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Abstract: This paper proposes a novel method for construction component classification by designing
a feature-based deep learning network to tackle the automation problem in construction digitization.
Although scholars have proposed a variety of ways to achieve the use of deep learning to classify
point clouds, there are few practical engineering applications in the construction industry. However,
in the process of building digitization, the level of manual participation has significantly reduced
the efficiency of digitization and increased the application restrictions. To address this problem,
we propose a robust classification method using deep learning networks, which is combined with
traditional shape features for the point cloud of construction components. The proposed method
starts with local and global feature extraction, where global features processed by the neural network
and the traditional shape features are processed separately. Then, we generate a feature map and
perform deep convolution to achieve feature fusion. Finally, experiments are designed to prove the
efficiency of the proposed method based on the construction dataset we establish. This paper fills
in the lack of deep learning applications of point clouds in construction component classification.
Additionally, this paper provides a feasible solution to improve the construction digitization efficiency
and provides an available dataset for future work.

Keywords: deep learning; pipeline component extraction; point clouds; feature; CNN (convolutional
neural network)

1. Introduction

The 3D reconstruction models are gradually replacing 2D drawings for information
transmission and more in-depth processing to meet the demands of civil engineering
digitization, according to the research by Ma and Liu [1]. Among a variety of 3D information
data formats, the point cloud model is the research focus of many scholars. The 3D
point cloud data are widely used in the construction industry for model reconstruction,
geometry inspections and other applications, but there is still a research gap regarding the
practical applications [2]. In the early stage of point cloud data processing, scholars mainly
utilize traditional algorithms to deal with complex and irregular object reconstruction [3],
complicated scenes with repetitive objects [4] and the updating of as-designed BIM to as-
built BIM [5]. On the basis of shape extraction, some scholars further enriched the semantics
of point cloud data and deepened the relationship between BIM [6,7] and point clouds via
IFC (Industry Foundation Classes) extension [8]. This has had positive significance for data
management in the field of civil engineering, and has greatly promoted the informatization
process in the construction industry. However, such studies mainly focus on indoor scenes
and generally require manual participation, which leads to a low level of automation and
compatibility [9]. Thus, some scholars have turned to deep learning for resolution. With the
maturity of deep learning algorithms, more network structure designs for the deep learning
of point clouds have emerged, the feasibility of applying deep networks to point cloud
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learning has been verified and the design theory has been continuously improved [10]. The
application of deep learning in civil engineering information management has developed
from image damage detection [11] to 3D reconstruction segmentation [12]. In order to
use deep learning to enhance the efficiency of engineering information acquisition, some
scholars directly apply deep learning networks on IFC models [13] or use deep learning to
assist in removing unwanted information [14]. Overall, most scholars focus their attention
on deep learning to help in the acquisition and processing of 3D point clouds, so as to
reduce the manual participation and achieve automation. This approach would be for
the great promotion of efficient digital management, especially for complicated building
scenarios such as MEP (Mechanical, Electrical and Plumbing) systems.

With the development of 3D reconstruction technology, the accuracy of the obtained
data is gradually improved. At this time, the requirements for the accuracy and flexibility
of the model become more stringent. In the realization of as-built BIM from point clouds,
the extraction of building components plays a vital role, among which pipeline component
extraction is an important task. The digitization of existing buildings can be completed by
extracting and identifying point clouds, and then the management of important building
components, such as MEP systems, can be completed. In the construction industry, the
application of point cloud data in information sharing platforms is synchronized with the
development of point cloud data processing methods [15]. To efficiently use point clouds,
scholars have paid attention to semantic recognition, which is an essential step to identify
the part that a point cloud belongs to. In reverse engineering, many algorithms are used in
the mesh and point clouds for labeling, such as randomized cuts for the mesh [16], mesh
labeling via CRF [17] and the octree-based method for point cloud segmentation [18]. These
algorithms are designed using the geometry features and can work for certain datasets,
but it is difficult for them to maintain high accuracy in various datasets. To address this
problem, the concepts and structures of deep learning are introduced to design a self-
learning algorithm for mesh labeling [19], and we further turn to point cloud labeling [20]
due to the flexibility and integrity of the point cloud approach.

