one 
category in an image with 
various objects 

4 men/16h 
(2.39) 39 

Generally, well recog-
nised and experienced 
confusion with a type of 
class, but followed the 
boundary well 

3.5. Result of Learning 
The research team finally concluded that Case D, which indicates the high value of 

the mean Average Precision (mAP) amongst all cases, was suitable for waste classification 
model development, and performed transfer learning by adding learning image quantity. 
In Case D, the total number of images was 788 as shown in Table 3. The results are shown 
in Figure 4 and there are some parts to discuss the ultimately re-classified networks. Un-
like ordinary objects, wastes have a very atypical shape, and in the case of concrete waste, 
the colour, texture, and shape are similar to those of a brick. Moreover, as discovered in a 
previous research problem, concrete shape is somewhat similar to sand and broken brick. 
Hence, the learning model categorised the cement brick crumbs as concrete waste. 

 
Figure 4. AI model output result obtained by utilising the refined data in Case D. 
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Table 3. YOLACT-based training mAP learned with data labelled in the method of Case D. 

Iteration 
10k Images mAP 

All 0.55 0.65 0.75. 0.85 0.95 

1000 Box 

788 

17.88 30.5 28.1 16.3 111.1 3.4 
Mask 10.24 29.1 2.4 14.6 7.1 0.5 

5000 Box 27.40 50.2 37.4 27.1 17.2 5.1 
Mask 24.64 52.3 35.2 25.1 9.9 0.7 

10,000 Box 33.90 58.4 40.5 31.1 18.4 5.6 
Mask 32.50 59.3 42.4 28.4 11.3 0.8 

Timber wastes are in the shape of rectangular lumber, plywood, and palette, but are 
irregularly fragmented at the waste level. Moreover, the shape of plywood is the same as 
that of board waste. Therefore, the collection and refinement levels had to consider vari-
ous situations, as shown in Table 4. This evidence shows the importance of the refinement 
step, and it can be observed that developing an AI model is difficult by simply increasing 
the data quantity without quantitative evaluation. This is a limitation of transfer learning 
as the problem occurs owing to the difference in category and labelling used for previous 
model development. However, this problem can be solved by re-planning the AI model 
for the characteristics of the desired object. 

Table 4. Factors considered for acquiring AI model characteristics based on the category/labelling, 
step, and parts solved. 

Category Considered Factors Step Predicted Problems Solutions 

Concrete Crushed concrete was 
labelled in one mass Refinement Recognised sand/object chunk of the 

floor that are not concrete waste 

Differentiates 
floor/crushed con-
crete 

Brick Cement bricks were 
not photographed Collection 

Unable to differentiate the cement 
bricks, which had the same colour as 
that of concrete 

Differentiates red 
brick and concrete 

Wood Broken cross section 
was photographed Collection Only recognized objects in length Able to differentiate 

short or side wood 

Board Broken board was not 
labelled Refinement Broken board was misrecognised as 

concrete or brick waste 
Differentiates rela-
tively shaped boards 

Mixed bag 
Contents inside a 
waste bag were not la-
belled 

Refinement Recognition error as other waste Exactly differentiates 
only the waste bags 

4. Quantitative Evaluation Method for Learning Data using the Fréchet Inception Dis-
tance (FID) Technique 

As a result of re-classifying the YOLACT model, it was verified that the accuracy and 
recognition rate were affected depending on the quantity and quality of the learning data. 
Thus, for improving the efficiency of research and development, increasing the amount of 
learning through automatised augmentation is the most appropriate solution. This section 
describes the quantitative evaluation of the augmentation level using the FID technique 
and the result of learning by increasing the learning data using this technique. 

4.1. Fréchet Inception Distance (FID) Technique 
AI is a concept designed to mimic human intelligence. Therefore, the objects that are 

difficult for people to differentiate in the image would also be difficult for AI to recognise. 
Particularly, construction wastes are not only similar in colour but also in shape, e.g., con-
crete and cement brick. However, objects that are completely different in shape, such as 
palette and rectangular lumber, also exist. The colour of the photographed image may 
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change owing to the amount of light on site, and the resolution may drop depending on 
the performance of the camera. 

