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Abstract: Building predictive control has proven to achieve energy savings and higher comfort levels
than classical rule-based controllers. The choice of the model complexity needed to be used in model-
based optimal control is not trivial, and a wide variety of model types is implemented in the scientific
literature. This paper shares practical aspects of implementing different control-oriented models for
model predictive control in a building. A real thermally activated test building is used to compare
the white-, grey-, and black-box modeling paradigms in prediction and control performance. The
experimental results obtained in our particular case reveal that there is not a significant correlation
between prediction and control performance and highlight the importance of modeling the heat
emission system based on physics. It is also observed that most of the complexity of the physics-
based model arises from the building envelope while this part of the building is the most sensitive to
weather forecast uncertainty.

Dataset: https://doi.org/10.17632/xzdy23nzvj.1

Keywords: model predictive control; advanced controls; control-oriented models; energy efficiency;
optimization; thermal comfort

1. Introduction

During the last decade, there has been a clear interest growth in using advanced control
techniques for heating, ventilation, and air conditioning (HVAC) systems in buildings.
This increased interest is motivated by the large amount of energy needed for building
acclimatization, accounting for 15% of the world’s final energy use [1], and by the recent
introduction of demand response techniques in the building sector [2]. Buildings with a
large thermal mass like those equipped with thermally activated building structures (TABS)
can notably benefit from advanced control thanks to the large flexibility potential offered
by their high thermal mass. Moreover, typical control strategies can difficultly handle the
wide variety of time constants involved in these building systems.

Advanced controllers are often predictive, as in model predictive control (MPC), and
require a building system model to anticipate future behavior and optimize the controls
at supervisory or local-loop levels. The model is a core element of the controller, which
relies on the model predictions to decide actions. Therefore, the choice of the modeling
approach is fundamental for setting up a predictive controller and heavily influences
the implementation [3]. Many practical factors influence the development of models for
MPC [4], and the choice of the model technique and complexity directly determines the
optimization or the state estimation methods that can be used.

Three paradigms are used when modeling the building envelope, emission, and
production systems, namely white-, grey-, and black-box modeling. These paradigms range
from a purely physics-based approach to an entirely data-driven approach, respectively.
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Although there are fuzzy boundaries among these paradigms, this terminology has always
helped the community in defining the approaches followed by each case study. Authors
usually master only one of these approaches and advocate their paradigm by highlighting
its advantages and stressing the weaknesses of the other paradigms. Nevertheless, it
remains unclear if there is a best approach or if particular contexts ask for a certain modeling
paradigm.

The models can be evaluated in both prediction and control performance. A model is
evaluated in prediction performance when historical data is used to study how the model
maps inputs to outputs. The historical inputs are introduced into the model to investigate
how accurately the model outputs fit the measured outputs. The fitness is assessed based
on metrics like the Root Mean Square Error (RMSE) or the n-step-ahead prediction error. A
model is evaluated in control performance when implemented into a predictive controller
to decide actions that are applied to the actual building. In this case, the performance is
evaluated based on the metrics optimized by the controller, like thermal discomfort or
operational cost.

Previous studies have evaluated and compared different modeling approaches for
optimal control, although usually the models are assessed in prediction performance only,
and a correlation is assumed between this metric and the control performance. However,
factors other than the model prediction accuracy influence the control performance, namely
the suitability of a controller model for optimization, the extrapolation capabilities of the
model, and the robustness of the controller to forecasting errors. Hence, the acid test for
these models is their implementation in a predictive controller of an actual building to
evaluate how the controller can accomplish its predefined objective when using a particular
model type.

The main goal of this paper is to share practical aspects of implementing the three
main modeling paradigms for optimal predictive control in a real case. To this end, a
direct comparison of a representative model of each approach is performed in an actual
building test case. First, one model representative of each modeling paradigm is selected,
configured, and calibrated. Second, the prediction and control performances of the three
models are assessed when implemented into the same MPC framework and test case
building. Finally, guidelines for building modeling in optimal control are provided. While
simple and unoccupied, the envisaged test case is prone to real weather disturbances that
may not be captured by simulations, such as actual forecast uncertainty, measurement
errors, or hidden infiltration losses.

Therefore, the main contribution of this paper is the comparison of the three main
modeling paradigms for predictive control in a real test building. A thorough analysis is
performed for different aspects of the models, and special care is taken to ensure a fair
assessment. Moreover, the authors of this work assemble a mix of physics- and data-driven
backgrounds, which is imperative to avoid any bias or prejudice concerning the evaluated
modeling techniques.

The outline of the paper is as follows: Section 2 summarizes other studies that have
addressed a similar research topic; Section 3 elaborates on the building test case and the
experimental setup used to gather data and perform the experiments; Section 4 explains
the modeling approach followed for each modeling paradigm and makes the first com-
parison in prediction performance; Section 5 describes the control task and how each of
the obtained models has been implemented into the same MPC framework to evaluate
their control performance. The correlation between simulation and control performance
is also investigated in this section; Section 6 discusses the main insights obtained when
developing and implementing each of the modeling paradigms into the same MPC in a
real building. Finally, Section 7 draws the main conclusions.

2. Related Work

The benefits of optimal predictive control based on weather forecast data have already
been proven several times [3,5–9]. These studies highlight that the main bottleneck for
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the widespread adoption of MPC in the building sector is the need for methods to obtain
building models that are reliable and suitable for optimization. An extensive review on
control-oriented thermal modeling, in general, can be found in [10]. The advantages and
disadvantages of each modeling approach are listed, and a decision tree is provided to
aid in deciding a modeling method for control-oriented modeling of multi-zone buildings.
This study is mainly theoretical and leans on previous scientific literature, but it does not
directly compare modeling paradigms. Contrarily, Blum et al. [4] directly compared the
controller model complexity, among other elements, in optimal predictive control. They
identified seven practical factors that influence the development of MPC in buildings
and systematically analyzed each factor’s influence in simulations. The controller model
complexity was studied by implementing three grey-box models, gradually increasing their
order from one thermal capacitance up to four. They showed that higher-order models can
improve the performance of a given MPC up to 20%, although they acknowledged that
better initial guesses are required in the parameter estimation process as the number of
parameters increase.

Similarly, Picard et al. [11] compared controller model complexities using simulations
of six-zones residential buildings with different insulation levels. It was indicated that a low
prediction accuracy of the controller model can heavily influence the MPC performance
and that low order models may not suffice to capture all the building system dynamics.
They systematically reduced the order of controller models derived from a linearized
plant model used as an emulator to assess performance. Although they did not compare
different modeling paradigms, they clearly indicated the relevance of utilizing a suitable
model complexity. Arroyo et al. [12] evaluated different grey-box modeling complexities
in control performance. Their focus was the comparison of single-zone to multi-zone RC
model structures. Centralized and decentralized multi-zone grey-box model architectures
were compared to each other and to a single-zone grey-box model architecture. It was
found that modeling inter-zonal effects was beneficial when using multi-zone grey-box
models for optimal control. However, their comparison did not involve different modeling
paradigms either.