However, the currently proposed algorithms experiment with repetitive and limited
datasets, which leads to difficulties for actual applications in engineering practice, with
even fewer applications in MEP systems [9]. Among the datasets used by these algorithms,
one part of the datasets is composed of small-volume point clouds generated by CAD
models which have little noise interference, such as ModelNet40 [21], while the other part
of the datasets is designed for scene segmentation and focuses on identifying ceilings,
tables and chairs in indoor rooms, such as the Stanford 3D semantic parsing dataset [22];
or trees, roads and buildings in outdoor spaces, such as Semantic3D.net [23]. In addition
to the problems with the datasets used for training, the practical engineering application
of these algorithms is also restricted by the environment and other conditions. The point
clouds obtained on site are incomplete because of interference. At the same time, they
are affected by the speed of the data collection, meaning it is difficult to obtain complete
attribute data, such as RGB (Red, Green, Blue) data.

To overcome the above problems, it is necessary to adjust the structure design of the
deep learning algorithms to adapt to the needs of engineering applications, especially for
MEP systems. Thus, based on previous studies, this paper proposes a new deep network
structure and builds a dataset that emphasizes engineering scenarios for learning and
training. The key to our approach is the surrounding description of a single point. Through
the usage of the SHOT (signature of histograms of orientations) and spin image approaches,
the attributes of a single point are expanded to fill the gaps in data collection.

The key contributions of our work are as follows: (1) we design a novel neural network
architecture suitable for an imperfect point cloud collected from the construction project;
(2) we introduce the concepts of SHOT and spin image in point cloud deep learning and
improve the performance of point cloud labeling by depicting the distribution of points;
(3) we establish a point cloud deep learning dataset for engineering application scenarios
and pipeline component extraction.
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The rest of this paper is organized as follows. Section 2 reviews related work and
Section 3 introduces the overall methodology used for the point cloud labeling. In Section 4,
the architecture of the network is shown to express how it works. Then, we demonstrate
the performance in the experiments in Section 5 with pipelines as examples. Finally, the
article is concluded in Section 6.

2. Literature Review
2.1. Information Extraction and 3D Reconstruction of Pipeline Components

As a more efficient data acquisition method, non-destructive tests (NDTs) replace
traditional manual measurement methods in many application scenarios [24]. Among the
many NDT methods, oblique photography, ultrasonic detection and laser scanning are the
most representative ones. As a large-scale data collection method, oblique photography
mainly uses drones for outdoor data collection. The subsequent data processing tends to
distinguish buildings from the environment [25] or extract building outlines [26]. Ultrasonic
detection is mainly used for internal damage detection, such as crack detection [27] and
weld detection [28], and no reconstruction model is generated during the detection process.
Compared with the first two types of NDTs, laser scanning is more suitable for construction
component reconstruction in the field of civil engineering due to its accuracy and scanning
range. Different types of laser scanning equipment can be applied for overall scene scanning
or partial scanning to obtain stable and accurate point clouds. Using these point clouds,
3D models of buildings or components can be reconstructed to conduct measurement [29],
recognition [30] and other data processing operations.

Processed point clouds are used in the field of civil engineering for quality and safety
management during the construction phase and in building information management,
which is known as BIM. Containing high-precision three-dimensional data, the point cloud
can describe the settlement state of the construction site and the deformation state of
the construction components, which is of great benefit for the collection of data for MEP
systems from complicate pipelines. Some scholars have proposed algorithms, including the
convex hull [31] and improved RANSAC algorithms [32], to extract primitive geometric
information form a construction site or building for further as-built BIM applications.