As a result of these variables, it is necessary to check whether the data were learned 
properly and the model was made well. This is called the quality evaluation of the model. 
The model performance was checked manually by human beings before a quantitative 
method was developed for qualitative assessment. When applying this method, the sub-
jectivity of a human affects the model evaluation, and when the amount of data is in-
creased to exceed the human recognition range, there are cases when the standard is am-
biguous in the middle of the evaluation. To solve this issue, a program using the FID score, 
which quantitatively assesses the model, was developed. This technique uses a pre-
trained inception model, which is classified using 1000 labels on ImageNet. Here, the in-
ception model is supposed to differentiate the characteristics of ordinary objects properly, 
and only used parts that extract 2048 output attributes without using the model as it is [6]. 
The evaluation equation of FID is shown in Equation 2. 𝑑ଶሺሺ𝑚, 𝐶ሻ, ሺ𝑚ఠ, 𝐶ఠሻ ൌ∥ 𝑚 െ 𝑚ఠ ∥ଶଶ൅  𝑇𝑟ሺ𝐶 ൅ 𝐶ఠ െ 2ሺ𝐶𝐶ఠሻభమሻ, (2) 

Where m indicates the average attributes of the real data, C refers to the attribute 
covariance of the real data, mw is the average attribute of the fake data, and Cw is the at-
tribute covariance of the fake data. 

The input and output images through FID following Gaussian distribution as a pre-
requisite are shown in Figure 5; the smaller the difference between the two distributions, 
better the performance shown in the result. Although there is an inception score, an index 
to evaluate the AI model performance, it is not currently in use. This is because real data 
are not used in performance evaluation, and marks are presented on fake images. Even 
for a fake image, the image used for the evaluation should have meaning to assess the 
model performance properly. However, as FID evaluates only real images, all images pos-
sess meanings and all data are assessed individually, not on conditional probability. 

 
Figure 5. Matrix of the FID used for measuring the features of real and created images. 

Thus, after calculating the output result using the real image model and the gap of 
the input value from the probability distribution, it can be said that the model perfor-
mance is good when the value is small. Although the exact accordance of the probability 
distribution is ideal, it is impossible in reality. Additionally, if these are analysed with 
respect to mAP, the level of performance change per learning entity can be assessed quan-
titatively. The advantage of this technique is that it can customise the algorithm by using 
the inception model if there is a better AI model to extract the output features. However, 
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this technique is noise sensitive and thus has clear limits for evaluation. This issue occurs 
chronically in image research and is related to the colour temperature and radiation in-
tensity. This issue can be addressed if multiple images can be evaluated using sufficient 
pictures and videos. 

4.2. Susceptibility Level of Re-Classified Model Due to Noise, Colour Change, and Others 
To enhance the AI model described in Section 3, additional learning is required. Thus, 

the amount of learning data was planned to be increased three times through the augmen-
tation of each image. The augmentation technique added noise, a blur effect, and hue and 
saturation, and augmented 50 learning data from 5 super-categories to select a proper 
level of change. The result of the image FID is shown in Figure 6. The Python library ap-
plied was Python imgaug. 

  
(a) Concrete category (b) Brick category 

  
(c) Board category (d) Wood category 
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(e) Mixed bag category 

Figure 6. Result of calculating the FID by augmenting 50 images per category each step by adding 
noise, giving blur effects, and changing colour. 

4.2.1. Noise Change 
The addition of noise is expected to influence the image resolution and size. Although 

the level of AI learning equipment enhanced, it is becoming a trend to learn a large 
amount of data. Therefore, it is necessary to decrease the size of the learning data, and 
noise is inevitable in this case. However, excessive noise distorts the target object, and 
unintended errors, such as spots or marks on the image, may be labelled, thereby ruining 
the learning data. 

Furthermore, because it is a part being affected by the performance of the collected 
device, in case of old devices, images may not be collected in abundance or may result in 
noise resulting from a deteriorated image sensor. 

Therefore, a verification of this is necessary, and the research has examined the 
proper level by categorising noise into five steps. Noise was used by adding a noise tech-
nique according to the Gauss function, which involves loading the image, adding noise in 
accordance with the function, and combining it with the original image. Each noise step 
is the number of times overlapping Gaussian noise is sampled once per pixel in a normal 
distribution. 

