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Abstract: With the increasing innovation and development of Wi-Fi technology, its penetration in
the various fields of industry and academia is becoming more and more profound. As the core
infrastructure of traffic data collection in the field of Intelligent Transportation Systems (ITS), Wi-Fi-
based traffic detectors have great potential for use in traffic target positioning, perception, and pattern
recognition due to their low cost and extensive infrastructure deployment. This paper conducts
a comprehensive review of three major Wi-Fi-based traffic detection applications in the field of
ITS: target positioning, traffic parameter extraction, and travel mode identification. Among these,
target positioning is one of the most widespread applications of Wi-Fi technology, which is also the
basis for two other research aspects. Moreover, Wi-Fi-based positioning can be divided into two
categories: ranging-based positioning and range-free one; in the field of transportation, it can also be
categorized into pedestrian positioning and vehicle positioning based on travel mode. To further
demonstrate the effectiveness of Wi-Fi-based ITS applications in practice, this study compares the
various Wi-Fi-involved models and algorithms around the world, as well as provides some ideas and
inspiration along with this direction.

Keywords: traffic detection; Wi-Fi technology; target positioning; traffic parameter extraction; travel
mode identification

1. Introduction

In recent years, the continuous innovation and development of Micro-Electro-Mechanical
System (MEMS) technologies has driven the rapid progress of Wireless Sensor Networks
(WSNs). With the popular applications of mobile Internet technology, smart infrastructures
and terminals equipped with wireless sensors can be found everywhere, such as in smart-
phones, smartwatches, tablet PCs, and connected vehicles. As the core infrastructure of
traffic data collection in the field of Intelligent Transportation Systems (ITS), WSN is also
widely used in vehicle tracking, personnel monitoring, environmental monitoring, security
surveillance, intelligent buildings, healthcare, and other fields [1–3]. Typical wireless com-
munication techniques include Bluetooth [4], Zigbee [5], UWB [6], and Wi-Fi [7]. Among
these, Wi-Fi technology is often applied in localization and trajectory tracking for indoor
and outdoor targets because of its advantages such as longer communication distance,
lower cost, high penetration, less interference from the environment, low dependence on
user cooperation, and no need to establish direct communication connections [8]. Mean-
while, the experiment in [9] revealed that the participants turned on Wi-Fi for 12.4 ± 5.9 h
on average and the average access points (APs) connection time can be up to 8.5 ± 6.1 h in
a day, which makes it reasonable to explore users’ Spatio-temporal trajectory by utilizing
Wi-Fi data. Nowadays, Wi-Fi technology has been widely deployed in several ITS fields
such as individual traffic target localization and tracking [10], traffic parameter estimation
and travel mode recognition [11,12], and traffic monitoring [13].
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ITS refers to the deployment of modern technologies and applications to provide
novel solutions to traffic congestion concerns [14]. Innovative applications of traditional or
emerging technologies in the field of traffic engineering can bring positive and beneficial im-
provements to traffic problems, such as congestion, accidents, and environmental pollution.
For example, heterogeneous data sources can be used to estimate the dynamical evolution
of traffic flow and density in large urban traffic networks [14]; the origin-destination flows
can be obtained through basic information extracted from automated vehicle monitoring
(AVM)/floating car data (FCD) [15]; some researchers used FCD to infer travel behavior [16],
and predict delivery patterns [17]. In these areas, Wi-Fi technology has the ability to accom-
plish similar or even identical tasks. Compared with traditional technology, Wi-Fi has a
broader performance stage in traffic engineering due to its low cost and high penetration.

Early Wi-Fi positioning is mainly applied in Global Navigation Satellite System
(GNSS) denied environments, such as indoor environments. It could be integrated with
GNSS [18–20] in GNSS failure scenarios, such as satellite visibility degradation, multipath
propagation, tree and building occlusion, malicious interference, etc. With the intensive
and extensive deployment of wireless access points in cities, Wi-Fi technology will become
both a feasible and economical method for target localization, vehicles classification [21],
traffic parameter measurement, etc. Thus, this paper mainly reviews the application of
Wi-Fi technology in three areas of ITS: target localization, traffic parameter estimation, and
traffic pattern recognition, with a focus on Wi-Fi-based outdoor traffic target localization
and tracking technology.

The remaining portion of this paper is organized as follows: Section 2 provides a
specific introduction to Wi-Fi positioning techniques and focuses on Wi-Fi-based traffic
target positioning. Section 3 introduces the applications of Wi-Fi-based traffic parameter
extraction and travel mode identification. Section 4 presents and summarizes some future
applications and research directions of Wi-Fi-involved technologies in transportation.

2. Wi-Fi-Based Positioning Technology
2.1. RSSI-Based Wi-Fi Positioning

As smart terminals (smartphones, wearable devices, connected vehicles, etc.) become
more and more popular, they also integrate abundant sensing modules, such as Bluetooth,
Wi-Fi, and other wireless communication units [22]. At the same time, the deployment of
Wi-Fi networks is conducted worldwide in modern cities and on blooming smart roads.
Compared with Global Positioning System (GPS) positioning, Wi-Fi positioning has lower
power consumption [23], which is more friendly for mobile devices with low battery
capacity. Based on the above, utilizing Wi-Fi signals and wireless mobile devices to locate
pedestrians and vehicles in complex urban road environments has become a feasible and
meaningful method in the field of ITS.

Nowadays, wireless localization techniques can generally be achieved based on Time
of Arrival (TOA) [24], Time Difference of Arrival (TDOA) [25], Angle of Arrival (AOA) [26],
Channel State Information (CSI) [27], and Received Signal Strength Indicator (RSSI). Among
these, RSSI (which is often confused with RSS) is the RSS indicator, a relative measurement
of the RSS that has arbitrary units and is mostly defined by each chip vendor [27]. CSI is
not easily accessible with most commodity hardware [28]. Compared to other commonly
used measurement methods (TOA, TDOA, and AOA), the RSSI measurement method
does not require time synchronization or the employment of an antenna array, which
makes it more effective and cost-efficient for mobile phone localization in the view of both
software and hardware [29]. Therefore, this paper mainly reviews the RSSI-based Wi-Fi
positioning method.