Picard et al. [13] compared a grey-box model to a purely white-box model for an
existing 12-zones office building. The models were validated with real data, and their
control performance was evaluated in simulation. They showed that both approaches
can lead to an efficient MPC as long as accurate identification data sets are available. In
the considered simulation case, the white-box MPC led to better thermal comfort while
using 50% less energy than the best grey-box model. However, it should be noted that the
white-box controller model was derived from the plant model used for the simulations,
something that would not be possible in practice. Moreover, the authors stated that further
research was still needed to confirm the strength of the white-box approach in the presence
of all uncertainties.

A white-box model was compared to a black-box model in [14]. In this case, the white-
box model was a lumped RC representation of the plant, and the black-box model used an
artificial neural network architecture. Again, the physics-based model was better than the
data-driven approach, although the RC parameter values were obtained assuming perfect
knowledge of the thermal and geometrical building characteristics. A direct comparison
across the three main modeling paradigms was performed by Arendt et al. [15]. They
implemented the white-, grey-, and black-box paradigms by selecting representative models
for each approach, similar to what is done in this paper. However, they only analyzed the
fitting accuracy to indoor temperature on historical monitoring data of a building. The
differences in control performance were not explicitly investigated.

The studies above indicate a common understanding of the importance of polishing the
modeling techniques to adopt advanced control. However, despite using simulations, the
test cases were always different, and each work followed a different approach for the analy-
sis. To solve this issue, the recently developed building optimization testing (BOPTEST)
framework [16] enables the direct comparison of different controllers for the same building



Buildings 2022, 12, 539 4 of 25

and boundary conditions by using simulations. The aim is to derive guidelines for optimal
control by benchmarking controllers in the same test cases.

While simulations offer a clear, practical advantage for assessment purposes, they
do not allow coping with real model mismatch and forecasting uncertainty, which is only
possible in actual implementations. Nevertheless, access to real buildings for testing and
research purposes is more difficult and expensive. Hence, there are fewer efforts that imple-
ment MPC in operational buildings. In this context, the work of Širokỳ et al. [5] excels in
achieving energy savings between 15% and 28% in a two months experiment performed on
an actual building in Prague, Czech Republic. The setup of this study was unique because
two identical building blocks enabled the cross-comparison of two different controllers
by switching the control strategies between the blocks to compensate for the changing
boundary conditions. However, their focus was on showing the energy savings potential of
implementing MPC compared to a heating curve based control strategy. A novel modeling
approach for the same building based on partial least squares was introduced in [17]. Other
demonstrations of MPC in actual buildings are described in [6,18–20]. White- [18], grey- [6],
and black-box [19] models have been used in practical implementations of MPC in real
buildings separately. However, none of them performed a comparison of any kind between
different models for the same predictive controller.

3. Experimental Setup

The test building of this study is called the Vliet building and is located on the Arenberg
campus of the KU Leuven University in Heverlee, Belgium. A detailed overview of the
building materials, properties, and geometry can be found in [21], and a brief description of
the building is provided here for completeness. The building was constructed in 1996, and
is equipped with a local weather station. It comprises separate testing modules to conduct
research about different aspects of building physics and HVAC systems. The module under
consideration in this paper was constructed in 2011 and is a small unoccupied room with
an elementary rectangular geometry of 3.45 m long, 1.80 m wide, and 2.4 m high. Two
walls connect to an adjacent room that is always conditioned at a constant temperature of
21 ◦C. The other two walls connect to the outer space, and one of them has a window of
1.25 m wide and 1.60 m high. The window is integrated into the southwest oriented façade.
The building exterior, the control setup, the heat production system, the heat distribution
system, and the interior of the test room are shown in Figure 1.

The test room is conditioned using hydronic heat production, distribution, and emis-
sion systems. The heat production system is an electric boiler that always maintains water
at 60 ◦C ready for delivery. The water is distributed to the TABS emission system with
embedded pipes in the concrete floor and ceiling (two circuits), although only the floor
TABS are used in the experiments. Each circuit uses a pump for distributing the hot water
and has a three-way valve to mix the water coming from the heat production system with
the water returning from the TABS, which enables control of the water supply temperature
to the concrete.

A LabView software interface has been developed as described in [22], which allows
automatic data acquisition and control at a higher configuration level. The field and automa-
tion layers of the infrastructure are interfaced through modules of National Instruments.
The interface controls the primary actuators of the system, namely the circulation pumps
and the circuit valves. Most of these actuators are relays with a simple on/off control. For
the three-way valves of each distribution circuit (floor and ceiling), a continuous signal
is used between 0 and 10 V to prescribe a state between a fully closed or opened valve
position. When the valve is fully closed, there is no water coming from the heat production
system, and the water through the TABS is recirculated. When the valve is fully opened,
there is no recirculation, meaning that all water going to the TABS is delivered directly by
the heat production system at 60 ◦C, without mixing with the return water. Any signal in
between specifies partial recirculation as an intermediate case between the two scenarios
described above.
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(a) (b)

(c) (d)

Figure 1. Overview of the Vliet building. (a) Building exterior; (b) Production system and control
setup; (c) Distribution system; (d) Test room interior.

The measurements available are the supply and return temperatures to and from the
TABS, the water flow rate through each circuit, and four air temperatures at different heights
in the test room. The water temperatures are measured with PT-1000 sensors inside the
pipes, and flow-meters provide the water flow rate through each circuit. The electric power
use profile is needed to calculate the operational cost when subject to a dynamic electricity
price profile, but there is no electric power measurement available in the setup. Therefore, it
is assumed that there is a direct electric water heater that instantaneously converts electricity
to heat with a constant electric-to-thermal power efficiency of η = 0.9. The instantaneous
heat can be directly calculated from the supply and return water temperatures and the
mass-flow rate of the water through the TABS circuit as defined in Equation (1). All these
variables are measured in the setup.

P(t) =
Q̇(t)

η
=

ṁ(t)cp(Ts(t)− Tr(t))
η

(1)

In Equation (1) ṁ is the mass flow rate of the water through the floor TABS, and
cp is the specific heat capacity of the water. The electric power of the circulation pump
is neglected.

Figure 2 shows the main components with P the electric power from the grid, u the
valve opening signal, ṁ the mass flow rate through the floor TABS, Ts and Tr the water
supply and return temperatures to and from the TABS, respectively, Tz the average zone
air temperature, referred to as the zone air temperature hereafter. The latter temperature
is obtained as the simple average of the four temperature sensors located at different
heights. Finally, Q̇ is the thermal heat delivered by the floor TABS. The green-coloured
element indicates the controllable signal, which is the valve opening in this case since the
circulation pump is automatically switched on in a post-processing step when u > 0. The
grey-coloured elements indicate measured signals. Finally, the non-coloured circles indicate
variables that are derived from measurements.
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Figure 2. Scheme of the Vliet test building.