As an important building information exchange technology, BIM requires more data
to show a complete model with rich semantics to support the information required from
design to operation and maintenance phases while gradually improving. With the expan-
sion of the application range and the increase in importance, there are stricter requirements
for the point cloud data used in the BIM platform [33]. In the process of using BIM for
digital construction, pipeline management methods have also been developed, since the
pipeline occupies an important position during maintenance. In buildings that use BIM
technology for forward design, the management of pipelines can achieve efficient and
diversified purposes. In addition to conventional pipeline information management and
collision detection, some scholars have realized the prediction of pipeline corrosion on the
basis of BIM. Tsai et al. [34] utilized the semantic information management function to store
pipeline sensor information and to monitor and visualize the maintenance status. Under
the premise of complete pipeline information in BIM, many technologies, e.g., IoT and
RFID, can be used to assist in pipeline management [35,36]. Although BIM technology has
been widely used in the construction industry, a large number of existing buildings need
to be processed via as-built BIM technology to harness its superior functions for efficient
management. For the realization of as-built BIM for pipelines, there has been continuous
research for the purpose of reducing the manual participation proportion during processing.
Patil et al. [37] paid attention to the Hough transform for the automatic detection of cylinder
parameters in point clouds. Tran et al. [38] used traditional shape features for cylinder
fitting to complete the pipeline extraction in a similar way.

Among these works for MEP systems and pipeline management, these proposed
algorithms are usually used in ideal conditions, while the point clouds collected in actual
engineering scenes, especially in complex MEP systems, are often noisy and incomplete.
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The existing research has explored a feasible workflow to use the point clouds for building
information acquisition and management. However, these traditional point cloud process-
ing methods require a lot of manual participation and are limited to a few fixed models,
leading to poor efficiency and compatibility when dealing with the pipelines.

2.2. Deep Learning in Point Cloud

As a data format that is widely used in 3D reconstruction, the point cloud has always
been a research hotspot in graphics processing and computer vision. Recognizing the se-
mantic information of the point cloud as an important part of its use has been a continuous
concern for scholars [39]. Before deep learning gained widespread attention, graphical
analyses of point clouds were already carried out. The point cloud data features, including
spin image [40] and SHOT [41] features, are calculated to classify different parts to achieve
segmentation. Traditional classification algorithms such as the principal component anal-
ysis [42] are also used to assist in point cloud processing. Although these characteristics
can help distinguish the geometric features of a point cloud reconstruction model, they are
too rigid to lose their self-learning ability and strong adaptability. The emergence of deep
learning algorithms fills the gaps in this research field.

Deep learning for point clouds mainly focuses on the research fields of recognition
and classification and is applied to road condition recognition for automatic driving [43],
large-scale scene object classification [44] and indoor scene recognition [23]. According
to the methods of deep learning data recognition, they can be divided into three types in
general: Pointnet, Voxelnet and feature-based net.

Pointnet proposed by Qi et al. is an important algorithm in the field of point cloud
deep learning [20]. Pointnet is highly efficient and robust and can deal with object classi-
fication, part segmentation and scene semantic parsing. Since Qi et al. provided both an
authoritative theoretical analysis and experimental evaluation, many follow-up works aim-
ing to improve the network structure have been based on Pointnet, such as Pointnet++ [10],
Foldingnet [45] and dynamic graph CNN [46]. The novel deep net architecture proposed
as Pointnet, which focuses on processing unordered 3D points, has proved its stability and
efficiency via experiments. Compared with other algorithms, this algorithm is character-
ized by the extraction and processing of the main properties of a point cloud, which are
the disorder, interactions among points and invariance under transformations. The core
network structures of Pointnet are T-net, which is designed to strengthen the relevance of
points in the early stage of data training, and the max pool layer, which is used for dealing
with unordered points and keeping the invariance under transformations. Additionally, on
the basis of a classification network, Qi et al. [20] further expanded the network structure
to implement part and semantic segmentation by combining point features and global
features. Intuitive explanations were developed for the robust and effective performance
of Pointnet in their paper, and more studies are following the steps of Pointnet to pursue
better performance and more flexible use in more fields.

