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Abstract: Old masonry buildings, which are frequently part of the cities-built heritage, are vulnerable
to seismic actions. Thus, it is important to conduct efficient seismic strengthening interventions that
allow maintenance of the existing building to minimize the environmental and economic impact.
The use of reinforced renders is a simple and effective solution for seismic strengthening of this type
of constructions. In this paper, several compositions of reinforced renders are analyzed, consisting
of mortars with air lime, hydraulic lime, or cement binders, reinforced with steel mesh, fiberglass
mesh and a natural fiber mesh. Additionally, the results of diagonal compression tests on three small
wall specimens are presented, one of which is non-reinforced and the other two are strengthened
with reinforced renders. The results of all tested walls are presented and compared, allowing us to
evaluate the efficiency of the reinforced render on the wall shear strength.

Keywords: brick masonry walls; reinforced renders; diagonal compression tests

1. Introduction

Reinforced renders are a particularly promising solution for the rehabilitation and
strengthening of old buildings, particularly adapted for a sustainable intervention with
minimum consumption of new materials, minimum waste production, and respect for
cultural heritage. This solution is usually composed of a reinforcement material with high
tensile strength embedded within a mortar that is applied to the external surface of the
structural elements.

The reinforcement materials used in reinforced renders may be in the form of loose
fibers or fiber meshes and may be of various types [1]. The most sustainable fibers include
wool, cotton, wood, straw, reed, bamboo, horsehair, sisal, jute, coconut fiber, and others [2].
On the other hand, the fibers of greater strength and efficiency for increasing the tensile
strength of the mortar are steel fibers, carbon [3–7], and basalt [8]. Glass fibers (resistant to
alkalis) [9] show an intermediate performance.

The mortars used in reinforced renders can be based on cement, hydraulic lime,
hydrated lime, or mixed binders, for example cement and resin or cement and hydrated
lime. The most resistant among these types of mortars are those of cement or cement and
resin, while the most compatible with old buildings and more sustainable, but also with
less mechanically resistant, are those of hydrated lime. Natural hydraulic lime mortars can
be a reasonable compromise if they are found to be sufficiently effective. The choice of the
type of mortar to be used depends on the properties of the substrate where these reinforced
renders will be applied, as well as the level of performance required.

The evaluation of the masonry properties is also important to support a correct di-
agnosis of the actual condition of the wall structure. This procedure helps choosing the
materials and techniques that are best suited to a proper structural rehabilitation. The
lack of knowledge of the main characteristics of masonry structures, such as its shear
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strength, sometimes leads to interventions with less adequate techniques, jeopardizing the
authenticity of the built heritage.

The evaluation of strengthening solutions applied to masonry walls is essential to
determine their effectiveness compared to unreinforced walls. The experimental tests
aimed at quantifying the in-plane strength-improvement achieved with these strengthening
solutions. Additionally, evaluated was the mechanical compatibility between the walls and
the strengthening materials.

Besides allowing significant improvement in seismic behavior, these solutions also
allow protecting and preserving the architectural heritage. The strengthening solutions
studied also satisfy principles of compatibility, in its various aspects, and of the greatest
possible reversibility, including the least intrusion into the existing elements.

Several combinations of reinforced mortars were considered, consisting of mortars
with binders of hydrated lime, natural hydraulic lime, or Portland cement, with balanced
compositions, and three types of reinforcement mesh—a steel mesh, a glass fiber mesh, and
a mesh of natural jute fibers. Two of these solutions were chosen and applied to the small
wall specimens (wallettes) that were later subjected to diagonal compression tests. An
unreinforced wall was also assessed for comparison purposes to evaluate the effectiveness
of the chosen strengthening solutions.

2. Tensile Tests on Reinforced Renders
2.1. Specimen Preparation

For the execution of test specimens, three types of reinforcement mesh were selected—
a steel mesh (tension strength of 362 MPa/28.5 kN/m, ultimate deformation of 8.3%), a
glass fiber mesh (782 MPa/97.6 kN/m, 2.1%) and a natural jute mesh (55 MPa/4.2 kN/m,
3.1%). Four types of mortar were also selected, consisting of binders based on hydrated
lime, with 1/3 binder/sand ratio, natural hydraulic lime, with 1/2 and 1/3 ratios, and
Portland cement, with 1/3 ratio. Table 1 shows the composition of the various specimens
of reinforced mortars under study, as well as their identification.

