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Abstract: Street view imagery (SVI) provides efficient access to data that can be used to research
spatial quality at the human scale. The previous reviews have mainly focused on specific health
findings and neighbourhood environments. There has not been a comprehensive review of this topic.
In this paper, we systematically review the literature on the application of SVI in the built environment,
following a formal innovation–decision framework. The main findings are as follows: (I) SVI remains
an effective tool for automated research assessments. This offers a new research avenue to expand
the built environment-measurement methods to include perceptions in addition to physical features.
(II) Currently, SVI is functional and valuable for quantifying the built environment, spatial sentiment
perception, and spatial semantic speculation. (III) The significant dilemmas concerning the adoption
of this technology are related to image acquisition, the image quality, spatial and temporal distribution,
and accuracy. (IV) This research provides a rapid assessment and provides researchers with guidance
for the adoption and implementation of SVI. Data integration and management, proper image service
provider selection, and spatial metrics measurements are the critical success factors. A notable trend
is the application of SVI towards a focus on the perceptions of the built environment, which provides
a more refined and effective way to depict urban forms in terms of physical and social spaces.

Keywords: adoption strengths; artificial intelligence; building environment; critical success factors;
computer vision; deep learning; street view image; visual analytics

1. Introduction

SVI is an innovative type of geographic data used for sensing the physical environment
of cities [1]. SVI enables users to remotely explore realistic streetscapes by providing
360◦ panoramic spatial information and real-time observations of the real world from the
perspective of pedestrians, encompassing natural settings and artificial landscapes [2].
Furthermore, the rapid development of deep learning and image analysis technologies has
facilitated the processing of fine-scale streetscape data. The emergence of such vast data
sources has provided an unprecedented opportunity for digitisation, enabling researchers
to conduct large-scale studies on the urban environment and human activities.

SVI provides an emerging source of data for the research on the urban built environ-
ment, allowing for a more accurate and comprehensive audit by sensing the elements and
scenes captured in SVI. The existing research in this area has primarily focused on the ar-
chitectural characteristics and health implications [3]. The evaluation of built-environment
exposures is a well-established field of health research that may be applied to mental and
physical health outcomes [3]. In addition, the domains defined by order, e.g., building tops
and façade elements [4,5], are well-established properties of the built environment. They
can be used to evaluate critical architectural attributes, including a building’s type, con-
dition, and function [6–9]. Conversely, disorderly neighbourhoods, e.g., broken windows
and graffiti, might imply poor socioeconomic conditions, such as high crime rates [10]. SVI
provides an opportunity to virtually audit the study area and evaluate the built environ-
ment in numerous locations with little effort or financial cost [11]. Meanwhile, since SVI
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systems are now available in most countries and regions around the world, including many
areas without existing footprints or 3D building data, AI-based algorithms can quickly and
cost-effectively be used to obtain the 3D urban morphology from SVI data, without any
existing building information [12]. In addition, SVI can be used to measure urban canyon
impact mechanisms such as the radiation temperature [13], buoyancy effects [14], and short-
wave irradiance [15] at large scales. Metric community characteristics such as safety [16],
housing prices [17], and demographic statistics [18] are derived from the mesoscale. At
the microscopic scale, the habitats, resident health [19,20], and greening ornamentation
in buildings have been researched [21]. The findings of these studies have suggested that
the use of SVI and artificial intelligence technology to investigate the quantification and
image expression of built environment factors can help to excavate additional geospatial
information from the city, as well as provide more complex or specific indicators and enable
large-scale and quantitative urban built environment evaluations. This approach positively
improves urban resilience towards low-carbon cities [22,23] and contributes to life cycle
assessments for buildings and building refurbishment [24].

Since the early days of services providing large-scale SVI, researchers have recog-
nised that this approach is highly suitable for evaluating the characteristics of the built
environment [25]. However, the few attempts to review the scope of this research area
have focused on GSV only and on narrowly defined specific public health areas and
micro-neighbourhood environmental aspects, or the studies have not been systematically
reviewed. The previous literature has suggested a strong link between the physical urban
environment and various health behaviours of citizens. Researchers in epidemiology, psy-
chology, and geography have increasingly examined the effects of the built environment on
various health outcomes. Still, few studies have examined the perceptions of the building
environment at the geographic scales required for population-based studies [26–29]. The
previous studies have examined the subjective perceptions of the urban environment and
the role of sensations in mental health. Some studies have examined the composition of
perception-related images in favour of safer, greener, or more beautiful environments [30],
and such studies, while contributing to the study of SVI in health, only focus on one of
the many applications in built environment research. Some rapidly emerging articles have
reviewed the use of SVI to quantify the features of building environments [31,32] and
to explore their feasibility of use [33]. Still, these approaches have focused on physical
features, such as trees and sidewalks [26], or specific environmental exposures, such as
air pollution [34]. Such research is primarily application-oriented and lacks a systematic
formal framework. Additionally, the research on SVI adoption in the built environment
is far behind its actual development status. A systematic review and assessment of the
existing building applications of SVI has not been conducted yet. This review will fill this
gap and indicate areas for future research to capitalise on this new and expanding big
data source.

Given the current pace of implementation, this paper systematically and comprehen-
sively reviews the application of SVI in the built environment. This research follows the
innovation–decision progress framework [35]. The following overall research question
guides this research: How should SVI be adopted and implemented in the built environ-
ment? To answer this question, this review aims to identify and summarise the relevant
image platforms, data extraction and analysis methods, research applications, advantages,
and limitations. The key findings are summarised, highlighting the potential value of SVI
for a wide range of urban built environment research applications. This review not only
supplements the deficiencies of the latest assessments of SVI in the built environment, but
also provides essential guidance for using SVI technology to improve the built environment.
This research is discussed as follows:

• Section 2 describes the main research methods. The adoption and implementation of
SVI in the built environment are explored using the systematic review method and the
innovation–decision progress mechanism.
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• Section 3 explores the general characteristics of SVI and the needs and main application
areas of SVI in the knowledge phase, based on the innovation–decision process.

• Section 4 analyses the potential benefits of SVI as a new data source and identifies the
dilemma of its adoption in the built environment during the persuasion phase. Critical
success factors (CSFs) are proposed for SVI implementation based on the reviewed
publications and guidance for building environment practitioners.

• Sections 5 and 6 summarise the current trends and discuss the focus of future research
on SVI-based urban environmental assessments.