However, because of the training samples used by Pointnet, which are relatively simple
and small in size, and the lack of attention to local features, it is difficult to implement
Pointnet in large-scale continuous scenes, especially construction engineering scenes.

Differing from Pointnet, which uses a small point cloud as the input, Voxelnet empha-
size points connections. This algorithm is characterized in the early-stage data by voxel
mark processing. Point clouds are allocated in voxels and form input data according to
the distribution in the voxel [47] or voxel labels [48]. Voxelnet can achieve precise con-
trol because of the rasterization of point clouds and can handle variable point clouds in
more flexible ways in different usage scenarios. Although forming a voxel grid in the
most straight-forward way fully utilizes ConvNet, which was originally designed for 2D
imaging by changing the input data, it also leads to many disadvantages. Since VoxelNet
is mainly used in large-scale scenarios, it is often difficult to balance the workload and
algorithm accuracy, and the stability is greatly affected by the voxels. Although Kd-net was
proposed to further optimize the low efficiency of the voxels, it is still not a fundamental
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solution to the application of deep learning on 3D data based on the characteristics of the
point cloud [49].

In addition to the above two types of deep learning networks, some scholars start
from combining deep learning and traditional shape features by extracting features in
advance and then using them as the inputs of networks [19,50]. These types of networks
rely on the study foundation of traditional algorithms to provide reliable parameters for
subsequent learning, balancing the robustness and flexibility. Nevertheless, there have
been cases where traditional shape features are overused. For example, Guo et al. used
more than 7 features in their paper, which led to excessive reliance on the traditional shape
features and weakness of the learning network, together with increasing the workload at
the preprocessing stage. Although these networks can provide stable performance, they
have not brought about obvious improvements compared to traditional algorithms.

2.3. Deep Learning in Construction Industry

The introduction of digital technology such as deep learning has accelerated the
construction digitization process and provided more efficient tools to process engineering
data. A recent study [51] showed that deep learning technologies have been applied for
prevalent construction challenges such as site management, budget and energy control
and building quality monitoring. In terms of information management and prediction,
Sun et al. [52] used the long–short-term memory (LSTM) neural network in deep learning
for exchange rate forecasting and Ziari et al. [53] made full use of the deep learning
network of natural language processing (NLP) to assist highway agencies in decision-
making procedures, indicating that deep learning is gradually shifting from theory to
practice and becoming a substitute for traditional algorithms in some empirical research
fields. Additionally, during the process of image recognition, since ImageNet [54], which
is used for large-scale image recognition, was proposed in 2012, deep-learning-related
research has received more attention and there has been wide adoption of similar deep
learning structures, e.g., convolutional neural networks. In the construction industry,
the numerical prediction and image recognition functions of deep learning algorithms
are mainly used to solve practical engineering problems. For instance, Deng et al. [55]
and Nguyen et al. [56] separately proposed CNN model and DNN model to predict the
strength of concrete for monitoring and design. Rahman et al. [57] designed an RNN
(recurrent neural network) model for building energy prediction. Rafiei and Adeli [58]
presented a novel machine learning model for estimating construction costs by combining
the DBM-SoftMax (deep Boltzmann machine) layer and BPNN (back-propagation neural
network). For image recognition functions, scholars tend to invest more in research on
on-site worker behavior and construction quality and safety monitoring. For example,
Fang et al. [59,60] proposed a CNN model to check workers’ posture and helmet-wearing
from videos. Kolar et al. [61] presented a CNN-based model to detect guardrails in 2D
images for safety improvements. In researching applications related to quality issues,
scholars have focused more on crack detection. Similar CNN-based approaches have
been adopted for crack detection, where scholars have made efforts towards accuracy and
robustness improvements [62,63].