Table 5 shows the results of the data being learned above the appropriate level. It 
shows a decrease in the model performance when the noise is more than 100 times the 
FID. The 100 times noise, as shown in Figure 7, is considerable when looking with the 
naked eye, but seems to not have a significant impact on the accuracy of the learning data. 

 
(a) Noise 0 (b) Noise 50 (c) Noise 100 (d) Noise150 (e) Noise 200 (f) Noise 250 

Figure 7. Gaussian noise for the wood category per step. 

Table 5. mAP of model according to the noise augmentation level. 

Number of times Image quality Iteration 10,000 All 0.55 0.65 0.75 0.85 0.95 

0 788 
Box 33.9 58.4 40.5 31.1 18.4 5.6 
Mask 32.5 59.3 42.4 28.4 11.3 0.8 
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100 1576 
Box 36.2 63.2 44.2 39.2 26.1 8.3 
Mask 32.4 62.1 46.3 33.2 18.4 2.2 

150 1576 
Box 30.9 54.3 39.2 33.1 17.2 6.6 
Mask 28.2 57.6 44.2 26.3 11.7 1.4 

200 1576 
Box 27.6 52.1 38.2 28.9 16.3 2.4 
Mask 24.7 48.2 42.5 24.3 8.2 1.4 

250 1576 
Box 15.3 34.2 22.4 12.2 6.5 1.2 
Mask 14.8 33.7 23.2 10.4 6.3 0.5 

4.2.2. Adding blur effect 
The blur effect appears to be correlated with the focus of the collected image. When 

collecting the data, out-of-focus data may exist owing to manpower or equipment prob-
lems, and if this evaluation is applied, the data could be utilised. Gaussian blur was used 
for the blur effect, and the steps were classified using sigma values. As shown in Table 6, 
the blur effect lowered the model capacity when over sigma 2. However, human eyesight 
could differentiate objects until sigma 6, as shown in Figure 8. However, if these data were 
labelled and used, there are concerns regarding a decrease in the model performance. 

(a) Sigma 0 (b) Sigma 2 (c) Sigma 4 (d) Sigma 6 (e) Sigma 8 

Figure 8. Gaussian noise for the board category in each step. 

Table 6. Model mAP per noise augmentation level. 

Sigma Image Quantity Iteration 10,000 All 0.55 0.65 0.75 0.85 0.95 

0 788 
Box 33.9 58.4 40.5 31.1 18.4 5.6 

Mask 32.5 59.3 42.4 28.4 11.3 0.8 

2 1576 
Box 32.5 59.2 39.3 33.1 20.3 10.4 

Mask 31.5 58.4 45.2 34.1 16.2 3.4 

4 1576 
Box 15.8 33.5 23.1 11.5 8.8 2.1 

Mask 12.7 29.3 21.1 9.7 3.2 0.2 

6 1576 
Box 16.0 32.9 20.9 12.3 10.2 3.9 

Mask 13.7 29.9 23.5 10.8 4.2 0.3 

8 1576 
Box 13.4 32.3 18.8 12.1 7.2 2.1 

Mask 11.0 23.0 20.1 8.3 3.3 0.2 

4.2.3. Hue and Saturation 
It is expected that the circumstances of the data collected through variable research 

on hue and saturation changes could be investigated. Especially in outside circumstances, 
the overall colour of the obtained image changes depending on the amount of sunshine 
and time taken to capture the picture, and the effects can be verified through FID. For the 
changes, the image was brought from the source colour space and converted to HSV, H 
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(hue) and S (saturation) channels were extracted, colour channel on the set colour code 
angle was applied, and finally converted to the original colour space again. In Figure 9, as 
observed by human vision, the image is to be observed in black and white when the hue 
reaches −60, and the image loses the original colour at saturation 20. As a result of the 
performance evaluation of the model, it was verified that the accuracy drastically dropped 
when the hue was below −20 and saturation was over 20, as shown in Table 7. Thus, the 
characteristics of the AI model primarily depend on the colour data and evaluate. 