2. Data Sources and Research Methods
2.1. Data Sources

In this study, the first step was to determine the selection of reference journal arti-
cles from the WoS and Scopus databases to create a unified analysis database. WoS and
Scopus are still the primary sources of citation data that have authority and representative-
ness [36]. In addition, Scopus has a broader range of journals and WoS can enable a more
comprehensive citation analysis [37], and they complement each other in this process to
obtain a comprehensive view of the current state of international research and the research
frontiers. The search was restricted by creating search strings to make this study more
scientific [38].

The second step was to retrieve articles from the databases. Relevant topic papers were
selected from journals using search terms in two academic databases (Figure 1). The first
screening phase was performed by searching for titles, abstracts, authors, and keywords.
Then, we excluded articles that were not available in full-text form as a second check.
Multiple keywords were used to conduct a third eligibility check to capture the different
trending items in building environment research, such as house prices, historical sites, and
neighbourhood activities. Finally, the acquired literature was analysed based on the content,
methodology, and year, among other factors (Figure 1). Since Google Maps first launched
SVI in 2007, this paper captured the academic literature on the use of panoramic street
images for urban built environment research published from 1 January 2007 to 7 April 2022,
a span of fifteen years. Figure 1 shows the whole process of review in detail, and 263 related
pieces of literature (n = 263) were ultimately obtained.

2.2. Research Methods

Firstly, a systematic review approach was identified as the primary evaluation frame-
work for the systematic review, which consists of three main phases: literature collection,
identification, and analysis. This method is flexible and accurate [39]. The data sources
section completes the literature collection phase of the systematic review method.

The articles’ contents are identified and categorised in the second stage. The Rogers
innovation–decision process [35] was used as the formal conceptual framework to cate-
gorise the articles (Figure 2), which helps to systematically grasp the application of SVI
in the built environment, including in relation to feasibility and research fields. The
innovation–decision process includes the time frame from the first awareness of the in-
novation to its adoption or rejection by the potential adopters. This model is based on
many empirical studies and contains a set of research methods, data collection approaches,
and analytical models; it can be applied to studies on the diffusion of innovation and it
is predictable [40]. The innovation–decision process facilitates a systematic grasp of the
application of SVI in the built environment, integrates the strengths and hindrances of re-
searchers in the specific use case, and evaluates the use of SVI in the built environment. The
knowledge stage includes streetscape technology sources, requirements, and applications.
At the persuasion stage, the benefits and dilemmas of panoramic images are analysed
to obtain a better understanding and perspective. The decision stage occurs mainly to
adopt or refuse the innovative actions caused by SVI. At the implementation stage, SVI is
deployed and used in the built environment.
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Figure 1. Literature collection process and analysis.

Figure 2. SVI adoption and implementation process in the built environment.

3. Application Status Analysis of SVI
3.1. Source of SVI

Currently, dozens of street view services serve as sources of SVI data, most of which are
regional, covering one or a few countries. Google Street View (GSV) is a street view service
provider from Google, an American company that services the entire world. However,
some countries have their own local SVI services. For instance, GSV is not available in
Morocco, but the local service Carte.ma Street View covers about ten major cities in Morocco.
Additionally, Google services have been banned in some countries, such as China. This
country has two local data sources: Baidu Street View (BSV) and Tencent Street View (TSV).
In recent years, Apple integrated the “Look Around” feature into the Apple Maps app on



Buildings 2022, 12, 1167 5 of 24

iOS-enabled devices. To some extent, the new feature is fairly similar to the long-standing
Street View feature in Google Maps: it enables users to zoom in on a particular area. Apple
Maps has enabled the new “Look Around” feature in a growing number of cities. Similar to
GSV, it offers a method for interacting with maps, enabling cities to be rendered in 3D [41].
Therefore, this section includes Apple Maps within the scope of the key service providers
(Table 1).

Table 1. Overview of the major service providers of SVI.

Service Provider Territory Covered Acquisition Method Maximum Resolution
(Width × Height)

GSV

1. Covers more than 90 countries
and extends to indoor spaces (2017);
2. Not available in some countries,

such as China.

1. APIs can be accessed through the
web interface integrated within

Google Maps, smartphone
applications, and other APIs;

2. Historical images are not allowed.

2048 × 2048

BSV 296 cities in China. The same as GSV (cancelled service
in 2011) 1024 × 512

TSV

1. 652 city streets in China, covering
2,295,000 km;

2. The internal panoramic data for
buildings and scenic spots are

collected but only cover the
categories of scenic spots, hotels,

shopping malls, food, etc.

The same as GSV 960 × 960

Apple map Covers 13 countries and
47 regions (2022) API -

Mapillary Has over 1.5 billion images and
over 10 million kilometres. API It depends on the uploader

KartaView
Over 7.6 million kilometres have
been recorded by contributors all

around the world.
API It depends on the uploader

All three types of SVI data are saved as panoramas, preserving the 360◦ panoramic
visual information of the shooting location. In practical acquisitions and applications, the
visual environment of each location can be described via multiple SVIs facing distinct
natural view angles. Compared with BSV and TSV, GSV is superior in its coverage and
resolution. Secondly, CS can provide images from sidewalks, bike lanes, and walkways
at the micro-scale compared to GSV. At large scales, CS possesses a broader coverage and
temporal resolution at locations not accessible by GSV [42]. The temporal resolution of
CS images will be finer in some locations than those of GSV, for which the images are
typically acquired every few years and there is limited access to older images. However,
CS image resources come from user uploads; thus, the image quality and field of view are
often limiting factors, and the positioning accuracy of the CS images is also a cause for
concern when compared to GSV. As a new supplier of street view data, Apple Maps’ “Look
Around” feature is more vibrant and fluid, and the photographs are of high quality. The
data acquired by Apple and their high-resolution 3D photos have enabled users to obtain
more accurate overall information and expansive views of highways, buildings, parks,
airports, shopping malls, and other public locations [41]. In terms of privacy protection,
Apple Maps has an edge over Google Maps. However, as a new supplier of street view
imagery, whether Apple’s new “Look Around” program is as precise and accurate as GSV
is yet to be proven; therefore, more testing is required. It is also noteworthy that Google
Maps can be accessed on almost any device or computer, while Apple Maps is limited to
just Apple’s own devices. Compared to Apple Maps, GSV is more stable, more dependable,
and has greater coverage.
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Overall, the spatial coverage rates of these current user-contributed services are far
less comprehensive than those of GSV, which tends to have complete coverage of cities and
relatively uniform sampling [43]. GSV is the most famous and extensive service to provide
SVI worldwide. Table 2 compares the three types of services.