Although scholars have done a lot of work by combining deep learning approaches
for the digitalization of the construction industry, there has been very little work related
to 3D scenes and BIM, despite the model recognition work carried out by Wang et al. in a
BIM environment [64]. The adoption of BIM models has brought significant improvements
to construction digitization over the years [65]; scholars are also striving to achieve BIM
through the use of more advanced equipment and algorithms [66] but there is still a lot of
work to be done to achieve efficiency improvements, especially for as-built BIM. At present,
the achievement of as-built BIM requires a lot of human participation to manually label
construction components, which can be automated by applying deep learning algorithms
for point clouds. However, the datasets used in the related algorithms, such as the ShapeNet
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dataset [67], ModelNet40 dataset [21] and Stanford large-scale indoor space dataset [22],
do not match the engineering application scenarios.

3. Methodology

In this paper, we present a point cloud classification method by using deep CNNs,
as shown in Figure 1. First, the original data are processed by the preprocessing network
to obtain the training features. The original input data are the global coordinate values of
the point cloud. Inspired by PointNet, the network structure of this paper also adopts a
combination of global features and local features for training, whereby the global features
are formed by the global coordinates of a single point, which are entered into UnitNet,
then according to the traditional algorithm the spin image, SHOT and normal of each
point are calculated as local features and input into FeatureNet for training. Differing from
PointNet’s processing of global and local features, the different kinds of features in this
paper are calculated separately in the early stage and trained by independent networks,
which increases the irrelevance of the data. After the two kinds of features are trained on
their own networks, 36-dimensional and 64-dimensional data are output, from which the
new input data are merged as 100-dimensional data. Second, deep CNNs are built for
feature extraction and final classification. Before being sent to FinalNet for training, a 2D
feature matrix (n × 10 × 10) is transformed from processed features in the form of feature
maps to facilitate subsequent feature extraction. Finally, the deep convolutional networks
and the pooling layers are combined for training and learning, and two fully connected
layers are applied in the end to obtain the classification results.
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Figure 1. Network resolution.

The key parts of this paper are the preprocessing networks used for the extraction of
local and global features by Unitnet and FeatureNet in the early stage, and the use of a
deep convolutional network in FinalNet to weight the merged features for recognition in
the later stage.

4. Network Architecture
4.1. Preprocessing Networks

In this paper, the network is used to classify the large-scene point clouds, especially
the one that is collected at the construction site. Due to the different application scenarios,
the data input to the neural network have the following characteristics: (1) Isolation of
the input data. The point cloud is disordered, and in the recognition of large scenes, each
point is input into the network separately, which highlights the weak connection and
poor continuity between the data. (2) The particularity of the application scenario. Many
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segmentation and recognition algorithms for large scenes are based on indoor scenes, and
many elements such as chairs can be obtained from existing model libraries and trained in
advance. For a construction site, there are few large-scale point cloud datapoints available
for use. (3) The lack of data features. Although the current laser scanning technology
has reached a high level of accuracy and good RGB color rendering performance by
taking photos for scanning, in order to ensure versatility and avoid interference during
color collection under construction conditions, the original data obtained often only have
coordinate values.

In order to solve the above problems, this paper sets up UnitNet and FeatureNet for
data preprocessing for global features and local features.

4.1.1. Global Feature Extraction

UnitNet is designed for global coordinate transformation, where each point is input
as a separate unit with normalized coordinate values as input channels. The network
architecture is shown in Figure 2. The input unit is trained by a one-kernel convolutional
network with 16 channels and 36 channels. Simultaneously, the BN (batch normalization)
layer and ReLU layer are applied for parameter correction and activation during the
training process.
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It can be seen from the network structure that the shape of the input unit is not changed,
only the number of channels is gradually increased. In this way, the coordinate values
of the input data can be further input into the subsequent network after transformation,
while retaining the global characteristics of the original data. In this process, the coordinate
function of the point is strengthened.

4.1.2. Local Feature Extraction

The raw data from the point cloud have strong independence, which makes it difficult
to find the connections with the surrounding points when only using the coordinate value.
This disadvantage can be overcome by traditional algorithms such as SHOT and spin image
algorithms through the description of local points.