Table 1. Identification and composition of the reinforced mortar specimens.

Specimens Group
Identification

Render Mortar Reinforcing Mesh

Binder Type Binder/Sand
Ratio

AL_1:3_S

Hydrated (air) lime 1:3

Steel

AL_1:3_J Jute

AL_1:3_G Glass

HL_1:3_S
Natural hydraulic

lime
1:3

Steel

HL_1:3_J Jute

HL_1:3_G Glass

HL_1:2_S
Natural hydraulic

lime
1:2

Steel

HL_1:2_J Jute

HL_1:2_G Glass

PC_1:3_S

Portland cement 1:3

Steel

PC_1:3_J Jute

PC_1:3_G Glass

The tested specimens of reinforced mortars (five specimens for each mortar composi-
tion/mesh type) were 60 cm long, 10 cm wide, and 2 cm thick. The reinforced mesh was
80 cm long and 10 cm wide and was in the half-thickness of each specimen.
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The reinforced mortar specimens were molded in two layers using maritime plywood
formwork. The first layer is approximately 1 cm thick, the mesh is then deployed, as shown
in Figure 1a, and, finally, the second layer is applied and leveled.
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Figure 1. Reinforced render specimens: execution (a) and curing (b).

The type and time of curing (Figure 1b) followed the standard EN 1015-11 [10]. After
the initial curing procedures, the specimens were placed in a conditioning room at a
temperature of 20 ◦C ± 2%, and relative humidity of 65% ± 5% until the date of the test.
Cement specimens were cured for 28 days, while lime specimens were cured for 90 days.

2.2. Experimental Campaign

After the specimens’ cured, they were subjected to the tensile tests. Given the fragility
of the specimens, due to their slenderness, there was a need to adopt some precautions
when handling them. The specimens were transported to the test site as their curing period
was completed. At this stage, the specimens were identified, measured, weighed, and
inspected with a magnifying glass. Ultrasound tests were also conducted on each specimen
to check for cracks that could have been caused by demolding or transportation.

The tensile tests were conducted with displacement control with a speed of 0.6 mm/min
and a sampling frequency of 50 Hz. Figure 2 shows the execution of one of the tensile tests
at the specimen’s rupture.
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2.3. Results Obtained

The load values applied in the specimens during the tensile tests were recorded and
the value of the stress at the fiber mesh (in the cracks, where it bears the whole load) was
calculated, considering the cross-sectional area of the longitudinal fibers.

Figure 3 shows examples of a load vs. time diagram obtained in reinforced mortars
of natural hydraulic lime mortar in the 1/2 binder/sand ratio in each of the three studied
meshes. It should be noted that the diagrams are not on the same scale because the strengths
obtained are quite different.
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Figure 3. Load vs. Time diagrams obtained for reinforced renders with mortar of natural hydraulic
lime with 1/2 binder/sand ratio: (a) steel mesh, (b) jute fiber mesh, and (c) glass fiber mesh.

Table 2 shows the average value and standard deviation of the ultimate (maximum)
stress, specific mass, and an estimate of the dynamic elastic modulus for each type of
specimen (based on ultrasound tests). Figure 4 shows the typical rupture mechanisms for
each group of specimens of reinforced renders (grouped by type of mortar).
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Table 2. Average values (and standard deviations) obtained in the tests on reinforced renders.

Specimens Group Ultimate Tensile
Stress (MPa)

Specific Mass
(kg/m3)

Dynamic Elastic
Modulus (MPa)

AL_1:3_S 405 (11) 1812 (218) 2148 (270)

AL_1:3_J 42 (5) 1684 (38) 1921 (86)

AL_1:3_G 550 (82) 1697 (20) 1843 (85)

HL_1:3_S 404 (19) 1913 (11) 4284 (212)

HL_1:3_J 35 (1) 1721 (24) 4810 (74)

HL_1:3_G 600 (26) 1742 (17) 4562 (339)

HL_1:2_S 392 (7) 1805 (39) 8056 (469)

HL_1:2_J 39 (4) 1855 (34) 8379 (225)