 
(a) Hue −60 (b) Hue −40 (c) Hue −20 (d) Saturation +20 (e) Saturation +40 

Figure 9. Hue and saturation for the mixed bag category in each step. 

Table 7. Model mAP for different hue/saturation augmentation levels. 

Colour code angle Image Quantity Iteration 10,000 All 0.55 0.65 0.75 0.85 0.95 

Standard 788 
Box 33.9 58.4 40.5 31.1 18.4 5.6 

Mask 32.5 59.3 42.4 28.4 11.3 0.8 

Hue −20 1576 
Box 32.4 59.9 41.2 33.7 20.1 7.1 

Mask 27.7 59.2 40.3 28.1 10.0 0.7 

Hue −40 1576 
Box 14.1 23.1 24.3 16.3 5.2 1.4 

Mask 11.9 16.2 21.5 15.3 6.2 0.5 

Hue −60 
(almost black and white) 

1576 
Box 11.3 17.7 15.4 10.3 8.8 4.2 

Mask 10.2 20.3 17.3 8.3 4.5 0.4 

Saturation +20 1576 
Box 21.8 40.3 32.4 21.8 11.4 3.2 

Mask 19.0 39.4 29.4 20.5 5.2 0.3 

Saturation +60 1576 
Box 14.0 23.1 18.4 14.1 10.2 4.1 

Mask 8.9 19.3 10.4 8.2 6.1 0.3 

4.3. Final Learning Results 
The results of learning by quantitatively adding the learning data according to the 

abovementioned results are shown in Figure 10. By doubling the amount of learning data, 
a maximum increase of 16% in the mAP was verified. This is a result of learning that 
amassed the noise filter 100 times, and tripled the learning data (2364) through augmen-
tation in Sigma 2. On the other hand, the dataset with changed saturation data showed a 
decline in performance. Moreover, the proposed model seems insusceptible to changes in 
brightness, but is affected by noise or blur; thus, the results can be utilised in data acqui-
sition for developing the model to recognise construction waste. 
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(a) (b) 

Figure 10. Comparison results on mAP, which trained the model by adding images for learning 
through augmentation. 

5. Conclusion 
Transfer learning was applied to an AI model to differentiate between five types of 

construction waste. Finally, differentiation was successful through transfer learning of the 
AI model using segmentation. However, there were some situations in which some cate-
gories could not be recognised, but could be solved by developing data quality assessment 
methods and refinement techniques. 
1. Advancement in refinement techniques to list the situation on the model function 

from the data collection step is needed, and not just labelling objects. 
2. Labelling was impossible without professional knowledge owing to the characteris-

tics of construction waste. Additionally, supervisors were required to manage re-
fined data because there were many objects that could not be differentiated while 
labelling. 

3. When the existing classification techniques are mainstream, it is possible to re-use 
the collected data for an instance segmentation model. 

4. Regarding the image data with complicated backgrounds, the precise classification 
of one category seems to enhance the model performance and decrease resource con-
sumption rather than classifying several categories in one image. 

5. It was verified that increasing the amount of data indiscriminately worsened the 
quality of the model. Furthermore, it was necessary to apply quantitative augmenta-
tion to the learning data in each category. 

6. To develop an AI model that recognises construction waste, less data with minimum 
focus and noise, better the collected data performance. Although it does not have 
much impact on brightness, such as sunlight, to collect data avoiding time, such as 
sunrise/sunset, which affects image colour, seems better. 

7. By increasing the amount of data through augmentation using transfer learning, it 
was verified that mAP increased by 16%. However, the AI model needs to be rede-
signed by reflecting the characteristics of construction waste if the performance of 
the model cannot be acquired. 
This study highlights the importance of data augmentation and transfer learning for 

efficient utilisation of artificial intelligence data set. In particular, it is considered that it 
would be possible to train artificial intelligence models using a small number of image 
data, since the data augmentation method presented in this study is a useful technique 
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through the change of image values without taking additional pictures in various envi-
ronments. Furthermore, the data augmentation methods suggested in this study would 
be applicable not only to construction waste, but also to other image-based artificial intel-
ligence models. 
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