Table 2. The main comparison of the three types of services.

Similarities Differences

1. Stored in the form of a panorama.
2. Contains 360◦ panoramic visual

information of the shooting location.
3. Location information collected.

4. The parameters can be adjusted, such as
the position, panorama, size, features,

heading, spacing, radius, and light source.

Comparing GSV with BSV and TSV.
Coverage: GSV > BSV and TSV; Resolution: GSV > BSV and TSV

Comparing GSV with Apple Maps:
Coverage: GSV > Apple Maps; Resolution: uncertain

Comparing GSV with CS.
(1) At the micro-scale, CS can include images from sidewalks, bike lanes, and

walkways, while at large scales, CS has a broader coverage and temporal
resolution at locations that are not reachable by GSV;

(2) At some locations, the temporal resolution of the images will be finer than with
GSV, for which images are typically acquired every few years and there is limited

access to older images;
(3) CS usually provides a narrower field of view than GSV images, and the

extracted elements are limited;
(4) There are biases in the locational accuracy of CS, which may lead to problems

in map applications;
(5) The spatial coverage rates of these user-contributed services are much less

comprehensive than for GSV.

In addition, social media photos are crowdsourced photos shared by users on social
media platforms that capture urban indoor and outdoor landscapes. Unlike SVI, streetscape
photos are disseminated precisely according to the road network, while social media photos
are dispersed in the city’s primary locations for employment, recreation, and tourism. The
former reflects the objective urban street landscape, while the latter, to some extent, express
the specific groups’ subjective experiences of the city. As a complement to the collection
of streetscape photographs, social media photos may be used as a source. Due to the
particularity of the images, social media photos have certain advantages in urban image
perception [44,45].

3.2. SVI Analysis Methods
3.2.1. Computer Vision

Computer vision aims to replace human eyes with imaging equipment, to recognise and
measure objects, and to extract information from pictures or high-dimensional data [46,47].
Traditional computer vision methods mostly use shallow, medium-level, and manually
designed features to express images, such as colour spectrum, texture, shape, scale-invariant
feature transform (SIFT) [48], the histogram of oriented gradient (HOG) [49], and generalized
search trees (GIST) [50] data. These features require a substantial amount of specialist
knowledge for feature engineering, have limited picture representation efficiency, and do
not apply to various tasks. The introduction of AlexNet in 2012 addressed the difficulty of
using feature representation in deep learning when processing high-dimensional data such
as images, enabling the application of deep learning methods to image interpretation tasks,
through which AlexNet can learn task-related visual characteristics autonomously.

3.2.2. Deep Learning

According to the different task types and model principles, deep learning can be
divided into automatic encoder (auto-encoder), generative adversarial neural network
(GAN), recursive neural network (RNN), and deep convolution neural network (DCNN)
approaches. Among them, deep convolution neural networks are mainly used for image
data analysis, and the landmark model AlexNet is the most extensively used classic DCNN.
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For the deep learning model of computer vision tasks, the representative structures
used for image object classification are AlexNet, VGG, GoogLeNet, ResNet, DenseNet, and
others. Before the practical tasks are performed, this structure is often utilised to extract
picture features, and then the particular network structure related to the tasks is used for
the analysis. On the other hand, the training set heavily influences the model’s capacity
to generalise and the number of categories detected. The present deep learning model
can be trained end-to-end with a high accuracy using open-source datasets (Table 3). The
trained model can be directly applied to various street scenes, social media photos, and
other data, providing a research basis for the image-based quantitative analysis of the
urban built environment.

Table 3. Major open-source training sets.

Type Dataset Number of Labels

Object-oriented detection
and recognition [51,52]

VOC 2012 Objects: 27,000 objects; Categories: 20.

Microsoft COCO Objects: 200,000 images; Categories: 80 types of objects

Object-oriented
Semantic segmentation [53,54]

ADE20K Objects: Pixel-level annotation of 435,000 objects;
Categories: 150.

Cityscapes Objects: Pixel-level annotation of 65,000 objects; Categories: 30.

Scene-oriented type and
Attribute classification [55–58]

SUN Objects: 14,000 scene images; Categories: 102 scene attributes;
Measure: closed/open, indoor/outdoor, natural/man-made, etc.

ImageNet Objects: Over 14 million images; Categories: 1000 categories.

Places Objects: 10 million nature images;
Categories: Hundreds of categories of scenes.

To date, deep learning has been the primary method for analysing streetscapes. The
artificial-intelligence-based SVI analysis methods apply deep learning, computer vision,
and other cutting-edge artificial intelligence fields to the processing and analysis of SVI
and to city-focused application practices. Compared with traditional methods, most of the
methods based on digital image processing and traditional computer vision use shallow-
and medium-level visual features and manually defined features, with which it is difficult
to express deep semantic information in picture scenes completely and efficiently, limiting
the large-scale use of SVI in urban research fields. The current computer vision technology
supported by deep learning can identify semantic objects and scene contents in pictures
more efficiently, providing powerful tools for extracting semantic information from street
scenes alongside tools for understanding and quantitatively expressing the contents of the
built environment.

3.3. Needs of SVI

The examination of building environments is not an emerging or unfamiliar field, as
there are many previous studies documenting the characteristics of building environments,
such as accessibility, physical barriers, accessibility to public transportation and recreational
spaces, and greenery [59,60]. By detecting and understanding the elements and scenarios
of the built environment, researchers can quantitatively study the urban built environment.
However, in this field, most studies rely on in-person assessments and field surveys to col-
lect data on the relevant characteristics of building environments [27,61]. Traditional urban
spatial studies usually utilise self-reports, questionnaires, and field surveys. Questionnaires
and self-reports are the most prevalent data sources for evaluating various neighbourhood
characteristics [53]. Previous data collection methods have faced deficiencies in terms
of their high labour intensity, lengthy update cycles, and geographic restrictions. With
the acceleration of urbanisation, it is difficult for traditional theoretical methods to cope
with rapid urban development and to describe the dynamic evolution of the urban built
environment as a complex system with accurate quantitative data.
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Currently, most data used for field observations are collected by walking or driving
about the study region using predetermined questionnaires to record and characterise the
surroundings [27], which is time-consuming and impractical for large-scale applications.
The traditional approach uses a field research-based methodology, which makes it difficult
to evaluate on a large, fine-grained scale [62]. Although remotely sensed images can
provide a bird’s eye view of cities from macro- and high altitudes, they are expensive, and
their high resolution is susceptible to atmospheric influence, environmental interference,
sensor jitter and other factors, making the acquired data uncertain. The secondary sources
include those based on the spatial analysis and modelling of predefined environmental
measures, such as spatial accessibility measures [63,64]. However, this approach fails to
characterise the built environment in detail and may be limited to particular environmental
factors [64].