As a widely adopted technique, RSSI-based Wi-Fi positioning can be generally divided
into two categories: ranging-based positioning and range-free positioning.
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2.1.1. Ranging-Based RSSI Positioning

Ranging-based RSSI positioning refers to a two-stage method including the distance
estimation and the positioning process. The first stage is to measure the physical distance
between the unknown node (target location) and the anchor node (sensor location) in
real-time, and the second refers to estimating the coordinate of the unknown node based
on the measured distances and the known coordinates of the anchor nodes.

As usual, the wireless signal follows a certain propagation regulation in the air, and
the relationship between the RSSI and propagation distance can be obtained by using
propagation law. The common propagation model for describing the distance—RSSI
relationship is the lognormal shadowing model expressed as follows [30,31]:

P(d) = P(d0)− 10ηlg(d/d0) + Xσ (1)

where P(d) denotes the detected RSSI corresponding to the transmission distance d; P(d0)
is the RSSI at the reference distance d0; η represents the path loss parameter, and Xσ rep-
resents a zero-mean Gaussian random variable with a standard deviation σ. Although
the lognormal shadowing model is quite widely used, its performance is not guaranteed
for accurate distance estimation in the complex urban road environment. Recently, re-
searchers have proposed many effective methods for fitting the RSSI—distance relationship,
such as polynomial fitting [32], piecewise fitting [33], piecewise polynomial fitting [10],
segmentation heterogeneous fitting [34], and neural network fitting [35].

The key to ranging-based RSSI positioning is to measure the distance between the
unknown node and each anchor node and then compute the specific coordinate of the
unknown node according to the estimated distances and the coordinates of the anchor
nodes. If the number of anchor nodes in the network is set to three, the common method
is trilateral positioning. Moreover, for more anchor nodes, one can conduct multilateral
positioning. Assuming that the number of anchor nodes is n in the multilateral positioning
network, the coordinate of the ith anchor node is set to (xi, yi), the coordinate of the
unknown node is (x, y), and the estimated distance between the ith anchor node and
the unknown node is di

′, the real physical distance between the ith anchor node and the
unknown node is di. Multilateral positioning can be expressed in Figure 1.

Buildings 2022, 12, x FOR PEER REVIEW 2 of 14 
 

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

(x5, y5)

(xn, yn)

(x, y)

d1

d2

d3d4

d5

dn

 
Figure 1. Schematic diagram of multilateral positioning. 
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Figure 1. Schematic diagram of multilateral positioning.

After obtaining the estimate of di by measurement, di
′, one can obtain the following relationship:

(x− xi)
2 + (y− yi)

2 = d′i
2, i = 1, · · · , n (2)

The localization problem can be defined as estimating the position of the unknown
node given the equation set (2) [36]. The Linear Least-Squares (LLS) technique [37] is an
alternative solution for this problem. Assuming that the rth anchor node is chosen as the
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reference anchor one, and correspondently the rth term is subtracted from the ith term
(i 6= r), then the least-squares solution can be obtained by:

X = (AT A)
−1

AT B (3)

with

A =



2(x1 − xr) 2(y1 − yr)
...

...
2(xr−1 − xr) 2(yr−1 − yr)
2(xr+1 − xr) 2(yr+1 − yr)

...
...

2(xn − xr) 2(yn − yr)


(4)

B =



d′r2 − d′1
2 + x2

1 + y2
1 − x2

r − y2
r

...
d′r2 − d′2r−1 + x2

r−1 + y2
r−1 − x2

r − y2
r

d′r2 − d′2r+1 + x2
r+1 + y2

r+1 − x2
r − y2

r
...

d′r2 − d′n2 + x2
n + y2

n − x2
r − y2

r


(5)

Alternatively, the Taylor series expansion method [38] is also a classical algorithm to
solve localization problems. Assuming that the actual coordinate of the unknown node is
(x, y) and the initial value of the iteration is (x′, y′), the actual coordinate can be expressed
as the summation of the initial coordinate and the position offsets.{

x = x′ + δx
y = y′ + δy

(6)

The distances between the unknown node and each anchor node can be expressed
as follows:

di = f(i)(x, y) =
√
(x− xi)

2 + (y− yi)
2, i = 1, · · · , n (7)

Expanding the distance function f (i)(x, y) at (x′, y′) with a first-order Taylor series:

f(i)(x, y) = f(i)(x′ + δx, y′ + δy) = f(i)(x′, y′) +
∂ f(i)(x, y)

∂x

∣∣∣∣∣
(x′ ,y′)

δx +
∂ f(i)(x, y)

∂y

∣∣∣∣∣
(x′ ,y′)

δy (8)

Thus, the corresponding equations can be obtained, and the solution of the equations
can be used to correct the initial coordinate. By setting the proper threshold of the error
and iterating, it’s possible to obtain an accurate estimation of the coordinate.

In addition to the least-squares techniques, the maximum likelihood algorithm (MLA)
can also be used for solving the localization problem [39]. In the absence of non-line-of-sight
(NLOS) bias, assuming that the measured distance di

′ (di
′ ∈ d′) follows a Gaussian normal

distribution N(di, σi
2), the location of the unknown node is x. The probability density

function can be expressed as follows:

p
(

d′
∣∣x) = n

∏
i=1

1√
2πσi

e−(d
′
i−di)

2/2σ2
i (9)

The maximum likelihood solution can be obtained:

X = argmax
x

p(d′|x) (10)

In practical localization situations, RSSI is susceptible to the influence of the surround-
ing environments and includes noise with large fluctuations, which in turn leads to large
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localization errors [40]. Some researchers have proved that the filtering technique is an
effective solution to suppress the negative effects of noise on positioning, such as the
Gaussian filter [41,42], Kalman filter (KF) [43,44], and robust Kalman filter (RKF) [45].