4. Modeling

This section explains the steps taken to identify and calibrate the models that are
later implemented as system equations in the MPC in Section 5. First, the modeling task
is described. Second, the data gathering process is explained. Third, the selection of
a representative model of each modeling paradigm is justified. The identification and
calibration processes of each model are also described. Finally, the models are compared
in prediction performance using auto- and cross-validation data sets from the obtained
operational data.

4.1. Modeling Task

The controlled variable of the optimal control problem is the zone air temperature,
and the controllable variable is the opening of the three-way valve that determines the
water supply temperature to the floor TABS and as a consequence the heat delivered to the
room. The two most important system disturbances are the ambient temperature Ta and the
solar irradiation Q̇rad (Note that the room is unoccupied, thus disturbances associated to
occupancy are not considered.). The predictive controller thus needs to know the effect of
the valve opening, ambient temperature, and solar irradiation on the zone air temperature.
The controller also needs to estimate the electric power used to compute the operational
cost. Hence, a multi-input multi-output model is required to represent the system, and
the modeling task is to find a function F that estimates Tz and P from u, Ta, and Q̇rad, as
indicated by Equation (2). Notice that the estimated variables may depend not only on the
inputs and disturbances, but also on previous outputs and system states. The models may
use a vector of hidden internal states XXX to capture those regressive effects. Finally, a set
of parameters θθθ characterize the model. These parameters are considered constant in this
study. The control toolbox used in this work does not require the models to be linear nor
convex for optimization.

Ṫz(t), P(t) = F(u(t), Q̇rad(t), Ta(t), Tz(t), XXX(t), θθθ) (2)

4.2. Data Gathering

Data are needed to identify, train and calibrate the models and test the models’ perfor-
mance. Historical data obtained from 24 January until 21 February 2018 is used for these
tasks. That is, a total of four weeks of historical data are gathered for system identification
and model calibration. During this period, the heating of the test room is alternated be-
tween heating and free-floating periods, i.e., periods with hot water circulating through the
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TABS and periods with no water circulation, respectively. The first heating period lasts for
three days and tests and tunes the software interface and the whole experimental setup.
During this period, large excitations are introduced, leading to a zone air temperature up to
33.35 ◦C. After these excitations, the building is left to free-float. By studying the evolution
of the zone air temperature during this period, a settling time of six days is observed, from
where it is deduced that the system’s time constant is approximately two days. Notice that
this time constant is only an approximation because an actual building system never fully
settles because of the effect of the disturbances.

A PID controller is implemented for the second heating period to deliver heat to the
floor TABS following a pseudo-random binary sequence (PRBS) of 1 kW amplitude. This
signal type is suggested by [23] and has been used by other authors to gather data for
building modeling, e.g., in [24]. This input sequence is beneficial for system identification
because it ensures that there is no correlation between the controllable inputs and the
disturbances. The PRBS is designed to put the heating power input signal in the range
relevant for control. Finally, the building is left to free-float for the remaining days. The
evolution of the variables of interest during these periods is plotted in Figure 3.
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Figure 3. Comparison of the white-, grey-, and black-box models in prediction performance, together
with the inputs.

Measurement data from the weather station of the Vliet building was also obtained
during this period to compare with the data provided by the DarkSky web-service, the
weather forecast provider used by the MPC. The objective is to assess the reliability of the
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weather forecast service. DarkSky is not limited to climate forecast but also provides current
weather condition information for any location which is what is shown by the dashed
lines in Figure 3. Even though DarkSky can mostly follow the disturbances’ evolution,
it is observed that it occasionally shows significant deviations. These deviations go up
to 6.72 ◦C for ambient temperature and up to 366.67 W for solar irradiation. Forecasting
is an even more challenging task than estimating current weather for a given location.
Hence, errors are expected to be more frequent and larger when forecasting these variables.
Forecasting errors are unavoidable, so the MPC will have to deal with these inaccuracies.

4.3. General Considerations

A general-purpose modeling, simulation, and optimization framework is required
to model all three paradigms. The toolchain should be powerful to support simulation,
optimization, and data handling, and at the same time, it should be flexible to prototype the
different modeling approaches. This work uses the JModelica toolbox [25] since it meets all
requirements listed above. This toolbox uses Modelica [26], a general-purpose modeling
language for configuring the models. Additionally, it provides solvers for Optimica [27],
an extension of Modelica for the definition of optimization problems. This choice is also
motivated by the development of several open-source Modelica libraries for building
energy simulations like Buildings [28], IDEAS [29], AixLib [30], BuildingSystems [31], and
FastBuildings [32]. These libraries facilitate the implementation of white-, grey-, and black-
box modeling techniques and continue their development within IBPSA Project 1 [33].

4.4. White-Box Modeling

White-box modeling uses only physical insights obtained from the meta-data of the
building to represent its thermal behavior. Information like the building orientation,
construction components, dimensions, and thermal properties of the materials must be
known. The correctness of these data is essential to obtain an accurate model since all
parameters are derived from this meta-data. The IDEAS [29] library is used for representing
the main components of the Vliet building. The main components used from the IDEAS
library to model the building are listed in Table 1. For the sake of conciseness, we refer
to [29] for a detailed description of the main equations and assumptions used in these
component models.

Table 1. Modelica components used for the white-box model.

Building zone IDEAS.Buildings.Components.Zone
IDEAS.Buildings.Components.SlabOnGround
IDEAS.Buildings.Components.OuterWall
IDEAS.Buildings.Components.Window
IDEAS.Buildings.Components.BoundaryWall

Heating system IDEAS.Fluid.Interfaces.PrescribedOutlet
IDEAS.Fluid.Actuators.Valves.ThreeWayEqualPercentageLinear
IDEAS.Fluid.HeatExchangers.RadiantSlab.EmbeddedPipe

Boundary conditions IDEAS.BoundaryConditions.SimInfoManager

An overview of the heating system and the building envelope model is provided in
Appendix A (Figure A1a,b). The building envelope and the heating system models are
connected through the heating port that interfaces both models. Since the model relies on
physical principles, it explicitly represents the water mass-flow rate and the supply and
return water temperatures to and from the TABS. Hence, it is possible to directly estimate
the heat to the TABS and the electric power from these variables.