Without adequate support from appropriate technologies, these challenges are gener-
ally inevitable. SVI data provide a visual record of a building’s environmental features and
can support more effective and scalable alternatives to site-based approaches. SVI systems
can collect images in multiple directions to create panoramic views, and image users can
observe the features contained in the built environment using audit instruments through
a virtual “driving” community. With the use of SVI systems to provide object visibility
and broad access to data, researchers can improve their workflow efficiency, review mul-
tiple cities simultaneously, and obtain micro-scale streetscape elements more effectively.
Accuracy and coherence have been shown between observational field audits using SVI
and image-based interpretations [11]. Therefore, this new paradigm should be proposed to
solve these problems and guide studies on sensing the urban built environment.

3.4. Main Application Areas

SVI has been extensively used in various environmental perception practices to allow
for the quantitative representation and analysis of physical spaces and to extrapolate the
semantic information related to socioeconomic and human activities embedded beyond
the physical space. SVI is widely adopted in building environment quantification, spatial
emotion perception, and spatial semantic speculation.

3.4.1. Quantification of the Built Environment

• Element identification

Visual object recognition, scene type, and attribute classification applications are the
most prevalent applications when measuring a building environment. In terms of visual
object recognition, vegetation is the most sophisticated area type. SVI can capture the vege-
tation in the street at different height levels with an extremely high resolution. Furthermore,
SVI also provides high-resolution and multi-layered information about trees, shrubs, lawns,
and other forms of vegetation in the street and allows for vegetation assessments [65]. The
green view index (GVI), the sky view factor (SVF), the tree view factor (TVF), and street-tree
visual audit methods are often used to quantify urban greening and analyse the visibility of
urban forests. In addition to cross-sectional comparative analyses, SVI offers the possibility
of longitudinal studies, facilitating the analysis of the temporal changes in GVI in cities [66].

On the other hand, SVI provides multidimensional information about the form, colour,
material, and other aspects of a building, which can be extracted to present the building
type [67], the building’s condition [68], and the building’s age [69], as well as the height and
number of floors of the building [70]. Other studies focused on extracting building features
have involved detecting building façade features (including the building façade’s colour
and other features), graffiti artwork [56], and window-to-wall ratios [71]. This research
field also seems to be currently focused to a large extent on more minor urban features and
street facilities, or those that are often overlooked in spatial datasets, such as traffic signs
and traffic signals [72,73], utility poles [74], and access holes [75].

• Physical environment assessment
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SVI is applied for thermal environment simulations, the detection of sound and light
environment, and air quality evaluations.

Firstly, SVI is mainly utilised for radiation and temperature simulations by combining
meteorological data computations and numerical modelling calculations with information
about the SVI system’s shooting position and geometric characteristics [15]. With deep
learning techniques, the SVI system can extrapolate the SVF in the environment to evaluate
the urban heat island effect and thermal comfort [76]. In addition, the influence of vegeta-
tion on the thermal environment has become a research hotspot, and the utilisation of SVI to
extract different types of vegetation on the roadside can help to analyse the spatial relation-
ship between the layout and thermal environment. Regarding the radiance, by projecting
the solar trajectory onto a fisheye image of the streetscape, SVI can be used to calculate
the solar duration [77] and to quantify the total street-level shortwave irradiance [15]. In
contrast to the expensive and limited use of 3D building models to calculate solar radiation,
SVI fisheye images are a highly desired supplemental data source for simulating solar
radiation within street canyons. However, the existing SVI-based radiation estimation
models require a combination of dynamic weather conditions in practical cases and in the
analysis of separated radiation direction maps.

Secondly, SVI systems are equipped with ground-based photographic equipment to
capture the physical urban environment in a three-dimensional profile view, conveying
more detailed visual content and calculating the various effects of elemental indicators on
people’s behaviour and perceptions. Therefore, SVI systems can further estimate the PV
potential in densely populated metropolitan regions, areas where vehicle traffic may cause
solar glare, and for human perceptions of noise. For instance, SVI systems can quantify the
impacts of building façades, courtyards, and streetscapes on noise annoyance and stress
levels [78], and SVI can also be used to detect traffic noise in urban environments.

Finally, deep learning methods can be used to analyse the features extracted from SVI
data, and SVI can be applied to assess air quality. Mobile monitoring (either bicycle-based
or GSV-based) has been frequently used to gather real-time air quality measurements to
evaluate local air quality and air pollutant exposures [79–81], including black carbon [82]
and particle count concentrations [83]. Meanwhile, architectural elements such as greenery
and buildings in the built environment are gradually becoming crucial points in air quality
research [84].

3.4.2. Emotional Perception

Individuals develop unique sensations of place based on their unique visual surround-
ings, experiences, and resident activities in the environment. Deep learning models trained
with datasets can simulate individuals’ emotions about scenes in the built environment to
further evaluate the built environment with respect to three main areas: a sense of security,
health, and the quality of life.

• Community safety

A sense of security is a high-level attribute of people’s perceptions of urban scenes.
By revealing the environmental factors associated with crash data, including road con-
ditions [85] and road characteristics [86], the analysis of the SVI can provide valuable
information for pedestrian and driver safety. In addition, the neighbourhood environmen-
tal disorder level has been considered a strong predictor of neighbourhood crime rates
and residents’ fear of crime. This involves physical features related to the spatial layout of
buildings, street design, and the diversity of land use. Therefore, the use of SVI enables
research into the relationship between crime and the physical characteristics of the built
environment [87].