2.1.2. Range-Free RSSI Positioning

As with the aforementioned localization methods, the ranging-based positioning
cannot achieve a very high accuracy because the collected RSSI signals from user devices
are unstable due to noise disturbance in the outdoor environment. By contrast, the range-
free localization does not need to utilize the physical distance to determine terminal location.
Fingerprinting positioning is one of the most widely used range-free methods. In practice,
the fingerprint positioning procedure can be divided into two phases: the offline phase
and the online phase [46]. In the offline phase, RSSI fingerprint vectors are constructed
at reference points (RPs) through a site survey where Wi-Fi signals between known RPs
and access points are collected, and then an RSSI fingerprint database is constructed. In
the online phase, the user measures the RSSI vector at her/his position in real-time and
records it. After receiving the measured RSSI vector, the server performs location matching
based on matching algorithms and then deduces the real-time user’s location. The basic
procedure of RSSI-based fingerprint positioning is shown in Figure 2.
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Figure 2. Schematic diagram of RSSI-based fingerprint positioning.

Suppose that there are q APs deployed in the network and the number of RPs is p. The
set of RPs and APs can be expressed as WRP and WAP, WRP = {RP1, . . . , RPi, . . . , RPp}
and WAP = {AP1, . . . , APj, . . . , APq}. The RSSI vector collected at the ith RP is Si,
Si = {RSSIi1, . . . , RSSIij, . . . , RSSIiq}, and the coordinate of the ith RP is li = (xi, yi). The
RSSI data contained in the fingerprint database is R = {S1, . . . , Si, . . . , Sp}, and the coor-
dinate set is L = {l1, . . . , li, . . . , lp}. The RSSI vector collected in real-time at the unknown
node is S = {RSSI1, . . . , RSSIj, . . . , RSSIq}.

Location matching algorithms for fingerprint positioning can be generally classified
into deterministic and probabilistic ones [47]. There are many typical deterministic algo-
rithms, such as nearest neighbor (NN) algorithm, K-nearest neighbor (KNN) algorithm,
and weighted K-nearest neighbor (WKNN) algorithm. Among these, NN is one of the most
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basic fingerprint positioning algorithms [48]. Firstly, the Euclidean distance between the
RSSI vector S and the fingerprint Si might be calculated according to the following equation:

Ei =

√√√√ q

∑
j=1

(RSSIj − RSSIij)
2 (11)

Next, the coordinate of the RP with the smallest Euclidean distance is chosen as the esti-
mation of the unknown node coordinate. As the typical deterministic algorithms, KNN [48]
and WKNN [48] match the collected RSSI vector with the fingerprint dataset and use the
average or weighted average of the top K RPs’ coordinates with the shortest Euclidean dis-
tance as the coordinate estimation of the unknown node. These two algorithms are simple
and easy to solve, but the choice of the K value directly affects the positioning accuracy.

By contrast, Maximum A Posteriori (MAP) estimation might calculate the location of
the unknown node by maximizing the conditional probability of the location given the
received online measurement [49]. The coordinate of the unknown node can be obtained as:

X = argmax
i=1,··· ,p

[P(li|S)] (12)

where P(li |S) is the conditional probability that the unknown node is at the location of li
by given a signal S.

Moreover, machine learning methods have been increasingly used in localization
problems, such as support vector machines (SVM) [50,51], decision trees (DT) [52], and
deep learning (DL) [53,54]. In [51], SVM was applied to obtain an initial estimated position
of the target based on the RSSI, which was also modified by using an improved Kalman
filter. The study in [52] compared two decision trees by considering two major factors:
the amount of training data and the number of reference radio signals. The testing results
showed that the decision tree based on the gradient boosted algorithm yielded much more
accurate results than typical DT, and the best result could be achieved with 19 reference
radio signals and 50 samples of training data. To enhance the ability of fingerprints
to express the change characteristics of environments, the authors in [55] adopted the
Hybrid Wireless fingerprint (HW-fingerprint) with the combination of Ratio fingerprint
and RSSI fingerprint. In addition, a convolutional neural network (CNN) architecture was
constructed to learn important features from the hybrid fingerprint. To deal with challenges
(spatial ambiguity, RSSI instability, short RSSI collection time per location, etc.), the authors
in [56] presented recurrent neural network (RNN) to determine the user’s location by
exploiting the sequential correlation of RSSI measurements.

To clearly and briefly compare the proposed methods presented in the literature,
this study conducted a comprehensive review of the main methods for RSSI-based Wi-Fi
positioning in detail in Table 1.

Table 1. Summary of RSSI-based Wi-Fi positioning methods.

Category Technique Method Reference Complexity Performance

Ranging-based
RSSI positioning

RSSI-Distance
relationship

fitting

Lognormal
shadowing model [30] Simple Fitting accuracy: smaller than the

curve fitting one (fitting degree = 2)

Polynomial fitting [32] Simple

The 90% error of distance estimation:

• 2.6 m (polynomial degree = 2)
• 5.5 m (lognormal

shadowing model)

Piecewise fitting [33] Simple -
Piecewise

polynomial fitting [10] Moderate Mean error (m): 1.58 (the first fitting),
and 1.56 (the second fitting)

Segmentation
heterogeneous

fitting
[34] Moderate

Mean error (m): 1.57 (workstation
environment), and 2.26 (indoor
badminton court)

Neural Networks [35] Complex -
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Table 1. Cont.

Category Technique Method Reference Complexity Performance

Coordinate
estimation

Linear
least-squares [57] Simple -

Taylor series
expansion [33] Moderate The probability of large positioning

errors can be effectively reduced.
Maximum
likelihood
algorithm

[57] Complex -

Ranging-based
RSSI positioning

Filtering the
noises

RSSI filtering References Filtering
effect Performance

Gaussian filter [41,42] Static processing -

KF
[43] Static processing Error for calculated distance: 6% (1 m)

and 9.5% (2 m)

[44] Dynamic RSSI
smoothing

Minimize large fluctuations with a
quick response time

RKF [45] Static/Dynamic
RSSI smoothing

A better signal smoothing effect due
to adaption to changes in both static
and dynamic environments

Range-free RSSI
positioning

Algorithm References Specific
application Complexity Performance

NN/KNN/WKNN [48] - Low -

Probabilistic
algorithms [49] - Complex -

Support vector
machines

[50] LS-SVM Moderate Median error: 0.6–1 m

[51] SVM + KF Complex
RMSE (experimental results):

• 0.87 m (entire trajectory)
• 0.98 m (turning region)