It is important to note that the white-box model uses some additional weather inputs
for the building envelope, namely the dew point temperature, the atmospheric pressure, the
relative humidity, and the wind direction and speed. All these variables are obtained from
the DarkSky web service. The solar irradiation is also split into direct normal irradiation
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and diffuse horizontal irradiation based on a preprocessing step [34]. Additionally, some
simplifications are required from the original IDEAS library components to allow the
introduction of this model into the MPC optimization problem. The introduced changes
are the following: (1) The window glazing absorption and transmission properties are set
constant, (2) the ReaderTMY3 class from IDEAS is transformed to bypass the external solar
irradiation data from DarkSky, and (3) the air properties are represented using the air model
obtained from [35]. This air model reduces the number of algebraic loops when compared
to the air model used in the IDEAS library. The resulting system of differential-algebraic
equations (DAE) has a total of 4420 unknowns and equations. After translation, the system
has 94 continuous-time states and 636 time-varying variables, that is variables calculated
from the states.

The parameters are derived from information about the building’s geometry and
materials, and the historical data-set described in Section 4.2 is only used for testing. The
calibration of the parameters is performed by an iterative process of changing individual
parameters manually and testing to evaluate the simulation accuracy in the historical
data. This manual calibration of the white-box model to achieve a proper fit has been the
most cumbersome task of implementing the three modeling paradigms. The reason is
that a simulation needs to be performed to evaluate every new combination of parameter
values, many of them having counteracting effects on the outputs. Automatic parameter
estimation is avoided here to respect the white-box model nature strictly. However, a
systematic process to identify the parameters that primarily influence the outputs of a
complex physics-based model and to train these parameters from monitoring data would
be highly beneficial.

The blue dashed lines in Figure 3 show the evolution of the zone air temperature and
electric power over the period for which data was gathered for model calibration. Note
that these are the outputs with the implemented simplifications and after the calibration
process. The solid black lines indicate the measured variables for the same period.

4.5. Grey-Box Modeling

A grey-box model uses some physical insights with lumped parameters trained by
monitoring data to learn the system’s thermal behavior. In this case, the accuracy of the
meta-data of the building is not critical since the model also utilizes monitoring data to train
its parameters. Contrarily, the richness of the gathered monitoring data is crucial because
it is used to train the model parameters through prediction error methods. In this paper,
the parameters are estimated through standard least squares. The Grey-Box Toolbox [32]
is used for this task and has been chosen for compatibility with the Modelica language
through the FastBuildings library. A forward selection procedure is employed to decide on
the model structure. This process increases the model complexity step-wise by adding more
thermal resistances and capacitances. Additionally, the optimized values of the previous
more simple models are introduced as initial guesses for the new, more complex models. A
5R3C model architecture is selected for the building envelope. An overview of this model
is provided in Appendix B. Notice that there is an additional thermal resistor in an outer
layer of the model not shown in Figure A2. This thermal resistor connects the test room
with a constant temperature source that represents the adjacent room.

The RC model does not explicitly represent the water mass-flow rate nor the supply
and return water temperatures to and from the TABS. Because of this, the heat to the
TABS needs to be estimated in another way, by using a quadratic polynomial from the
three-way-valve opening u as represented in Equation (3).

Q̇ = a0 + a1u + a2u2 (3)

The polynomial parameters (a0, a1, and a2) are trained together with the thermal
resistances and capacitances of the model, although they lack any physical interpretation.
Only the thermal capacitance representing the zone air temperature (cZon) is given an initial
guess value computed from system knowledge. All other parameters are provided with
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reasonable initial guesses according to what they represent and are allowed a wider search
space because of the larger uncertainty on their value. These are the wall capacitance cWal,
the TABS embedded capacitance cEmb, the wall internal and external thermal resistors
rWalInt, rWalExt, the embedded internal and external thermal resistors rEmbInt, rEmbExt,
and the window transmittance gA. For every model structure considered, a latin hypercube
sample is generated on the parameter space to aid in the search for a good local minimum.
Additionally, the target variables, i.e., Tz and P, are normalized with their maximum and
minimum values along the training data-set to facilitate the parameter estimation process.
This process has proven extremely helpful when training a model with outputs of different
orders of magnitude. The main components used from the FastBuildings library to prototype
the grey-box model are listed in Table 2. We refer to [32] for a complete description of the
main equations and assumptions used in these type of models.

Table 2. Modelica components used for the grey-box model.

Building zone FastBuildings.Zones.BaseClasses.Capacitor
FastBuildings.Zones.BaseClasses.Resistance
FastBuildings.Zones.Windows.Window_gA

Heating system Quadratic polynomial from the three-way-valve opening (Equation (3))

Boundary conditions FastBuildings.Input.SIM_Inputs

Three weeks of measured data are used for training and the last week for cross-
validation. The parameter estimation process successfully finds a satisfactory set of model
parameters for a model of three states. A substantial reduction of DAE complexity is
observed when compared to the white-box model. In this case, the DAE has a total of
88 unknowns and equations. After translation, the system has 3 continuous-time states and
18 time-varying variables. The red dashed lines in Figure 3 show the outputs of the selected
grey-box model in auto- (left of the vertical dashed line) and cross-validation (right of the
vertical dashed line).

4.6. Black-Box Modeling

Finally, a purely data-driven model is identified as representative of the black-box
paradigm. From the many existing black-box modeling approaches it is decided to use a
state-space representation to follow the same mathematical architecture as the one used
for the grey-box models. In contrast to grey-box models, the parameters of a black-box
state-space model directly coincide with the elements of the state-space matrices of the
model. Because it lacks any physical interpretability, a schematic presentation has no added
value, one block relates the outputs with the inputs.

Analogously to grey-box modeling, the first three weeks of monitoring data are used
for training, and the last week is used for cross-validation. Again, the least-squares method
is used to maximize the fitting on training data, and a forward selection procedure is
implemented that increases the order of the state-space model one by one. A model of
order three is found to provide a good fitting on training data. Coincidentally, this order
matches the number of thermal capacitances of the grey-box model. This is convenient since
both present the same structure and dimension, which elucidates further their comparison.
The DAE complexity is further reduced to 17 unknowns and equations. After translation,
the model has three continuous-time states and 13 time-varying variables. The green
dashed lines in Figure 3 show the outputs of the selected black-box model in auto- and
cross-validation.

4.7. Prediction Performance Assessment

Three models have been identified, trained and calibrated in the previous sections.
Each of them represents one modeling paradigm. A summary of the model structures and
their fitting to historical data can be found in Table 3. In this table, ne is the number of
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equations of the original model; nx and nv are the number of states and variables after
symbolic manipulation, respectively. The RMSE is used for the evaluation of goodness
of fit because that is the target metric to be minimized during the parameter estimation
process. The RMSE is calculated as defined in Equation (4).

RMSE =

√
∑Mk=1(ez,k)2

M (4)

where:
ez,k = yz,k −mz,k ∀k ∈ 1, . . . ,M (5)

In Equation (4), ez,k are the residuals and M is the number of measurements. In
Equation (5), yz,k indicates the model output, mz,k the measurement at time index k.