In this paper, SHOT (signature of histograms of orientations) and spin image are im-
portant features used as input data to train neural networks, which are originally designed
for surface matching. Both features can be used to describe the distribution of surrounding
points, whereby SHOT focuses on the locations of surrounding points and spin image
focuses on the distribution density of the points.

There are two reasons for using SHOT and spin image as input data for this convolu-
tional neural network: (1) Each point in the point cloud exists independently, and its own
attributes need to be obtained through subsequent processing, except for the coordinates
and RGB color that are obtained. SHOT and spin image can increase the correlation between
points and attach local attributes to independent single points. (2) The CNN framework
requires rich data for training and judgment, so algorithms that form a large amount of
features are needed.

SHOT
SHOT (signature of histograms of orientations) was proposed as a local reference

system for surface matching [41]. SHOT, which is also as a local 3D descriptor that has been
used in many scenarios, balances the signature and histogram to maintain the descriptive-
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ness as well as the robustness. After the concept of SHOT was put forward, some scholars
further improved it with global structure frames [68] or textures [69]. In this paper, a local
reference frame is first established to determine the locations of neighbor points, as shown
in Figure 3. In the local reference frame, the spherical space is divided into 32 spatial bins,
resulting from 8 latitude divisions (only 4 are shown in Figure 3), 2 longitude divisions and
2 radius divisions. According to the normal of the point in every spatial bin, nvi, and the
normal of the feature point, np, the cosine of the corresponding angle, θi, is calculated by
cos θi = np–nvi. Then, according to the calculated cosine value, 11-level histogram statistics
are performed on the number of points falling into each spatial bin. Finally, after the data
are normalized, a 352-dimensional (8× 2× 2× 11) feature is generated as an array to input
to the neural network.
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Spin Image
Spin image was proposed by Johnson et al. in 1999 for efficient object recognition

and surface matching in 3D scenes. [40] It was first used in 3D meshes. Subsequently,
the related algorithm further optimized the spin image approach [70,71]. With the rise
of laser scanning technology, point clouds are gradually displayed as 3D models in more
application scenarios. Thus, there are increasing studies exploring the application of the
spin image approach in point clouds, such as for classification [72] and registration [73]. In
addition to the traditional application technology route, a spin image also provides usable
data features for deep learning in point cloud processing [19].

The spin image approach was proposed to perform surface matching by depicting the
local distribution of other points around the feature point. As shown in Figure 4, first an
oriented point with the surface normal is selected to define a coordinate system, where α is
the radial coordinate and β is the elevation coordinate. Then, a 2D accumulator indexed by
α and β is rotated, taking the normal as the axis. As the accumulator rotates, the number of
points falling into the bin indexed by (α, β) gradually increases, forming the spin image,
which can be described by Equation (1), where SO(x) : R3 → R2 , p is the reference point, n
is normal vector of p and x is the neighbor point.

SO(x)→ (α, β) =

(√
‖x− p‖2 − (n·(x− p))2, n·(x− p)

)
(1)
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Figure 4. Generation principle of the spin image approach.

Finally, an intensity-related histogram is output as an array to compose the input data
of the neural network.

FeatureNet
The output of the above algorithms forms a sequence of 508 elements, of which 352

are from SHOT, 153 are from the spin image and 3 are from the normal. Most of the
elements are obtained by establishing a local spatial coordinate system and describing the
surrounding points in blocks, which also leads to two problems: (1) Excessive data volume.
The method of dividing the space into blocks and the output form of the histogram results
in a large amount of local feature data, which is difficult to process. (2) The existence of
invalid data. Since the points are not evenly distributed in all spaces, there are lots of
zero-value data in the sequence, together with invalid data caused by noise.

The large data volume is often processed using a PCA algorithm for dimensionality
reduction, as shown in other studies, but this issue cannot be solved in this paper due
to the linearly independence of the feature data. Therefore, this paper proposes the use
of FeatureNet for effective feature extraction to reduce the amount of data and eliminate
invalid data. The structure of FeatureNet is shown in Figure 5.
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Figure 5. The FeatureNet structure proposed in this study.