HL_1:2_G 580 (38) 1834 (30) 7785 (354)

PC_1:3_S 423 (9) 1968 (13) 14,439 (401)

PC_1:3_J 38 (2) 1821 (57) 11,561 (997)

PC_1:3_G 578 (11) 1889 (18) 13,622 (376)
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Figure 4. Rupture mechanisms for each type of reinforced render with different mortar binder
and different type of mesh (steel, jute, glass fiber, in this order from left to right in each group).
(a) Hydrated lime. (b) Natural hydraulic lime 1/3 Binder/Sand ratio. (c) Natural hydraulic lime
1/2 binder/sand ratio. (d) Portland cement.

2.4. Analysis of Results

The results obtained show that the value of the ultimate tensile stress is strongly
dependent on the reinforcement mesh while the type of mortar does not seem to have a
significant influence on these results. The values obtained for the ultimate tensile stress
are quite consistent for each type of specimen since the standard deviation values are
relatively low.

In addition to determining the ultimate tensile stress through tension tests, it was
also possible to estimate the dynamic elastic modulus by the ultrasound method. These
results confirm that the deformability of reinforced renders with Portland cement mortar is
lower than that of lime mortar renders and that renders with hydrated lime mortar are the
most deformable.
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The rupture mechanisms obtained in the tensile tests are similar to those observed
in similar tests in other research works [11–15]. It should also be pointed out that the
occurrence of a certain rupture mechanism among those represented strongly depends on
the shear stress installed at the ends of the specimen, as well as on the tensile performance
of the mesh and the effectiveness of the connection between the reinforcing mesh and the
mortar [16].

It was possible to observe that the specimens’ failure due to slipping of the mesh
never occurred, which shows the efficacy of the connection between the mortar and these
reinforcing meshes. However, in some of the reinforced mortars, the tensile strength of
the mortar was inconveniently higher than that of the fiber mesh. In these cases, the mesh
breaks soon after the first crack occurs without mobilizing again the tensile strength of the
mortar and thus without promoting crack propagation. Such were the cases of renders
with natural lime mortar at a 1/2 binder/sand ratio reinforced with jute fiber mesh or that
of cement mortars, both with jute and metallic meshes.

Two types of reinforced renders were chosen to be applied to wallettes built for this
purpose. In a first phase, the weaker types of mortar were excluded, namely the hydrated
lime with 1/3 binder/sand ratio and natural hydraulic lime with 1/3 ratio. Among the
renders with hydraulic lime at 1/2 binder/sand ratio, both steel and glass fiber mesh
managed to mobilize the mortar strength and promote crack propagation. Among these
two, the render with glass fiber mesh was chosen because it presented greater tensile
strength. Regarding cement at 1/3 ratio, the choice was made on the glass fiber mesh,
which was the only one that mobilized the cement mortar tensile strength.

3. Diagonal Compression Tests on Wallettes
3.1. Specimen Preparation

New small specimens of solid ceramic brick masonry, named wallettes, were produced,
at 70 × 70 cm2, simulating the constitution and behavior of original wallettes (previously
taken from a real building), which were previously characterized through an experimental
campaign. The brick layout pattern is shown in Figure 5 (the wall thickness, of 21 cm,
corresponds to the longest brick edge). Bricks obtained from the demolition of an old
building (the same from which the other wallettes had been taken) were used, and previ-
ously characterized. The laying mortar used was composed of hydrated lime, a mixture of
river and sandpit sand, half weight of each (with 1:3 binder/sand ratio), and water. The
mortar constitution was equivalent to that of the old building from where the bricks were
obtained. Three wallettes were selected, prepared, and instrumented to perform diagonal
compression tests. The laying mortars underwent a curing process of approximately six
months before the application of the reinforced render.
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The M2M3 wallette was strengthened with a reinforced render consisting of a cement
mortar with a 1/3 binder/sand ratio and a VIPLÁS 275 glass fiber mesh [17]. The M3M3
wallette was strengthened with a reinforced render consisting of natural hydraulic lime
mortar with a 1/2 binder/sand ratio and a VIPLÁS 275 glass fiber mesh [17]. The M1M5
wallette, without any strengthening solution, was tested for comparison purposes.