Table 3. Summary of model structures and their fitting to historical data. ne is the number of
equations of the original model; nx and nv are the number of states and variables after symbolic
manipulation, respectively. The RMSE is evaluated in auto- (RMSEa) and cross- (RMSEc) validation.

Translated Model TzTzTz [K] PPP [kW]
Model

nenene nxnxnx nvnvnv RMSEaaa RMSEccc RMSEaaa RMSEccc

White-box 4420 94 636 1.00 1.13 0.18 0.003
Grey-box 88 3 18 0.52 0.64 0.20 0.002
Black-box 17 3 13 0.92 2.26 0.22 0.15

Particularly, RMSEa is the RMSE in the auto-validation period, and RMSEc is the
RMSE in the cross-validation period. Notice that this separation is made for the training of
the data-driven models only, but it is maintained for the evaluation of the white-box model
for clarity. The number of equations refers to the original model size. The translated model
is the model after symbolic manipulation i.e., after eliminating aliases and performing
index reduction.

What stands out in Table 3 is the strong contrast between the white-box and the data-
driven model sizes. The white-box model is 50 times larger than the grey-box model and
260 times larger than the black-box model when comparing the number of equations in the
original models to represent the same building system. After translation, the physics-based
model has 31 times more states than both data-driven models. The white-box model is
thus the most computationally demanding for both simulation and optimization. While
the computational complexity may not be critical for simulation, it plays an important role
in optimization, as shown in the following section.

The notable model size difference stems from the amount of detail that the white-box
model needs in order to describe the main building physics, e.g., the heat-flow through each
of the layers of the walls, roof, and window; the thermal properties of the fluid media like
the zone air or the water through the pipes of the heating system; or the air infiltration and
the pressure differences. Interestingly, most of the model details come from the building
envelope, which is the part of the system mostly exposed to the forecast uncertainties. The
model of the building envelope has 91 states and 566 variables after translation, whereas
the model of the heating system has only 3 states and 217 variables after translation.

The data-driven models present a simpler structure and rely on the parameters trained
by historical data to capture the building dynamics. The selected data-driven models
are very similar in their mathematical architecture. Basically, the two main differences
between the grey- and the black-box models are that: (1) the black-box model lacks any
physical insight, and that (2) its parameters are allowed a much wider search space in
the parameter estimation process. Their simpler model structure does not hamper their
prediction performance. Contrarily, these models show better accuracy in auto-validation
when compared to the very complex white-box model. This indicates that an increased
model complexity does not necessarily lead to increased accuracy. Moreover, calibrating
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a complex physics-based model is found to be a cumbersome and very time-consuming
task. Most of the parameters of the white-box model are located in the building envelope,
with most of them having a weak influence on the model outputs compared to the heating
system parameters. The higher accuracy of the data-driven models may be related with
their more flexible structure which facilitates to learn the correlations between the inputs
and outputs of the data-set. However, the white-box model is expected to better explain
the dynamic coupling of the building system. Figure 3 and Table 3 reveal that the black-box
model only poorly extrapolates beyond the training conditions.

5. Implementation and Control

The acid test of a controller model is the assessment of its performance when imple-
mented in a predictive controller. This section implements all models described in the
previous section one by one in the same MPC formulation for the Vliet building. Three
different experiments are designed to challenge the controllers in different ways. In this
section first, the control task is introduced. Second, the model predictive control and the
solution method of the optimization are explained. Third, the experiments are described.
Finally, the control performance of the controllers using each paradigm is analyzed.

5.1. Control Task

The objective of the MPC is to maintain indoor thermal comfort at the lowest possible
operational cost. The comfort assessment is based on zone air temperature since it is the
main factor influencing the thermal comfort perceived by the occupants in a building [36].
Note that zone air temperature is used in this work instead of zone operative temperature
because it is the only measured temperature in the zone. Most standards are based on the
zone operative temperature, but the air temperature can be a good proxy for buildings
with TABS systems where the radiant temperature is frequently not too different [37].
The comfort range is inspired by ISO 7730 Class A, which establishes a comfort band of
22 ± 1 ◦C. However, this range is shifted two degrees upwards to increase the heat demand
intentionally. The motivation is that the space adjacent to the test room is maintained at
21 ◦C which stabilizes the indoor temperature. A higher heat demand increases the degrees
of freedom to test control. Hence, thermal discomfort is defined as the cumulative deviation
of the zone air temperature out of the temperature range 24 ± 1 ◦C, and it has the units
Kelvin-hour (Kh). A highly dynamic pricing tariff is contemplated by fictitiously exposing
the controller to the 2019 Belpex prices, i.e., the day-ahead prices of the year before the
experiments start. No additional taxes or transportation fees are considered in the price
signal, to exploit the highly dynamic profile.

Therefore, the control task consists of deciding every step a valve opening value
that minimizes the overall discomfort and operational cost. To this end, the controller is
provided at the beginning of every control step with only one measurement: the zone air
temperature. Also the price signal and the weather forecast along the prediction horizon are
provided. It is worth mentioning that the experimental setup does not have any auxiliary
fast-reacting system, making control complicated because of the lack of controllability. Since
no cooling system is available, the only way for the controller to deal with overheating
that can be induced by solar irradiation is by heating less, which might lead to too low
temperatures, something that the controller should carefully balance. Still, an MPC with a
proper system model should be able to minimize discomfort while aiming for the lowest
operational cost.

5.2. Model Predictive Control Formulation

All controller models explained in Section 4 are implemented in the same MPC. The
objective function l of the MPC is defined according to the control task explained in
Section 5.1 as a multi-objective function with two counteracting terms: discomfort and
operational cost. The formulation of this objective function is specified in Section 5.3
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because it varies with each experiment carried out. The set of Equation (6a–e) defines the
optimal control problem that is general to all experiments.

min
u

∫ ti+Th

t=ti

l(t)dt

Ṫz(t), P(t) = F(u(t), Q̇rad(t), Ta(t), Tz(t), XXX(t), θθθ)

Tz(t)− δTz(t) ≤ Tz(t) ≤ Tz(t) + δTz(t)

u(t) ≤ u(t) ≤ u(t)

δTz(t) ≥ 0

(6a)

(6b)

(6c)

(6d)

(6e)

where ti is the initial time of the current control step, δTz are the deviations of the indoor
temperature out of the comfort range, u, and u are the technical constraints (lower and
upper values) of the input signal, respectively, and Tz and Tz are the lower and upper
bounds of the comfort range, respectively. The prediction horizon Th is set of two days
based on the estimated time constant of the test room. A control step of 15 min is chosen as
a reasonable trade-off between controllability and granularity of the prediction horizon.