In FeatureNet, two one-dimensional convolutional layers and a pooling layer are
used to assign weights to each feature element to eliminate invalid data and zero-valued
data, and then two fully connected layers are applied to perform dimensional compres-
sion to achieve the purpose of data cleaning. Through the processing of FeatureNet, 64-
dimensional data are finally output, effectively compressing the dimensions of
feature data.

4.2. FinalNet

FinalNet is the main structure that implements feature extraction in the deep con-
volutional networks. As shown in Figure 1, considering the deeper network structure
leads to better performance [74] and improves the response speed of the network structure.
FinalNet uses 6 convolutional layers to perform the feature extraction, 3 pooling layers to
reduce the dimensions and 2 fully connected layers to make the final judgement.
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FinalNet directly processes the feature map size formed by reshaping the sequence
spliced from the local feature and global feature. Figure 6 shows the details for composing
these two features. There is a weak connection between the two different features in the
initial feature map formed via concatenation and deformation in the first stage. After
processing the convolutional layer, connections between different feature elements are
established through convolutional kernels.
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The merging result after the first convolution phase can be seen in Figure 6. Subse-
quently, with the deepening of the convolutional layers and the participation of the pooling
layers, a fully integrated feature sequence is formed. Finally, the fully connected layers are
applied to form non-linear combination and output the result.

5. Experiment

This paper focuses on the object classification of construction components, especially
the components that require maintenance management in complex construction scenes.
The existing datasets, such as ModelNet40 (Wu et al., 2015), which has 12,311 CAD models
from 40 man-made object categories, and ShapeNet (Yi et al., 2016), which is normally
used for indoor scenes in segmented learning, e.g., for tables and chairs, cannot meet the
need for the classification of construction components in the field of civil engineering.
Additionally, the point clouds generated by CAD models cannot reflect the actual state of
the point clouds obtained via laser scanning due to the environmental interference and
blind spots. Thus, this paper uses a self-built dataset via the laser scanning and labeling of
the appropriate scenes, since there are few datasets that can be directly used for the related
training and learning processes.

In this paper, the classification of pipelines, which are difficult to manage in the
construction process and complicate the maintenance process, is shown as an example to
prove the validity of the proposed network. The whole scene with the format of the point
cloud and the pipelines that are manually extracted, labeled and used for training and
learning can be seen in Figure 7.
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Figure 7. The point cloud dataset. (a) is the engineering scene dataset and (b) is showing
extracted pipelines.
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5.1. Architecture Design Validation

In this section, a control experiment is designed for the validation of the networks this
paper has proposed. The networks that are trained and perform the pipeline classification in
the control experiment are inspired by feature-based DNNs (Y. Fang et al., 2015; Guo et al.,
2015), where traditional features are extracted and sent into deep networks directly. In
some simple application scenarios (such as image recognition), a network that has enough
neurons can achieve good results, even without an effective structural design. However,
compared with ordered and feature-rich datasets, such as image datasets, the raw data
from point clouds, which are unordered, lack features and are weakly connected with each
other, meaning they have higher requirements. Thus, a control experiment is designed here
for the validation of UnitNet and FeatureNet, whereby spin image and SHOT features are
combined and sent to a deep convolution network directly after the PCA for dimensionality
reduction, as shown in Figure 8. This control experiment used for comparison contains 11
convolutional layers, together with BN, ReLU and 2 pooling layers.

Buildings 2022, 12, x FOR PEER REVIEW  13  of  18 
 

 

Figure 8. Network structure of the control experiment. 

The  results  of  the  control  experiment  demonstrate  the  positive  effects  of  the 

application  of UnitNet  and  FeatureNet,  as  listed  in  Table  1.  The  train  loss  and  train 

accuracy of the control experiment are better than the proposed method but lead to an 

overfitting result, as reflected by the test accuracy comparison. 