• Public health

SVI data represent a significant, publicly available data source that can be utilised
to create metrics for the characterisation of the physical environment through machine
learning techniques [88]. The current research has suggested that built environments’
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characteristics are correlated with mental health and chronic disease. Further research
includes concerns regarding well-being [89] and obesity [90]. In addition, the architectural
characteristics may have an indirect impact on the psychological health of the occupants
through factors such as the walkability [91], greenery [92], and public open spaces [93].
Stress and mental health are the primary research focal points. Infectious illness research is
also vital to health and well-being since disease transmission is directly connected to envi-
ronmental variables. SVI provides an excellent opportunity to examine the environments
in which infectious agents breed, with current studies covering potential dengue breeding
environments [94], areas of high risk for COVID-19 [95], and pathogenic environmental
factors and their transmission pathways [19].

• Environmental behaviour

The building form and function and human-scale features in the built environment are
the main factors influencing the vitality of a street. SVI is similar to the human perspective.
Hence, it has been utilised in a wide range of urban perception studies, with the main
extracted features including sidewalk quality [96], recreational facilities [97], and street in-
terface fencing [98] features. Using SVI to analyse the quality of life in the built environment
also includes identifying potential urban congestion points [99], understanding measures
to mitigate near-road pollution [100], predicting the difficulty of driving a car [101], and
identifying garbage dumps [102]. Moreover, the built environment can affect the behaviour
of people who engage in physical activity [103]. Utilising SVI enables the measurement of
residential environments related to walking infrastructure and traffic safety, such as the
effect of greenery on walking behaviour [104] and walking infrastructure [105]. Cycling
is another type of physical activity that has health and environmental benefits [106]. The
images captured via SVI can be used to evaluate the environmental factors influencing
cycling behaviour and to determine road recyclability.

3.4.3. Spatial Semantic Speculation

The urban scenes depicted in the streetscape not only convey the visual information in
the scene but also implicitly express the information about the city’s function, history, cul-
ture, and the socioeconomic and human activities behind the visual scenes. SVI records the
city’s physical environment, and the characteristics of the physical environment can predict
the non-visual aspects of the city. This information can be combined with spatial material
attribute data, such as household income and house price data, to check the prediction
and evaluate the economic environment. The income level, education level, and even the
political orientation of a neighbourhood can be inferred by identifying parked cars [107],
neighbourhood store signs [108], and even vegetation [109]. The relationship between
changes in urban physical space and socioeconomic levels can be studied by quantifying
how places in neighbourhoods change [110]. Based on the broken window theory of the
built environment, house photos, and the condition of a house’s surroundings, streetscape
pictures can predict crime in the neighbourhood to some extent [111]. Streetscape pic-
tures can be used to predict house price information and perform electricity consumption
assessments [112].

4. Development Outlook of SVI
4.1. Perceived Benefits

As the element that links the street to the city as a whole, the quality of the built
environment is essential to the urban environment. SVI is an excellent way to observe the
built environment and to examine the relationships between the built environment and its
parts. SVI has numerous perceived benefits in the built environment (Table 4).
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Table 4. Summary of the perceived benefits of SVI in the built environment.

Benefits Findings (Empirical Research, Opinion-Based)

Wide coverage 360◦ panoramic views [113]; Views of the entire city at street level [11].

High coverage density
SVI was sampled for the road network [114];

The images of the sampling points contain street scenes of buildings, people, vehicles, trees, roads,
billboards, telegraph poles, etc. [115].

Detailed content
Parameters can be adjusted [116];

Measuring multiple variables in the micro-build environment [10].

Highly efficient acquisition Only 7.3 s to rate each item with 360◦ GSV scenes [117];
Automatically extracts information for a more consistent, objective, and large-scale collection [118].

Anthropomorphic
perspective

Images are captured by a camera mounted on a car, bike, or backpack [118];
A rich sense of reality and strong messages [119].

Others

Remote access to location capability at a low cost [11];
NZ $0.70 per km for a field researcher and NZ $0.02 per MB for a virtual audit [11];

Comparative data at the international level [11]; Security considerations [10];
Virtual surveys can be conducted year-round, regardless of the season or weather conditions [120].

The significant benefits of SVI include its comprehensive coverage, high coverage
density, complex expression level, acquisition efficiency, and anthropomorphic perspective.

Firstly, SVI systems already cover most cities within the coverage area and can be
viewed in 360◦ [121], allowing researchers to analyse the data from a worldwide perspective.

Secondly, in terms of the coverage density, SVI provides high-density coverage of all
levels of the road network in the built environment. The visual images between sampling
points can be seamlessly combined, giving a complete picture of the physical spaces of
urban streets.

Thirdly, regarding the expression content, the SVI provides an exhaustive and detailed
representation of the actual state of the urban built environment from a human perspective.
The continuous availability of high-definition images ensures the fineness of the SVI
representations of the physical space in the urban built environment. With the further
support of relevant artificial intelligence technologies, the precise extraction of semantic
targets and the efficient understanding of a scene’s content can be achieved.

Fourthly, regarding the data acquisition efficiency, Google, Baidu, and other map
service providers provide commercial and free street view data under certain conditions,
which can be accessed and downloaded through applicable APIs, thereby simplifying
the procedure and encouraging the use of automated techniques. In addition, the use
of artificial intelligence technology dramatically increases the overall audit speed [117],
enabling quick and efficient evaluations of large amounts of image data, and allowing
researchers to audit more streets in almost half the number of days using SVI [66].

Fifthly, SVI can capture objective cityscapes from a human perspective. The informa-
tion contained in SVI data can be used to explore the intangible aspects of urban life and
people’s perceptions of the environment [122]. SVI captures a three-dimensional profile
view of the urban streetscape and can record the views or perceived scenes from the ground.

Lastly, this review revealed that SVI is consistently secure, protecting researchers [10]
and enabling them to conduct research at a low cost [120], in addition to enabling worldwide
data comparisons [11].

4.2. Dilemmas of SVI Adoption

The adoption and application of SVI in the built environment presents several chal-
lenges related to image acquisition, image quality, data spatial distribution, data timing,
and analysis methods (Table 5).
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Table 5. Summary of dilemmas when using SVI in the built environment.

Dilemmas Findings (Empirical Research; Opinion-Based)

Image acquisition
The images of adjacent acquisition points have similarities [118];

User-uploaded images are not available in GSV [123];
User permission restrictions [117].

Image quality
Blurred and inadequate 2D pixels result in low reliability and detection rates [113];

Instability and potential bias in extracting relevant streetscape variables [10];
The vector data registration process is complex [118].