One of the main advantages of using the JModelica toolchain is that the MPC optimiza-
tion problem can be easily constructed by extending the models with the Optimica language
to formulate the objective and constraints of the optimization problem. JModelica utilizes
the direct collocation discretization scheme with CasADi [38] for defining the nonlinear
program and for algorithmic differentiation. More efficient discretization methods exist
for the mostly linear mathematical structures of building envelopes [39]. However, direct
collocation is known for its versatility and robustness. Moreover, symbolic elimination as
implemented in [40] is used to eliminate many of the algebraic variables in a preprocessing
step and to improve the numerical efficiency.

The MPC module described in [41] is used to effectively reuse the fixed discretization
scheme of the receding horizon controller every time step. The module has been extended
to allow mutable external data, which was not implemented but is required to expose the
optimization to the continuously changing boundary condition data. Additionally, the
MPC uses the result from the solution obtained in the previous step to warm-start every
new optimization problem. An unscented Kalman filter is implemented as described in [42]
to estimate the initial value of the hidden states of the models every control step after
measuring the zone air temperature. The sigma points are chosen according to [43], and the
covariance matrices are constructed according to the fitting information obtained during
training and calibration as summarized in Table 3.

5.3. Description of the Experiments

Three experiments are designed with slightly different formulations of the MPC
objective function and constraints. The goal is to challenge the controllers, and thus
the controller models, in different ways. All three modeling approaches are tested by
implementing their representative model into the MPC formulation of each experiment.
The three models are alternated such that the MPC runs for at least two weeks with each
model in every experiment. The two-week period is decided as a reasonable period length
to trade-off between shuffling the models and enabling a representative behavior of each.
Note that shuffling is beneficial because it minimizes the influence of seasonal boundary
condition changes.

The experiments always use the same comfort bounds: Tz = 23 ◦C and Tz = 25 ◦C,
and the same lower limit on the valve opening: u = 0. Moreover, only the zone air
temperature measurement is available to the controllers in all experiments and the valve
opening is the control variable. The DarkSky web-service is used to retrieve and update
the expected weather forecast every control step. More specifically, all weather variables
required by each model as described in Section 4 are obtained from this forecast provider.
That is, the ambient temperature and solar irradiation for the data-driven models, and the
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additional weather variables required by the white-box model. The variations introduced
for each experiment on the objective function and the valve opening upper limit are
explained below.

Experiment 1 uses the objective function defined in Equation (7a), where pe(t) is
the dynamic Belpex electricity price, and w is a weight that has been carefully tuned to
account for the different orders of magnitude between the operational cost and the thermal
discomfort. This experiment also sets the upper constraint of the valve opening to its
maximum technical allowed value: 10 V. This experiment is interesting from a control
point of view because it exploits the full technical range allowed by the only controllable
variable: the three-way valve opening. However, it is not representative of an actual TABS
building where the typical water supply temperature is never higher than 30 ◦C. A fully
opened valve leads to water supply temperatures that can be high as 50 ◦C and beyond.
This motivates the definition of the second experiment.

l(t) = pe(t)P(t) + wδTz(t)

u = 10

(7a)

(7b)

Experiment 2 uses the same objective as Experiment 1, which has been reintroduced in
Equation (8a) for clarity. However, the opening of the three-way valve is limited to 3 V to
avoid very high water supply temperatures. This limit leads to water supply temperatures
that never surpass 30 ◦C, which reflect real TABS conditions much better.

l(t) = pe(t)P(t) + wδTz(t)

u = 3

(8a)

(8b)

Experiment 3 maintains the same limit of the valve opening as Experiment 2 but squares
the operational cost in the objective function aiming to steer more flexibility from the test
room during operation. Squaring the operational cost reduces the peaks of energy use when
prices are higher. The experiment formulation is summarized in the set of Equation (9a,b).

l(t) = (pe(t)P(t))2 + wδTz(t)

u = 3

(9a)

(9b)

Two key performance indicators (KPIs) are defined to benchmark and compare the
performance of the MPC in all experiments while using each of the controller models. Since
the duration of the implementation of each model into the MPC does not last for exactly the
same time period, all KPIs are normalized per day. Additionally, three days of initialization
are used every time a new modeling approach is implemented into the MPC. These three
days are not included in the KPI calculation. The aim is to avoid that the outcome of one
experiment influences the results of the next one.

The first performance indicator is the cumulative discomfort D as defined in
Equation (10).

D(t0, t f ) =
∫ t f

t0

δTz(t)dt (10)

where t0 and t f indicate the initial and final time of the evaluation period, respectively.
The second performance indicator relates to the cumulative operational cost. In order

to fairly compare the operational cost of different controllers in a real testbed, it is required
to normalize the incurred cost by a proxy of the energy needs of the building. The reason is
that each controller is implemented in different periods with different energy demands,
which might bias the cross-comparison in performance among the controllers. A typical
approach (e.g., Široký et al. [5]) is to normalize the cost with the heating degree days as a
measure for the building energy demand. The heating degree days are computed as the
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difference between the indoor temperature setpoint and the ambient temperature. Inspired
by this, the normalized cumulative operational cost is defined by Equation (11).

C(t0, t f ) =
∫ t f

t0

(
pe(t)P(t)

Tz(t)− Ta(t)

)
dt (11)

Both the thermal discomfort and the normalized operational cost are direct indicators
of the MPC performance because they represent what is being minimized in the objective
function.

5.4. Control Performance Assessment
5.4.1. General Evaluation

This section analyzes the MPC results in a real test building when using the different
controller models. Figure 4 provides a complete overview of the period when the MPC
was actively controlling the test room heating system. The first graph shows the evolution
of the zone air temperature and the price signal; the second graph shows the evolution
of the three-way valve opening as decided by the predictive controller; the last graph
shows the evolution of the main weather disturbances, i.e., ambient temperature and solar
irradiation. The duration of each experiment is shown at the top of the figure, and the
background colors indicate the periods when each model was implemented into the MPC
in the following order: grey-, black-, and white-box model.
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Figure 4. Experimental results with MPC applied in the real test building.
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An overview of the obtained thermal discomfort and normalized operational cost
for each experiment and controller model is shown in the left column of Figure 5. The
results of this figure should be interpreted cautiously because the comparison of control
performance over changing boundary conditions is always subject to uncertainty (in this
case, mainly related to the weather forecast). It is observed that no controller model always
outperforms the others for all three experiments. In fact, it is the MPC formulation that
primarily influences the results. This is observed the significant cost reductions obtained
when limiting the heat input in Experiment 2 and when squaring the cost term of the
objective function in Experiment 3, an effect common to all controller models.
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Figure 5. Summary of control KPIs (left) and the n-step-ahead prediction errors for each model and
experiment (right).