Decision Trees [52]

Typical DT
algorithm,

Gradient boosted
tree algorithms

Moderate

Accuracy:

• 55.56% (Typical DT algorithm)
• 73.33% (Decision tree model

based on Gradient boosted
algorithm)

Error distance:

• 2.408 m (Typical DT algorithm)
• 0.754 m (Decision tree model

based on Gradient boosted
algorithm)

Deep Learning

[55]

Hybrid Wireless
fingerprint

(HW-fingerprint),
Convolutional
neural network

Complex

Average daily location accuracy
during 15 days:

• 67.79% (KNN)
• 79.97% (SVM)
• 84.17% (CNN)

[56]

Recurrent neural
network,

Long short-term
memory (LSTM)

Complex Average error: 0.75 ± 0.64 m

2.2. Wi-Fi RSSI Signal-Based Traffic Target Positioning Technology

Currently, most research on Wi-Fi positioning remains indoors [58–61], and quite a
few industrial practices have started to provide outdoor positioning services based on
Wi-Fi infrastructures [62]. From the perspective of data in the field of outdoor traffic
target positioning, GPS and CSI data might also be integrated into RSSI-based positioning
technique. Therefore, this paper categorizes Wi-Fi-based traffic target positioning methods
into two groups: single RSSI-based and RSSI-based combination with other data.

2.2.1. Single RSSI-Based Positioning

Considering the effect of the mobile user’s orientation on RSSI, the authors in [63]
proposed a direction-based fingerprint positioning model, in which the RSSI values from
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four directions were collected at each RP. The test results indicated that this model can
accurately calculate the user’s position and identify the user’s orientation. Although this
method only uses RSSI values, it is still possible to improve the positioning accuracy by
expanding the richness of the fingerprints. Experiments with high-dense AP deployment in
the Sydney CBD area confirmed that the Wi-Fi positioning system based on fingerprinting
works well for outdoor localization, especially when directional information is utilized [64].

In the offline phase, the construction of the fingerprint database was an important issue
because its deployment and maintenance are costly, requiring large amounts of resources
of humans, materials, and funding. These problems are even more prominent in outdoor
positioning than indoors. Crowdsourcing is a very promising solution to tackle these
issues [65]. For example, the researchers in [66] divided the geography target area into
several fingerprint clusters identified by Position Feature Vectors (PFVs) via crowdsourcing
data for building the offline Wi-Fi fingerprint database. In the online phase, the detected
Wi-Fi signal vector is first compared with PFVs to find the most matching cluster, and then
the KNN algorithm is employed to calculate the accurate position.

Depending on the focus, the authors in [67] investigated some critical parameters
affecting outdoor positioning accuracy via extensive experiments, such as grid spacing
and the number of APs. However, in reality, device diversity is also an unavoidable factor
affecting accuracy. Notably, the deviation between the users’ devices and the devices used
to construct the RSSI fingerprints is likely to cause positioning deviation. A novel power-
gap elimination algorithm was reported to address this issue in the outdoor environment.
The results demonstrated that it is feasible to conduct vehicle positioning solely based on
the Wi-Fi fingerprinting approach even in the presence of device diversity [68].

In fingerprint-based positioning, dense labeled data points (also known as reference
points or labeled ones) need to be obtained through extensive field experiments. It is
difficult and expensive to conduct this operation in a complex traffic environment. There-
fore, it is a challenging and highly rewarding task to maintain a good balance between
positioning accuracy and fingerprint database construction cost [69]. A semi-supervised
extreme learning machine (SSELM) with a locally linear embedding (LLE) algorithm was
proposed to achieve the RSSI fingerprint positioning with as few fingerprints as possible.
Experimental results demonstrated that the proposed method could provide ideal posi-
tioning performance for vehicles with different driving speeds in sparse or dense sensor
deployment environments at the cost of shorter training time consumption and lower
dependence on sample size than traditional models [70].

Compared with fingerprint-based positioning, ranging-based positioning does not
require the search and comparison process with the fingerprint database [71]. However,
in realistic traffic environments, it is a challenge to accurately formulate the relationship
between RSSI and physical distance, and to eliminate the perturbation of RSSI in the online
positioning phase to guarantee accuracy in real-time. Some researchers designed a series
of filtering algorithms for noise reduction, such as the constant velocity Kalman filter and
the unscented Kalman filter (UKF). In [40], a constant velocity KF algorithm integrating
constant velocity filter and KF was proposed to filter the collected RSSI values in real-time
pedestrian positioning. Compared with [40], the researchers proposed a two-stage filter
method [10]. In detail, the real-time RSSI was filtered by the constant velocity KF algorithm,
and the estimated target trajectory was also smoothed by UKF.

2.2.2. Combination Positioning

GPS is an attractive option for outdoor environments but is not suitable for indoor
applications because it needs a clear line-of-sight to orbital satellites for target tracking [72].
Therefore, GPS technology might be combined with Wi-Fi to connect indoor and outdoor
positioning to improve user experience.

In [19], the authors proposed a seamless navigation system with Wi-Fi/GPS/Inertial
Navigation System (INS) integration for both indoor and outdoor environments. By adding
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step detection and enhanced Wi-Fi positioning technologies to the standard GPS/INS inte-
gration system, the navigation performance for indoor environments has been improved.

The scene switching solution is a challenging task to achieve seamless indoor-outdoor
positioning. In [73], the authors proposed the positioning algorithms switching strategy
according to the number of connected GPS satellites, Wi-Fi signal number, and Geometric
Dilution of Precision (GDOP). In [74], the authors presented a detailed positioning switch
strategy combining GPS positioning, cellular positioning, and Wi-Fi positioning, which can
be used for indoor and outdoor seamless positioning. Based on the AdaBoost algorithm,
the researchers in [20] constructed a classifier using the RSSI values for the detection in
indoor and outdoor environments to design a seamless indoor-outdoor navigation system
using Wi-Fi, Pedestrian Dead Reckoning (PDR), and GNSS. Firstly, the indoor/outdoor
environment was judged, and the indoor navigation algorithm combining Wi-Fi fingerprint
positioning and PDR is used if it is indoors; otherwise, the outdoor navigation algorithm is
developed by combining GNSS and PDR.