Spatial distribution of data
Uneven distribution of countries and urban areas [124];

Open spaces and backyards are not covered [97];
Vehicles collecting GSV data may not reach every location [114].

Data time
Uncertain image update time: 2–4 years [125];

The information extracted from the images is difficult to match with weather or time data [118].

Analysis method The depth of the neighbourhood features extracted by the computer vision model may be limited [95];
Small containers are difficult to identify, such as jars and bottles [95,97].

Cost Limitations

It takes time and is unsuitable as an online method [126];

Computational cost and processing speed become issues [115].

GSV images cost a maximum of USD 7 per 1000 panoramic images [97]

Others
Privacy concerns [62,97].

Technical restrictions [31].

4.2.1. Image Acquisition Challenges

The obstacles to the acquisition of SVI sources can hinder the method’s application.
First, regarding the restricted access, most SVIs currently originate from map service

providers such as Google and Baidu. The accessibility of street view data relies heavily
on such companies’ business development directions and data provision policies. Still,
some service providers require that users pay to use their service, thereby increasing the
acquisition cost [10]. In addition, the Google website only contains information about the
devices used to capture images, the areas currently covered, and the areas they are currently
imaging. Although the recent inclusion of user-uploaded data (including images) in Google
Maps may increase the variability in the image quality and authenticity, user-uploaded
data are included in a separate unlinked “photo sphere” that is subject to acceptance
criteria [123].

Second, user permission restrictions require that users obtain prior written authorisa-
tion to publish any content provided on the map and that they do not advertise or provide
instructional information about illegal activities. These regulations may severely limit the
opportunities to implement SVI, such as in the field of criminology or for historical update
studies of the built environment.

Third, the availability of GSV images varies worldwide because of different political,
economic, legal, and technical factors. For instance, no GSV service is available in most
parts of Africa, South America, the Middle East, India, China, Southeast Asia, and Russia.
GSV mostly comprises sporadic, unofficial coverage in several nations. This is noteworthy,
since it resembles certain other crowdsourced datasets (e.g., Mapillary).

Finally, more minor characteristics, such as door numbers, are occasionally lost or erro-
neous owing to the “noise” in the acquired images, rendering certain elements unsuitable
for recognition using GSV images.

4.2.2. Image Quality Issues

Mapping services have established assumed quality assurance mechanisms. There
will be inevitable deficiencies in the quality of images caused by factors such as lighting
issues and weather, given the number of images, environmental conditions, and geographic
coverage [127,128]. In addition, objects in the user’s focus are often obstructed in the
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images, such as passing cars and people [129]. Vegetation seems to be the main obstacle,
often obscuring buildings and other objects. While this, on the one hand, facilitates the
research of greenery in the built environment, it hinders the range of the images. For
example, large objects such as buildings tend to be completely obscured.

4.2.3. Uneven Spatial Distribution

SVI services tend to have geographically dense coverage, but the coverage is unevenly
distributed. The spatial distribution of SVI is hotspot-shaped, occurring heavily and
frequently in some localised areas or cities, and remaining unavailable in about half of
the countries worldwide. In contrast, smaller towns and rural areas may not always be
included in areas where such features are available. This means that the research is tailored
to the urban built environment [130]. In addition, the image availability and capture
frequency rates vary across cities, with more affluent communities having higher image
availability rates and better capture times.

4.2.4. Temporal Instability of Data

In addition to limitations in geographic coverage, the temporal instability of SVI has
been criticised as a weakness in its systematic use for observing the built environment.
First, the frequency of updates, which seems to be a common problem [125], may be
higher because some elemental situations and features of the streetscape environment
may change over time, while exhibiting random variations and regular day-, season-, or
weather-related fluctuations in measurement errors. These can include the number, features,
and activities of pedestrians; parked or moving vehicles; and many physically disordered
markers such as litter. Thus, in some areas, images are collected infrequently (often out of
date) and insufficiently to research the current conditions and perform an updated analysis
or longitudinal temporal analysis (e.g., change detection). Second, the image acquisition
time is frequently highlighted as a concern. The image capture rate may not match the
desired research period, and inconsistencies in the time of day, season, and weather are
present in field observations. SVI may also lead to bias or may not match the periods of
other datasets used in the research [116]. For example, collecting streetscape videos early
in the morning may result in lower levels of observed social and pedestrian activity, which
may (depending on the timing of trash removal) affect the degree of physical disorder in
the measured streetscape. In addition, it is noteworthy that different city sections can be
captured over different periods. Finally, there is often a dispersion in the timing of the
image collection, where some images are taken in winter and others are taken in summer,
spring, or fall. Differences in the temporal distribution can easily lead to bias [131]. For
example, in studies evaluating green spaces in the built environment, which require images
taken during the same period, it is necessary to examine images and exclude data that are
not from the same period to maintain the temporal consistency.

4.2.5. Analysis Method Deficiencies

There are two significant trends in the current use of street view images.
The first trend is to directly use pre-trained models based on deep learning to classify

or regress street scenes. Such methods can predict explicit semantic information in street
scenes, such as identifying objects and scene types. However, the pre-trained model’s
training set is not similar to the application set’s distribution, and the “domain adaptation”
diminishes the model’s accuracy and affects the statistical analysis. Most research ignores
rigorous statistical analyses and causal inferences, such as correlations between SVI visual
items, spatial dependencies, and SVI visual objects.

The second trend is to employ deep learning models to extract generic scene features,
such as the 512 features retrieved by the ResNet model based on the Places dataset [58],
to represent the scene’s visual similarity and specificity to other scenes in different places
and regions. Since the high-dimensional features used in such methods are extracted
using deep learning “black box” models, it is still difficult to interpret the semantic content
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expressed by the features, which can lead to a lack of interpretability of the conclusions
during research.

4.2.6. Cost Limitations

Currently, some service providers require that users pay to use their services, making
the acquisition cost higher [10]. As for GSV, the Mapbox API is free of charge if the
number of dynamic maps the JavaScript API calls is less than 50,000 per month [132]. To
date, the cost of GSV starts at USD 0.007 each (USD 7.00 per 1000), with a usage limit
of 30,000 maximum queries per minute [133]. The BSV system based on SDK (including
Location SDK, Map SDK, Navigation SDK, Eagle Eye SDK, etc.) and the JavaScript API are
free. The WebAPI services exceed the free quota and need to be purchased for an additional
fee. Although BSV offers a variety of service purchase options, 60,000 RMB per month for
multiple service options is not cheap [134].