Buildings 2022, 12, 539 17 of 25

The data-driven models show a substantial increase in discomfort during Experiments
2 and 3. This is explained by the different operational conditions of these experiments
compared to the training data that do not include information of opening the valve within
the range 0 < u ≤ 3. The detrimental effect of changing operating conditions might have
been prevented by exciting the system using the constraint input range when generating
the training data-set. This stresses the importance of having high-quality, i.e., rich in
information, training data for data-driven approaches. Contrarily, the white-box model
does not substantially increase its thermal discomfort when tested out of the conditions
used for its calibration since it relies on first-principle physical equations and does not lean
on the limited information of the calibration data. Note that, although the grey-box model
uses simplified physics to represent the building envelope, its heating system is modeled
using a polynomial without physical interpretability. This likely damages the performance
of the grey-box model in Experiments 2 and 3 and highlights the importance of modeling
the heating system based on physical insights. A way to amend this effect can be to base
the polynomial on a full performance map. On the other hand, only the white-box model
presents algebraic loops after symbolic elimination. These are sets of variables that depend
on each other, increasing the computational complexity of the optimization problem. The
three largest blocks have sizes of 12, 9, and 8 variables.

5.4.2. Analyzing the Correlation between Prediction and Control Performance

A preliminary inspection of the correlation between prediction and control perfor-
mance can be made based on comparing the results from Table 3 and Figure 5. It is observed
that only for Experiment 1, where the operational conditions are similar to the training condi-
tions, there is a correlation between the RMSE in auto-validation and control performance.
However, the analysis based on the results of Section 4 is limited because there is no heating
during the available cross-validation period. The RMSE in auto-validation represents only
the one-step-ahead prediction accuracy. In order to investigate the correlation between
prediction and control performance, it is useful to analyze the prediction accuracy for
longer horizons and using test data obtained in conditions that differ from the training
data. Such analysis can throw light on the robustness of the models to make predictions
beyond the training conditions. Hence, the data from the control experiments are used
offline to evaluate the prediction error of the zone air temperature as a function of the
prediction horizon.

The same state estimator of the MPC is utilized to implement the a priori estimates
of the zone air temperature for different prediction horizons. Every step, the estimate is
cached, and the model state is updated with the historical measurement to perform a new
prediction estimate. The process is repeated for every model and experiment, and the
results are shown in the boxplots in the right column of Figure 5. The centered line gives
the mean, the box gives the first and third quartiles, and the whiskers mark the range of the
non-outlier data defined as 1st/3rd quartile ±1.5 times the interquartile range (IQR). Using
the data obtained from the experiments allows to conveniently display the prediction errors
together with the control performance obtained during each experiment.

Overall, the predictions are centered and not skewed. Only from horizons longer
than 24 h, predictions start showing some bias, most notably for the black-box model. The
black-box model also shows the most scattered error distribution, which is more noticeable
as the prediction horizon increases. The white-box model generally shows the most precise
predictions closely followed by its grey-box counterpart. Despite using the same data for
prediction evaluation as the data obtained from the control experiments, it is still impossible
to make a strong conclusion on any significant correlation between prediction and control
performance.

5.4.3. Analyzing the n-Step ahead Control Deviation

To further assess the control strategies, the variability of the optimization results
obtained with each model is investigated. The goal is to assess how effectively the MPC
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implements its devised strategy. At every control step, the complete optimization result
trajectories are stored to compare each prediction with the eventual value observed at
the prediction time. We call this metric the n-step ahead control deviation. Notice that it
differs from the classical n-step ahead prediction error in the sense that the predictions are
not obtained as the outcome of simulations carried out offline, but as the full trajectory
results of the MPC optimizations performed every control step. Therefore, this metric
does not only evaluate the controller model, but the combination of all elements that
interact within the MPC, namely the model, the weather forecast and the state estimator.
Hence, the complete MPC machinery is being evaluated when using a particular model. A
small control deviation might suggest a good control behavior because it indicates that the
strategy devised by the MPC is effectively implemented. However, it is important to note
that small control deviations do not guarantee improved performance. Figure 6 illustrates
the process to compute the control deviations for a variable V along a horizon with h
optimization steps. In this figure, the subscript (·)p|q indicates a value that is estimated for
time p based on the prediction of time q. The red lines illustrate the control deviation for
each step of the prediction horizon and an example for the one-step ahead control deviation
calculation. Further steps are not shown for clarity.

𝑣| 𝑣ାଵ| 𝑣ାଶ| 𝑣ାଷ| 𝑣ା|
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Figure 6. Illustration of the control deviation calculation process.

The distributions of the obtained control deviations are determined for all prediction
horizons and shown in Figure 7. Specifically, Figure 7 shows the mean and standard
deviation of the control deviations as a function of the prediction horizon for each controller
model and experiment. In general, the control deviations are centered and remain at
reasonable bounds. It can be seen that the deviations of the MPC using the white-box
model are the largest, especially for the zone air temperature. These deviations are enhanced
during Experiments 2 and 3 where solar irradiation is substantially increased during the
periods that the white-box model is implemented into the MPC. The black-box model is
also exposed to increased solar irradiation in Experiment 3, but it does not lead to enhanced
deviations. Solar irradiation is also large during the period that the black-box model is
implemented in Experiment 3. However, this model does not lead to enhanced deviations
The daily pattern of the control deviations of the zone air temperature evidences the
stronger influence of the weather forecast uncertainty in the white-box approach. This
effect is not observed for the valve opening control deviations that are not significantly
biased and do not show a daily pattern for any model.

The stronger influence of the weather conditions uncertainty on the white-box model
predictions can be explained by the increased number of disturbances that this model
needs to handle. Interestingly, the white-box model leads to the most accurate predictions
of the zone air temperature when using historical data while showing the largest control
deviations for the same variable. This lack of correlation reveals the larger sensitivity of
this model to the weather forecast uncertainty, which can be considerable, as indicated by
Figure 3. In Experiment 3 the white-box model shows the most significant control deviations
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in the zone-air temperature. However, it also leads to the least thermal discomfort of all
models. The detrimental effect of a higher uncertainty influence is effectively amended by
the MPC machinery that undergoes forecast and state updates every control step. Also, the
more reliable representation of the heating system aids in balancing this effect.
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Figure 7. Mean and standard deviation of the control deviation as function of the prediction horizon.
The graphs in the left column show the control deviations for the zone air temperature in each
experiment and have units of (◦C). The graphs in the right column show the control deviations for the
valve opening in each experiment and have no units (-). Note that negative values are possible since
both positive and negative control deviations can occur between predictions and observed values.

6. Discussion

There are strong reasons to believe that Modelica will constitute the future of build-
ing modeling and optimization, namely the support of IBPSA and several tools, the ac-
tive development of multiple building component libraries, the language flexibility, and
the possibility of extending the models for gradient-based optimization algorithms. An
essential choice in the study has been the selection of the representative models. The
white-box model is prototyped with the IDEAS library. The grey-box model architecture
is decided from a forward-selection procedure. Finally, the black-box model is chosen
to have the same representation as the grey-box model but not being constrained by any
physical insight. Despite the scope of this study being limited to one model per paradigm,
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the selected models constitute a good representation of the main characteristics of each
modeling paradigm.