In [75], the authors used Wi-Fi localization to create a new type of Assisted-GPS. When
the GPS receiver was activated, all received Wi-Fi signal strengths were sent to the server to
make a preliminary estimation of the mobile terminal’s location, and then the server sent
useful ephemeris data to the terminal. This solution could avoid the GPS drawbacks, such
as a long time to first fix (TTFF) and huge power consumption [76]. Otherwise, a selective
weighting scheme with GPS and Wi-Fi was reported, and the location might be associated
with the weighted summation of GPS location and Wi-Fi one according to the weather
conditions [77]. Among, the algorithm requires the user to input the weather conditions to
present an accurate estimator.

Depending on the input data, the researchers proposed a hybrid outdoor localiza-
tion scheme by utilizing crowdsourced Wi-Fi signal data and the smartphone’s built-in
sensors [78]. This scheme could restrict the matching operation in a small space with the
consideration of moving direction and travel distance. Finally, the WKNN was proposed
to estimate the position in terms of the dissimilarity in RSSI and the GPS states (e.g., the
number of satellites, signal noise ratio). Experimental results showed that the proposed
localization scheme outperforms the GPS-based method in both positioning accuracy and
power consumption.

CSI can also be used with RSSI for outdoor positioning. In [79], the authors proposed
a CSI/RSSI-based positioning scheme with two stages. In the offline stage, the collected
CSI/RSSI data was divided into several clusters by a clustering algorithm, and a deep
learning-based classification model was constructed for each cluster. In the online stage,
the clusters corresponding to the measurements are determined using KNN (K = 1), and
each CSI/RSSI measurement can be mapped to a final location via the classification model.

Information from other communication networks can also be integrated with Wi-Fi for
positioning. In [80], the authors proposed a mobile positioning method based on integrated
heterogeneous networks (e.g., cellular networks and Wi-Fi networks) for urban areas with
many shelters where GPS positioning may generate large errors. Results showed that the
proposed method could be well adapted to commercial vehicle operation systems as well
as outdoor positioning.

Based on the above, the RSSI-based applications in the field of traffic target positioning
are summarized in Table 2.
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Table 2. Summary of traffic target positioning technologies based on Wi-Fi and others.

Category Technique References Key Method Accuracy

Single RSSI-based
positioning

Fingerprint

[64] Use directional information in
outdoor environment

Average error:

• 35.8 m (traditional approach)
• 23.5 m (direction-based approach)

[66]

Construct an offline database
using crowdsourced data and

divide geography area into
several fingerprint clusters based

on clustering algorithms

Achieve higher positioning accuracy and low
computation complexity

Single RSSI-based
positioning

Fingerprint (vehicle)

[67] KNN in outdoor environment -

[68]

Propose a power-gap
elimination (PGE) algorithm to

address the device diversity
problem in Wi-Fi fingerprinting

in the outdoor environment

Training device: Nexus5

• Nexus5 (testing device): 18.2 m (mean
error), 13.6 m (50%), 35.2 m (90%)

• Huawei (testing device): 16.2m (mean
error), 12.7 m (50%), 32.5 m (90%)

• Samsung (testing device): 17.8m (mean
error), 12.5 m (50%), 38.6 m (90%)

[70]

Propose a semi-supervised
extreme learning machine

(SSELM) with a locally linear
embedding (LLE) algorithm to

achieve the RSSI
fingerprint positioning

• 3.09 m (minimum mean positioning error,
simulation for different speed scenarios)

• 8.04 m (mean positioning
error, measurement)

Ranging-based
positioning

[40]
Propose a fused algorithm by

integrating constant speed filter
and KF

Average error: 0.16 m (X-axis),
and 0.15 m (Y-axis)

[10]

Develop the least-squares Taylor
series expansion (LS-TSE) to

calculate the coordinate instead
of existing trilateral localization

Mean error of 1.67 m

Combination
positioning based
on Wi-Fi RSSI and

other data

Wi-Fi + GPS + INS [19]

Propose seamless navigation
with a Wi-Fi/GPS/INS

integrated system both in
outdoor and

indoor environments

The navigation accuracy is improved by more
than 1.30 m by using enhanced

Wi-Fi positioning.

Wi-Fi + GNSS +
PDR [20]

Use RSSI to train weak classifiers
and combine weak classifiers to
get a strong classifier for indoor
and outdoor detection based on

the AdaBoost algorithm

The overall navigation accuracy based on Wi-Fi
indoors and outdoors detection has increased

by 71.5% compared to GNSS.

GPS + Wi-Fi [77] Selective weighting scheme
combined with GPS and Wi-Fi

Average error:

• 11.09 m (selective weighting scheme)
• 14.89 m (GPS)
• 18.9 m (Wi-Fi)

Wi-Fi + sensor
information + GPS [78]

Restrict the matching operation
in a small space according to
direction and travel distance,
and determine the weighted

factors of positioning algorithm
in terms of the GPS signal state

and dissimilarity in RSSI

Achieve high-positioning accuracy and low
power consumption

Wi-Fi (CSI + RSSI) [79]
Propose a novel deep learning
based positioning scheme that

utilizes both CSI and RSSI
Mean error of 6.45 m

Heterogeneous
networks with

cellular and Wi-Fi
[80]

Mainly use the collected RSSI,
time series data, and

transmission distance for
mobile position

Mean error of 3.36 m

3. Other Applications of Wi-Fi Technology for ITS

In addition to outdoor traffic target positioning, Wi-Fi technology can also be an
effective detection method in traffic flow parameter extraction, such as travel mode, traffic
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volume, travel time, and speed. These parameters are of great significance for traffic flow
analysis, traffic condition recognition, traffic control and management optimization, traffic
guidance, etc.

Traditional traffic detection techniques mainly include inductive loops [81,82], pneu-
matic road tubes [83], and video detection [84]. However, intrusive sensors like inductive
loops and pneumatic road tubes have some drawbacks, such as causing traffic disruptions
during installation or maintenance [85]; video cameras are easily affected by environmental
factors (e.g., weather, sunlight) [86]. Unlike vehicle-oriented sensors, Wi-Fi devices, which
are widely deployed in cities, also have the possibility and potential to detect all traffic
targets and extract parameters for all non-motorized and motorized vehicles. Thus, this
Section provides a preliminary introduction to Wi-Fi-based traffic parameter extraction and
travel mode identification.