In addition, computer vision models using supervised learning methods typically
require large training datasets consisting of tens of thousands of manually labelled images
to train the models adequately. Thus, the research teams must have enough time and
resources to create these large training datasets. For example, the architecture for Faster
R-CNN and ResNet-101, which has a near-maximum accuracy on the Microsoft COCO
object detection dataset, still requires excellent runtime performance [52]. On a PC with
a 3.6 GHz i7-7700 processor, 32 GB RAM, and 1080 Ti graphics, it took 95 h of processing
time to perform object detection on 1 million images [97]. Therefore, the dataset processing
time and cost are affected by various aspects, including not only the number of datasets but
also the technical facilities required for researchers, and there is a lack of research on the
comparative cost of each dataset. Although the related literature explores the differences
in categories between different datasets [52], it mainly focuses on the characterisation
of datasets and concentrates on the computer domain. It is noteworthy that some work
has been carried out to predict the required execution times for a wide range of the most
frequently used components of neural networks [135,136]. Although these approaches
cannot be used to compare diverse data sets, they can be used not only to infer the execution
time for a batch or entire epoch, but they can also support making a well-informed choice
for the appropriate hardware and model [137]. This will contribute to future AI-based
SVI research.

4.2.7. Other Dilemmas

Various other dilemmas are associated with the current use of SVI to analyse the
built environment, such as privacy issues and technical costs [115,126]. Images featuring
human features must be erased or hidden to protect people’s privacy. This may lead
to underestimating the neighbourhood environment and issues in urban safety research,
which may bias study conclusions. In addition, upon review, it was found that there
is a partial lack of data sharing (e.g., code and trained models), which can also lead to
unavailability in some of the corresponding studies (e.g., replication or duplication).

4.3. Critical Success Factors

Even though this review shows that SVI can be used in a wide range of ways to
evaluate the built environment and provide useful urban information that was unknown
beforehand, there are still some challenges to be addressed in the current application of
SVI. To weaken the barriers to the implementation of SVI, the CSFs developed based on
a literature review of case studies deserve attention.

• Selecting an accurate image service provider

Currently, the use of SVI is in the early adoption stage. Although there are several
picture resource providers (as mentioned in Section 3.1), their correctness in practical
applications must be considered. OpenStreetMap (OSM) can have open data problems
such as an insufficient coverage or irregular alignments, which must be handled via
validation masks. These masks filter the samples used to train the model in a proper



Buildings 2022, 12, 1167 15 of 24

way [18]. Therefore, selecting a reliable and image-rich provider of SVI resources is crucial
for the research on the whole urban built environment.

• Appropriate spatial metrics

The quantitative measures of the built environment are mainly used for the compo-
nents of the street space, including the street pavement, interfaces, and the enclosed sky
view and streetscape [138], although SVI provides a vast array of features and scenar-
ios from which to pick, which implies that unless the urban building space is evaluated
quantitatively using a specified measure, the image recognition will result in a mismatch
of the feature points falling on these elements. The use of appropriate geographic areas
for estimating environmental exposures is essential to studying the determinants of the
built environment; an uncertain geography will highlight the spatial extent to which indi-
viduals experience their environment, as well as the temporal uncertainty in the timing
and duration of these experiences [139]. Consequently, it is difficult to assess whether the
elements identified through SVI as spatial metrics are a true reflection of the environments
exposed in everyday life. Furthermore, it is equally vital to identify appropriate metrics for
activity spaces. Using various methods to define neighbourhoods and activity spaces can
cause different results, such as measuring the GVI of an area through vegetation and street
characteristics, which can ultimately affect the quality of the spatial perceptions within
the area.

• Data integration and management

The SVI data are large in volume and dynamic, and the identification of SVI elements
often requires the evaluation of a massive number of street images. Even though deep
learning improves the detection efficiency compared to machine learning, it still requires the
use of the researcher’s equipment. Additionally, the investigation team must have sufficient
time and resources to process the dataset. Therefore, the researchers need to identify targets
based on the data they expect to generate. Meanwhile, there is a need to provide an effective
mechanism to convert the segmented semantic SVI data into accurate and meaningful
information, and more importantly to apply the acquired dataset in quantitative evaluation
studies of the urban built environment. The statistical analysis mechanisms based on data
and space fulfil this need. The statistical analysis techniques can be used to examine causal
linkages between evaluation themes and SVI components; the spatial analysis methods
can be used to visualise the spatial distribution patterns of the urban built environment’s
elements and to display the relationships between the urban built environment and these
elements (Table 6).

Table 6. Major elemental data analysis methods.

Type Methods Sub-Methods

Statistical analysis

Correlation analysis method [33,140]
Spearman’s coefficient; Analysis of Variance; Intraclass

correlation coefficient (ICC); Pearson correlation coefficient;
Kendall correlation coefficient.

Analytic hierarchy process [141] None

Regression analysis [104,142] Stepwise regression; Ridge regression; Lasso regression;
Confusion Matrix.

Spatial analysis
Graph-based spatial analysis [62] Overlay analysis; Buffer analysis; Network analysis.

Data-based spatial analysis [143,144] Getis’G; Moran’s I; Poisson regression.

5. Discussion

In this research, we analysed the present applications of SVI in several respects. Firstly,
the systematic description of the numerous applications highlights the adaptability and
variety of SVI systems. Secondly, the innovative decision process framework can help in
systematically reviewing the research challenges in the built environment, which is why
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SVI is required as a novel method to acquire data, offering a comprehensive clarification of
how SVI is adopted and implemented. This provides valuable guidance for understanding
the adoption of and the decision-making process for SVI in the built environment, which
is relatively uncommon in other studies, as most are application oriented. Thirdly, this
paper summarises the present benefits and challenges of SVI, allowing researchers to make
quick judgments. These advantages and limitations are equally instructive in studies of
SVI promoting healthy cities, walkability, urban planning, and other related issues.

In this review, we found that experiments and simulations are the primary tools
for evaluating the urban built environment. Deep learning is the standard and most
sophisticated approach to image processing. Deep learning is commonly utilised in research,
and it accelerates the extraction of features and the segmentation of pictures, which is crucial
for much of the research discussed in Section 3. In addition, due to the advantageous nature
of deep learning in terms of semantic speculation, the research on urban environment
perception has received increasing attention. The application of SVI analysis methods in
urban research has advanced beyond scene categorisation, object backdrop distinction, and
position detection to the physical environments of streets and to spatial perception.