This paper has highlighted practical aspects that are relevant for the implementation
of each modeling approach into MPC. The most notable aspect is the significant size
difference between the physics-based and the data-driven models. Even though there has
been considerable progress with the development of numerous Modelica libraries that
ease the development of white-box models, there is still a substantial engineering effort
required to prototype and calibrate them. One of the main advantages of the white-box
modeling approach is that it theoretically does not require monitoring data to be assembled.
However, we experienced here that historical data is still needed to validate and calibrate
the model. In fact, despite having complete access to all geometry and material properties,
we observe that the calibration process is essential to achieve a good prediction performance.
There exist efforts to alleviate this issue by generating the models directly from building
information models [44], from geographic information systems [45], or from building floor
plans and meta data [46].

Even if historical data is still required, the physics-based approach brings other rele-
vant advantages. First, the richness of the data used for calibration and validation is not
critical because the model is reinforced with physical insights. Second, constraining the
model with physical principles increases its robustness and reliability so that the model
may be well suited to make predictions for the full range of operating conditions. Although
this notion may not be new, we experience that not modeling the heating system can
seriously hamper the control performance of the data-driven models when working out
of the operating conditions captured by the training data-set. Finally, the physics-based
approach brings other implicit advantages like the possibility to interpret its results or its
increased suitability for fault detection and diagnosis.

Another relevant aspect that has been investigated is the correlation between predic-
tion and control performance. It is found that a better prediction performance does not
necessarily indicate an improved control performance. Contrarily, increasing the amount of
physical detail in the model increases the robustness in prediction and control performance.
This was confirmed by Blum et al. [4] who evaluated the prediction performance using the
RMSE in cross-validation. We come to the same conclusion by also analyzing the n-step-
ahead prediction errors for horizons up to two days. In fact, the white-box model shows the
worst accuracy of all models in training data, while generalizing better and outperforming
in control. Increasing the amount of physical detail is, however, a double-edged sword: the
model size is substantially increased, which is particularly critical for the solution method
of the optimization problem. Two approaches can be followed: either the model complex-
ity is reduced or the optimization solver is improved. The transcription method used is
particularly critical in this regard since it can easily magnify the optimization complexity.
Another disturbing matter when increasing the model size of the building envelope is its
increased sensitivity to weather forecast uncertainty. The increased sensitivity to weather
forecast uncertainty is revealed by the daily pattern of the control deviations evaluated
for the zone air temperature, common to the three experiments and magnified by the high
solar irradiation.

Overall, we observe that including physical insights in a model is beneficial, but the
increased complexity should be carefully handled. On the one hand, the analysis of the
models’ architecture in Section 4 shows that most of the complexity of a white-box model
comes from the building envelope: only 3 out of the 94 model states belong to the heating
system. On the other hand, the control performance assessment of Section 5 highlights the
importance of modeling the heating system in detail. Moreover, it is suggested that a more
detailed building envelope model can be more sensitive to weather forecast uncertainty.
Consequently, we advocate a modeling approach that synergizes the physics- and data-
driven paradigms. Primarily the heating system should be modeled in detail and based
on first principles, which is motivated by three main aspects that are treated in this paper:
(1) the relevance of the heating system in control performance, (2) its low complexity



Buildings 2022, 12, 539 21 of 25

overhead, and (3) its low sensitivity to uncertainty during operation. On the other hand,
the building envelope can substantially benefit from using operational data for training
and making some simplifications, motivated by: (1) the benefits of utilizing a systematic
approach to calibrate the parameters, (2) the high complexity overhead of the building
envelope, and (3) its high sensitivity to uncertainty during operation. Still, physical insights
may be used as much as possible to derive good initial guesses of the parameters and
obtain an intelligible model.

7. Conclusions

This paper investigates the strengths and weaknesses of the three main modeling
paradigms for optimal building predictive control. A representative model of each paradigm
is selected, and the three models are configured using the same optimal control framework
for a thermally activated building located in Leuven, Belgium. The models are analyzed
and evaluated in prediction and control performance. The main difference between the
physics- and data-driven models is the disparity in model size, which stems from the num-
ber of equations and states that the white-box model needs to describe the main building
physics completely.

The physics-based model has 94 states for the envisaged case, while the data-driven
models use only 3 states. It is shown that most of the states of the white-box model
belong to the building envelope, with only three states belonging to the heating system.
Despite its increased level of detail, the white-box model has the highest RMSE in historical
monitoring data, and its calibration process is a very cumbersome task. However, the results
suggest that increasing the amount of physical detail is beneficial for prediction and control.
Specifically, it is shown that not modeling the heating system based on first principles can
seriously hamper the control performance. Prediction and control performance are also
compared, but a correlation between both metrics cannot be found, even when using the
same data for prediction assessment as those obtained from the control experiments. Finally,
the n-step ahead control deviation is proposed to assess if the strategies devised by the MPC
are effectively implemented. The analysis of this metric and the prediction performance
indicates that the very detailed building envelope model may be more sensitive to forecast
uncertainty.

To conclude, we suggest a modeling approach that synergizes the physics- and data-
driven approaches. On the one hand, the heating system may be mainly modeled based on
physical principles because of its lower complexity overhead and less exposure to uncer-
tainty. On the other hand, the building envelope may introduce some simplifications while
using physics to derive a good initial guess and monitoring data to train its parameters.
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Appendix A. White-Box Modelica Model
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Figure A1. White-box model of the Vliet building test room and heating system. (a) White-box model
of the building envelope of the test room; (b) White-box model of the heating system.
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Appendix B. Grey-Box Modelica Model

i

simFasBui

cZon

gA

rWalExt rWalInt

preTAmb

K

senTZon

cWal

intGai

k=fGai

gai

cEmb

rEmbExtrEmbInt

heaPorCon

heaPorRad

heaPorEmb

TZon

Figure A2. Grey-box model of the building envelope of the Vliet building test room.
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7. Drgoňa, J.; Arroyo, J.; Cupeiro Figueroa, I.; Blum, D.; Arendt, K.; Kim, D.; Ollé, E.P.; Oravec, J.; Wetter, M.; Vrabie, D.L.; et al. All
you need to know about model predictive control for buildings. Annu. Rev. Control 2020, 50, 190–232. [CrossRef]

8. Oldewurtel, F.; Parisio, A.; Jones, C.N.; Gyalistras, D.; Gwerder, M.; Stauch, V.; Lehmann, B.; Morari, M. Use of model predictive
control and weather forecasts for energy efficient building climate control. Energy Build. 2012, 45, 15–27. [CrossRef]
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