3.1. Wi-Fi-Based Traffic Parameter Extraction

Bus passenger volume is an important parameter in ITS, which supports public
transportation planning, bus fleet size, and bus scheduling. It varies between routes and
stations in a specific city or area. Existing bus passenger volume extraction methods include
IC card counting, infrared detection, and video detection [87]. Apart from those, the mobile
devices carried by passengers could also be used to extract passenger volumes. In [87],
the authors developed a statistical model to predict the number of on-board passengers
based on manual passenger counts and logging of wireless data frames detected using a
computer with a Wi-Fi card in monitor mode. The results are promising, but the MAC
randomization problem of mobile devices might need further attention. In [88], the authors
proposed a MAC address cleaning and processing scheme that considers speed, bus stop
zoning, and route circulation to obtain the Origin-destination (OD) matrix and passenger
volumes for bus route sections. Although the results showed that the estimated passenger
volume would usually be smaller than the actual value, the former follows the same trend
as the latter.

Real-time pedestrian volume data is also an indispensable parameter. For example, it
is important for business strategy adjustment and guidance in shopping malls and tourist
attractions, and its extraction method is getting more and more attention from researchers.
In [89], the authors focused on the optimal Wi-Fi probe layout and estimation model of
real-time pedestrian volume. According to the RSSI value and time information of captured
signals, the proposed optimal layout scheme is also capable of distinguishing the direction
of the detected mobile devices. In [90], the researchers established the passive Wi-Fi
sensing model by probabilistically analyzing the interactions between a moving pedestrian
flow and Wi-Fi sniffers and developed a sequential filtering algorithm based on the Rao-
Blackwellized particle filter (RBPF) to simultaneously estimate the pedestrian volume and
the pedestrian flow speed via the real-time Wi-Fi sniffing data. In another study [91],
the researchers empirically evaluated Bluetooth Media Access Control Scanner devices
and Wi-Fi Media Access Control Scanners devices in terms of the availability of traffic
data and the accuracy of travel time estimation. Depending on the focus, Abedi et al. [92]
empirically assessed the impact of different antenna characteristics on tracking movements
of pedestrians and cyclists based on MAC address datasets. They reported that the higher
gain antenna could collect more unique samples from available Wi-Fi devices carried by
runners and cyclists compared to the lower gain antenna. The lower gain antenna collected
less efficient data from runners and cyclists due to covering smaller areas and less scanning
time, but it provided a more accurate estimation of the walker’s travel time for the larger
distance between detection zones of each sensor at the entrance and the exit. Others have
conducted performance tests on detection systems integrated with Wi-Fi and Bluetooth [12]
to detect pedestrian-bicycle networks, including travel time/speed estimation, classification
of pedestrians and cyclists, and passenger counting.

Unlike the above applications, Wi-Fi can also be used for vehicle monitoring. In [93],
the authors presented a Wi-Fi-based traffic monitoring system, WiTraffic, which captured
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the unique Wi-Fi CSI patterns of passing vehicles to effectively perform vehicle classifi-
cation, lane detection, and speed estimation. They presented the Butterworth low-pass
filter and a simple threshold-based detection method to remove the noise of collected
raw CSI data and detect passing vehicles. A C-Support Vector Machine (C-SVM) was
also employed to train the vehicle classification models. The results showed that more
accurate vehicle speed estimation could be obtained with the more sophisticated vehicle
classification models defined for various kinds of vehicle types.

Depending on the collected data input, other researchers also reported the traffic
parameter extraction methods based on RSSI. For example, Kassem et al. [94] investigated
RSSI data for vehicle detection and speed estimation and developed a multi-class SVM
classifier to distinguish three states: an empty street, a stationary car, and a moving car. Both
the statistical and curve fitting methods were proposed for speed estimation, respectively.
The former method estimated the vehicle speed by the time taken by a vehicle to pass
the area of interest, which was measured by observing the change in variance of border
streams that bound the area. The latter method calculated the vehicle speed by capturing
the relationship between the signal strength variance and vehicle speed.

Nowadays, Wi-Fi technology has been widely used in traffic parameter extraction.
However, there are still many interference factors under different traffic scenarios which
will influence the usage of Wi-Fi data for large-scale, high-precision traffic data mining.
Therefore, future work along this research line should focus on reducing the interference of
environmental factors at a lower cost.

3.2. Wi-Fi-Based Travel Mode Identification

For the planning, design, and operation of ITS, it is crucial to infer travel modes in
the network [95]. The travel mode choice information provides decision support for urban
transportation planning, public facilities layout design, and travel route recommendation.
It is feasible to use smartphones and widely deployed Wi-Fi infrastructure to recognize
travel mode. This section will systematically introduce the blooming Wi-Fi-based travel
mode identification technology.

Prentow et al. [96] compared the challenges for outdoor and indoor travel mode
detection and conducted field experiments based on Wi-Fi and accelerometer data in a
large hospital complex. Mun et al. [97] proposed a method to discriminate between the
three human activity states (dwelling, walking, or driving) using Global System for Mobile
Communications (GSM) and Wi-Fi. This study used four features to classify states: the
number of unique cell IDs, residence time in a cell footprint, the variance of Wi-Fi signal
strength, and the duration of dominant Wi-Fi access point in view. Considering movement
during dwelling states often causes incorrect classification, the indoor dwelling mobility
states were removed from the dataset, and the authors built a classifier to infer either
pedestrian or vehicle movement. Lesani and Miranda-Moreno [12] developed four kinds of
classifiers to recognize pedestrians or cyclists for each detected MAC address: the classifier
with threshold, logit model with speed, logit model with time-seen, and the combined
model with speed and time-seen duration. Among these, the last one has the highest
accuracy with an average classification error percentage of 3.7%.