One of the most prevalent current uses of SVI involves plants and greenery. The
following factors were considered herein: (1) Street trees, shrubs, lawns, and other forms
of greenery have long been known to be essential elements of urban landscape design.
SVI provides multiple benefits in urban environments, meeting diverse and overlapping
goals. (2) Street greenery significantly contributes to the beauty and walkability of resi-
dential streets. The presence of plants often enhances the aesthetic assessment of urban
settings. (3) Remote sensing imagery has been used to calculate green space percentages,
green space/building area ratios, green space densities, and other factors so as to analyse,
evaluate, and visualise urban greenery [145]. At the same time, SVI provides an entirely
new perspective when assessing the profile view of street greenery. The integration of
both data types bridges the gap between the previous studies and provides new research
perspectives, with additional research opportunities for urban greenery studies.

In addition, the detection of temporal variation in SVI is becoming increasingly attrac-
tive [146], and temporal variation has been intensely discussed in relation to the recent data
infrastructure for urban architecture. However, most street view services (including GSV
as the most popular service) do not allow the retrieval of historical images through APIs.
The only time-series studies have also collected data from GSV’s web interface (including
historical images) or other means, rather than through APIs [147,148]. The current SVI
providers gradually continue to restrict access, which may favour the development of
crowdsourcing services. This may alleviate these problems but could substantially limit
the current research in the field.

Lastly, the real value of SVI can only be seen when combined with existing semantic
segmentation techniques. It is difficult to segregate SVI applications and papers into
meaningful groups, since some cover more than one domain, but this shows that the
research topic is multidisciplinary.

5.1. Future Studies

The future studies on the evaluation of the built environment based on SVI should
also focus on the following areas:

• The integration of various data sources, such as remote sensing images, geotagged
social media data, cell phone signalling, and bus cards. Attention should also be
paid to the use of new methods, including deep learning and big data analysis, to
conduct multiangle and multilevel research within a fine-scale perspective on the
urban environment and to improve the reliability and accuracy of the evaluation based
on SVI in the built environment.

• With the advent of the 5G era, the real-time uploading of SVI data recorded via we-
bcasts, geotagged social media, and traffic loggers will be faster and easier. Street
view data stored in the cloud will be more diverse and available in real-time. Com-
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puter vision technologies and web-based developments also offer the possibility for
interactive platforms that enable street-view uploading and analysis. The growing
CS platforms, developments in autonomous driving, and urban infrastructure are
expected to address the current spatial coverage and temporal sampling frequency
issues of street view data with crowdsourced street view sharing platforms such as
OpenStreetCam and Mappilary.

• With the recent progress that has been made, the deep learning technology applied
in urban research appears to be more accurate. The trend of semantic segmentation
to achieve more rapid and higher-resolution images was identified by combing the
previous related research. The current semantic segmentation approach mainly in-
volves low-resolution representation or recovering high-resolution representation
learning. With the progress and development of deep learning technology, high- and
low-resolution parallel learning is gaining more attention. In addition, the latest se-
mantic segmentation model can provide more possibilities for street view images in
urban research.

• As the dense coverage of indoor data at the microscale becomes more available (e.g.,
the extension of voluntary SVI), we predict that this might bring about enhancements
and novelties for applications such as change detection for indoor data.

• In addition to using street maps for elemental measurements [8], the current research
advances show the feasibility of generating 3D models from street maps [149–151],
which can be combined with a model database to quickly generate virtual cities with
certain style requirements and high accuracy.

5.2. Restrictions

The limitations of this research are worth discussing and focusing on in future research
work:

• Advancements in computer vision and processing capacity are crucial for the future
development of SVI. However, the chosen publications do not address the technical
research elements, and the investigation of the semantic segmentation approaches for
SVI is beyond the scope of this review.

• The concept of the “built environment” in this review may still limit the applications of
SVI. For example, this paper does not consider studies of urban parks, trails, and urban
agricultural areas. This review also deliberately excludes direct traffic observations
through SVI, which may affect the assessment of the perceived quality of life in the
built environment.

• The growing interest in SVI research and the corresponding increase in the number of
publications has created a need for other researchers to follow this area and contribute
to the knowledge base.

In conclusion, SVI research must be given continual and dynamic attention. Next-
generation information technologies such as big data, artificial intelligence (AI), cloud
computing (5G), and Internet of Things (IoT) technologies all have dynamic development
rules that need to be taken into consideration. SVI research in the built environment should
be closely tracked across disciplines to ensure that the literature is complete and to better
clarify the development of SVI research in general.

6. Conclusions

This paper provides a comprehensive answer to adopting and implementing SVI in
the built environment by summarising and analysing the papers contained in the Scopus
and the WoS databases.

Primarily, SVI can capture elements of the built environment at the line-of-sight level
for assessment at a lower cost. With the considerable development of this urban data source
and the establishment of supporting infrastructure (e.g., services), the use of SVI for urban
analysis has become a trend that will continue to grow for the foreseeable future, as seen in
the number of SVI-related studies and applications.
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Secondly, with the support of artificial intelligence technology, using the street-level
landscape and three-dimensional profile information provided by SVI, representative eval-
uation elements, such as roads, pedestrians, trees, and buildings, can be selected to analyse
and evaluate a specific environmental element or comprehensive environmental elements
within the spatial scope of streets, communities, and cities. This enables the quantification
of the urban environment, environmental perception detection, and semantic speculation.

Thirdly, SVI adoption is not an easy task, presenting obstacles from both the imagery
and technology facets. The data integration and management, the selection of appropriate
imagery service providers, and spatial metrics are the critical success factors that can reduce
these barriers.

Finally, the supporting infrastructure (e.g., services, volume, coverage of data, and
computer vision technology) needs to be further developed and enhanced. The future
application trends for SVI are mainly focused on the perception of the urban environment.
The research shows that the emergence of SVI provides a practical aid for analysing urban
environmental perceptions in terms of the spatiotemporal coverage and granularity, offering
the possibility for more refined, efficient, and large-scale depictions of urban forms from
physical and social spaces. At the same time, this study provides planning and design
policy advice and assistance for sustainable smart city development and the management
of residents’ health regarding urban design teaching, research, and practice.
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