The reinforced renders were applied to both sides of the wallettes with a thickness of
3 cm (2 cm for the leveling layer + 1 cm for the finishing layer). A wooden structure was
created around the wallettes to anchor the rendered mesh, so it remained stretched during
the application and curing of the mortar. The mesh was affixed to the wallette through four
plastic connectors, approximately 7 cm long, forming a 50 × 50 cm square centered on the
wallette, as shown in Figure 6.
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Figure 6. Wallettes with the reinforced render.

After approximately six months of curing the reinforced render mortar, the wallettes
were subjected to diagonal compression tests.

3.2. Experimental Campaign

Diagonal compression tests were conducted in order to assess the in-plane distortional
capacity of the wallettes when a shear action (such as during a seismic action) was applied.
The standard testing method described in ASTM E519/E519M—10 standard [18] was
followed with slight adaptations.

After placing each wallette in the correct position, it was instrumented with two dis-
placement transducers of type W50 (50 mm course) on each face to measure the deformation
in the horizontal and vertical directions.

The test method basically consisted of gradually applying the load with a controlled
speed of 0.005 mm/s, sampling the data at a 50 Hz. rate. Loading was performed vertically
with the wallette positioned at 45 ◦C, as shown in Figure 7.
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3.3. Results Obtained

After performing the diagonal compression tests, the respective failure mechanisms
were observed. Figures 8–10 show the collapse mechanisms obtained for the three tested
wallettes (plain and strengthened).
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Figure 11 shows the diagram of the applied stress as a function of vertical and hori-
zontal deformation for the three tested wallettes (plain and strengthened). Table 3 shows
the calculated parameters resulting from these diagonal compression tests.

Table 3. Parameters obtained from the diagonal compression tests.

Wallette Shear Strength
(MPa)

Max. Distortion
(mm/mm)

Shear Modulus
(MPa)

Rupture
Energy

(J)

M1M5 0.09 1.95 × 10−3 44.77 54.02

M2M3 0.69 2.56 × 10−3 268.69 1140.07

M3M3 0.30 1.81 × 10−3 165.72 327.85
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3.4. Analysis of Results

The maximum shear stresses obtained in the diagonal compression tests of the wal-
lettes show that the bare brick masonry walls have a reduced shear strength and may need
strengthening when horizontally loaded.

As seen in the images of the collapse mechanisms, the ruptures in both reinforced
renders are associated with diagonal cracks (towards the opposite vertices of the wallettes),
typical of shear collapse. The collapse mechanisms observed in the wall core are in accor-
dance with those observed in the render, resulting in a main diagonal crack, zigzagging
along the mortar joints, which is also typical of a shear collapse mode.

After the test, it was found that some zones of the render were not adhering to the
wall, showing a lack of compatibility between the render and the brickwork. This effect
was more significant for the cement mortar render.

Regarding the effectiveness of the strengthening solutions, both types of reinforced
renders promoted an increase in strength compared to the unreinforced wall.

Reinforced render with natural hydraulic lime increased the shear strength by about
2.25 times while cement mortar reinforced render increased it by about 6.5 times. This
significantly higher strength increase in the cement mortar render when compared to
natural the hydraulic lime render shows that, besides the type of fiber (the fiber meshes
were similar), the mortar properties also strongly influence the strengthening effect of the
reinforced render solution.

4. Conclusions

Because the experimental campaign involved the testing of the reinforced renders
alone, bare walls and reinforced walls, it allows for assessing the efficiency of the reinforced
render as a strengthening technique for masonry walls subjected to diagonal compression.

The selected reinforced renders need to be adequate to be applied to resistant solid
brick masonry walls to improve their shear / seismic behavior.

Considering that both strength- testing solutions ensure increased strength, two differ-
ent types of objectives may be considered. If the type of strengthening to be made is more
demanding in terms of material compatibility (with the reinforcement and the support)
and consequent durability of the support where it will be inserted, the reinforced render
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solution composed of natural hydraulic lime mortar and glass fiber mesh is more suitable.
If, on the other hand, the type of strengthening to be applied has to guarantee greater
overall wall strength, then the most suitable reinforced render solution is composed of
cement mortar and glass fiber mesh.
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