Later, Montoya et al. [98] designed a new system to infer multi-modal itineraries
traveled by a traveler based on a combination of smartphone sensor data (e.g., GPS, Wi-Fi,
accelerometer) and the transport network infrastructure data (e.g., road and rail maps
and public transportation timetables). In the first phase, they distinguished some modes
(walking, cycling, road vehicle, and rail) using a developed dynamic Bayesian network
that modeled the probabilistic relationship between paths in the Transportation network
and sensor data, and in the second phase they attempted to match the recognized road
vehicle or rail in the first stage with several possible transportation types: bus, train, metro,
or tram. Coroamă et al. [99] presented a travel mode recognition method by considering
GPS and accelerometers and the proximity patterns of Wi-Fi and Bluetooth devices in the
surrounding environment because they assumed these data depended on different travel
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modes. The results showed that for trains with a relatively stable collection of Bluetooth
devices in proximity and not-so-stable GPS signal, the precision of classification based on
Bluetooth and Wi-Fi proximity is higher than the one based on GPS and accelerometer.

Recently, deep learning has been applied to travel mode identification. For example,
Wang et al. [100] reported a framework for real-time identification of personal travel mode,
i.e., DeepTravel, which used deep neural networks to realize high-precision travel mode
(walking, bus, car, and metro) identification with the usage of Inertial Measurement Unit
(IMU) and Wi-Fi sensors. Compared to preceding work with an identical experimental
setup, they performed similar classification performance at the cost of fewer features
and easier models. Subsequently, Kalatian and Farooq [101] developed a deep neural
network along with three decision tree-based classifiers (decision tree, bagged decision
tree, and random forest) to detect three human mobility modes (walking, biking, and
driving) by utilizing Wi-Fi data. Based on [101], a semi-supervised deep residual network
(ResNet) framework was developed in [95] to utilize Wi-Fi communications obtained from
smartphones. The semi-supervised framework allowed the use of large amounts of low-
cost unlabeled data that can be easily collected, as well as relatively small amounts of
labeled data.

Notably, many researchers have reported that Wi-Fi technology is a promising method-
ology in the field of traffic parameter extraction and travel mode identification in Table 3.
It can provide more information for motorized and non-motorized vehicles than tradi-
tional sensors.

Table 3. Summary of Wi-Fi-involved technologies in traffic parameter extraction and travel
mode recognition.

Application Parameter
Estimation References Collected Data Method Comments

Traffic parameter
extraction

Bus passenger
volume

[87] MAC address, time
information, signal strength

Expectation-maximization
algorithm and Gibbs sampling -

[88]
Wi-Fi log (time and MAC

address data), GPS log (time
and coordinate data)

MAC cleaning and processing
based on speed/bus stop
zoning/route circulation

Estimated volume is less than
ground truth data but follows the

same trend.
Pedestrian

volume and
moving direction

[89]

MAC address, RSSI, timestamp

Cubic spline interpolation Root Mean Square Error of
15.32 persons

Pedestrian flow
speed and
pedestrian

volume

[90] Rao-Blackwellized particle filter
The experiments at a metro

station verified the feasibility of
monitoring pedestrian flows.

Travel time [91]

MAC address, timestamp from
Wi-Fi and Bluetooth

Only the last occurring instance
of the MAC address was used in

the analysis.
-

Travel time [92]

Time gap between the last
observation of the MAC address

at the upstream scanner to the
first observation of the same

MAC one at the
downstream scanner

Although the lower gain antenna
collected less efficient data from
runners and cyclists, it provided
a more accurate estimation from

the walker’s travel time.

Travel
time/speed, and

pedes-
trian/bicycle

volume

[12]

Compute travel time/speed for
each MAC address based on the
difference between the first time

and the last time by a pair of
sensors, propose a simple flow
extrapolation methodology to

estimate pedestrian/bicycle flow

• 11.5% (average error of
speed estimation)

• 17.1% (average error of
pedestrian
flows estimation)

Vehicle
classification, lane

detection and
speed estimation

[93] CSI from Wi-Fi

A machine learning technique is
adopted to train vehicle

classification models and
efficiently categorize vehicles. An

Earth Mover’s Distance
(EMD)-based vehicle lane

detection algorithm and vehicle
speed estimation mechanism are

proposed to further use CSI to
identify the lane in which a

vehicle is located and to estimate
the vehicle speed.

• Vehicle classification
accuracy: 92% (local road),
96% (highway) (peak
classification accuracy)

• Vehicle lane detection
accuracy: about 90% (in
both the local road and the
highway: the average lane
detection accuracy)

• Speed estimation accuracy:
5mph (highway: RMSE)
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Table 3. Cont.

Application Parameter
Estimation References Collected Data Method Comments

Traffic parameter
extraction

Vehicle detection,
and speed
estimation

[94] RSSI

Multi-class SVM classifier, and
speed estimation based on

statistical technique and
curve fitting

• The accuracy of vehicle
detection is 100%.

• The quadratic curve fitting
has the best accuracy
compared to other degrees
of fitting with an accuracy
of 90% (curve fitting
technique for
speed estimation).

Travel mode
recognition

Travel mode
classification of

stationary,
walking, scooter,

biking,
e-bedpusher,

and e-bus

[96] Wi-Fi data, accelerometer data

KNN
C4.5 Decision Tree

SVM
Random Forest (RF)

F-scores of time-folded
cross-validation for each of
the classifiers:

• C4.5 Decision Tree: 78.6%
• KNN: 81.2%
• SVM: 81.6%
• Random Forest: 84.1%

Movement state
classification:

dwelling, walking,
or driving

[97] GSM data, Wi-Fi data Decision Tree

Precision:

• 90.26% (dwelling)
• 65.45% (walking)
• 75.73% (driving)

Classification of
pedestrian
and cyclist

[12] MAC, timestamp from Wi-Fi
and Bluetooth

Compare four kinds of classifiers
including threshold-based
classifier, statistical speed

approach, statistical time-seen
approach, and combined

logit model

Average error (%):

• 15% (threshold-based
classifier)

• 13.7% (statistical
speed approach)

• 16.2% (statistical
time-seen approach)

• 3.7% (combined
logit model)

Travel mode
classification and

travel route
recognition for

a journey

[98]

GPS data, Wi-Fi data, cellular
data, accelerometer data,
Bluetooth data, transport

network infrastructure data

Dynamic Bayesian network

Precision:

• Walking: 91%
• Biking: 36%
• Car: 96%
• Bus: 80%
• Train and metro: 81%
• Tram: 92%

Travel mode
classification:

tram, bus,
walking, train, car,

and biking

[99] GPS data, accelerometer data,
Bluetooth data, Wi-Fi data Random Forest

Precision:

• Tram: 88.1%
• Bus: 64.9%
• Walking: 83.1%
• Train: 95.8%
• Car: 98.1%
• Biking: 96.6%

Travel mode
classification:

walking, bus, car,
and metro

[100] IMU sensors data, Wi-Fi data Deep Neural
Network

Overall accuracy:

• 87.4%
• 89.4% (exclude windows

with mixed labels when the
mode changes)

Movement state
classification:

walking, biking,
and driving

[101]

Wi-Fi data (MAC address,
signal strength, timestamp)

Multilayer Perceptron

Precision:

• Walking: 92.86%
• Biking: 86.96%
• Car: 81.03%

[95]
• Semi-supervised learning
• ResNet

Precision:

• Walking: 83.3%
• Biking: 75.0%
• Car: 86.9%

4. Summary

The accurate and appropriate traffic-related data can help guide passengers to choose
the best travel mode, route, and journey time, as well as create a foundation for traffic
planners in designing and improving transportation systems. Due to its efficiency and
dependability, Wi-Fi technology has been widely employed in traffic target positioning,
traffic data collection, traffic status perception, and travel assistance in recent years.
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4.1. Future Application Directions of Wi-Fi Sensing

Wi-Fi technology might be further applied in three fields of the transportation system
in the future. First, the Wi-Fi-based positioning could be used in autonomous positioning
or provide users with high-precision positioning services as the main supplement to GNSS
or in collaboration with GNSS when the dominant technology is unreliable. It could also
be used when GNSS is unavailable in dense urban environments owing to the signal
attenuation or blocking caused by skyscrapers, tunnels, underground space, and other
construction materials.

Secondly, based on the relationship between Wi-Fi signal and traffic flow parameters,
the varying individual data for all travel modes can be estimated and recognized with high
accuracy and reliability, so as to support advanced traffic operation, control, guidance, etc.
Wi-Fi-based detection can provide the time-varying individual travel trajectory in the road
network to develop the path-level large-scale network optimization methodologies and
technologies of ITS.

Finally, with the increasing penetration of Wi-Fi-enabled personal devices and other
traffic infrastructures, it is cost-effective to recognize individual travel modes and realize
real-time traffic monitoring based on Wi-Fi sensor data by avoiding costly component
deployment and investment. These kinds of recognized traffic information could be easily
transferred into Origin-transfer-destination (OTD) travel demand to conduct top-level city
planning and specific transportation planning in the inner-city or metropolitan area.

4.2. Challenges and Future Research

As reviewed in Sections 2 and 3, Wi-Fi technology has great potential for traffic
target positioning, traffic parameter extraction, and travel mode recognition. However, the
effectiveness and reliability of Wi-Fi-based applications in transport and transportation
vary greatly due to their research scopes, methods, factors, and scenarios. Therefore, the
following challenges should be continuously investigated as future perspectives:

1. MAC address randomization

Mobile devices publicly sending a unique MAC address may help track users during
the movement. Thus, major mobile phone manufacturers such as Apple and Huawei
have used the MAC address randomization technology to solve these privacy issues [87].
MAC address randomization refers to the rotation of mobile devices through random
hardware addresses to prevent observers from picking out their traffic or physical location
from other nearby devices [102]. The experimental results in [87] show that most Android
phones did not use randomization when the experiments were conducted, while Apple
devices running on iOS 9 seemed to change MAC addresses only when the user turned
the screen on and off. It is inevitable for the randomization of the MAC address to cause a
great interference to the application of Wi-Fi technology in the fields of positioning and
traffic parameter extraction. Therefore, it is extremely necessary to solve the MAC address
randomization while considering user privacy issues.

2. Uncertain broadcasting interval of probe requests

In addition, the broadcasting interval of probe requests is worthy of attention. The
low-frequency broadcasting of probe requests may cause an inability to obtain useful
information (e.g., MAC address and RSSI) in time during positioning operations, which
may result in the loss of positioning trajectory. The data processing results in [103] show
that most probe requests are sent with an interval of more than 5 s. Although this can meet
the needs of passenger behavior analysis, it is far from meeting the needs of high-precision
positioning using Wi-Fi.

3. Unpredictable fluctuation of Wi-Fi signals

The fluctuation of Wi-Fi signals is difficult to avoid and capture. Even in the fixed
location for standstill, the RSSI will beat violently [104]. In practice, RSSI is easily affected
by the surrounding environments and is doped with the large fluctuation noise leading to
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unpredictable error [40]. Therefore, it is important to develop an in-depth signal processing
method balancing both cost and accuracy.

4. Parallel detection of mass of traffic targets

Transportation systems have high requirements for the multi-target detection capabil-
ity of Wi-Fi technology, especially where many people gather at transit stations, congested
intersections or links, freeways, and stadiums. In each scanning cycle, the Wi-Fi detector
should be extended to scan many terminals simultaneously. However, the Wi-Fi Media
Access Control Scanner used in [91] can only capture 5 Wi-Fi devices in each scanning cycle.
Too low detection capacity is bound to affect the performance of traffic target monitoring.

4.3. Conclusions

Compared to traditional technologies, Wi-Fi-involved sensors are not the most widely
used in ITS, but the reported existing research showed that this technology has great
promise in traffic target positioning, traffic parameter extraction, and traffic mode recogni-
tion with the increase of Wi-Fi-enabled devices. With the development of ITS demands for
higher data integrity and accuracy, traffic detection technologies may be more dependent
on the Wi-Fi sensors with the private label data because it has much more advantages in
terms of lower cost, better performance, and more extensive deployment than the existing.
More importantly, those kinds of data from Wi-Fi can be used not only to support traffic
control and surveillance optimization, but also to help transportation planning and traffic
improvement design for controlling traffic congestion, reducing energy consumption and
air pollution, and increasing traffic safety.
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