   

Figure 8. Network structure of the control experiment.

The results of the control experiment demonstrate the positive effects of the application
of UnitNet and FeatureNet, as listed in Table 1. The train loss and train accuracy of the
control experiment are better than the proposed method but lead to an overfitting result, as
reflected by the test accuracy comparison.

Table 1. The results of the pipeline classification experiments.

Train Loss Train Accuracy Test Accuracy

Control Experiment 0.0036 99.87% 82.37%
Proposed method 0.0054 99.75% 94.62%

5.2. Results of the Dataset and Comparison

Due to the dataset used and the specificity in the engineering of the classification
object, there are few experimental comparison datasets available for other algorithms. The
experimental results are mainly presented via a large-scale scene and a comparison with
the control experiment. The results listed in Table 2 show that our method, which uses
UnitNet and FeatureNet for structural improvement, significantly outperforms the deep
network in the control experiment.
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Table 2. Classification results for a large-scale dataset.

Dataset Mean Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9

Points number 191,404 696,406 1,419,606 718,361 411,160 296,335 521,597 1,203,240 732,260
Control

Experiment 84.06% 80.29% 88.07% 91.55% 92.73% 82.98% 86.10% 92.78% 78.59% 63.45%

Proposed method 98.03% 97.24% 97.50% 94.93% 98.91% 97.80% 98.17% 99.59% 98.54% 99.63%

The qualitative visible results are shown in Figure 9. Here, a comparison of the
classification results of the two algorithms is shown for datasets 2 and 5. It can be seen
more intuitively that our method can effectively avoid misjudgments by strengthening the
connections between local features and global features to achieve better classification.
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According to Figure 9, the results show that the proposed method can significantly
focus more on the pipeline components. This could be the result of applying UnitNet and
FeatureNet to process features separately and the better combination of local features and
global features carried out in FinalNet. The mean accuracy of the proposed method is over
98% and the visible results also indicate the effectiveness of the pipeline extraction process.
All of these results of the experiments prove that the proposed method is workable and
could be further studied and applied for MEP systems.

6. Conclusions and Discussion

In this work, we proposed a deep neural network that is designed especially for com-
plex construction industry applications and demonstrated the effectiveness of our method.
Firstly, we built a dataset based on the engineering situation of the construction industry.
Then, we established a neural network structure in which local features and global features
are processed separately in UnitNet and FeatureNet. We made full use of traditional shape
features to enrich the features of simple point clouds and avoid excessive dependence on
them through the structural design of the neural networks. Further, a feature map was
proposed in FinalNet for feature fusion. Finally, by establishing a control experiment and
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comparing the results, the method proposed in this paper offers an effective and feasible
solution for deep learning applications for classification in the construction industry.

This study makes three main contributions to the knowledge and engineering infor-
matics. Firstly, we have optimized the combination of traditional shape features and deep
learning networks, which improves the accuracy of the engineering information collected
for 3D scenes and the feasibility of this method, as proven via experiments. Secondly,
we have established a targeted dataset for the actual situation in construction and engi-
neering, which provides a data basis for related research in the construction field in the
future and expands the breadth of engineering information in three-dimensional space.
Thirdly, we have provided efficient solutions to replace manual labor in the processes
of 3D reconstruction and as-built BIM in the construction industry, since they are vital
parts of the engineering information digitization process. Among these contributions, the
most important is that this study provides a feasible and effective method of MEP system
reconstruction and digitalization, and this method could be further studied for application
in other construction fields.

Last but not least, although the proposed method achieved good performance in
the experiment, there are still some problems to cover in future studies. Because the
extraction of local features is based on the description of the neighboring points, the
classification accuracy of the boundary part of the input data is relatively lower than other
parts. Additionally, although this paper has initially established a dataset for construction
engineering, there are comparatively few categories available. Regarding the experiments,
the design of this work could also be improved for the simplification of input data, and
the binary classification should be further extended to multiple classifications of other
MEP components.
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