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Abstract: Due to rapid global economic development, the number of motor vehicles has increased
sharply, causing significant traffic pollution and posing a threat to people’s health. People’s exposure
to traffic-related particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5) primarily
occurs during commuting. Many studies have used exposure risk assessment models to assess the
possible adverse effects of PM2.5, but few have used them to plan low-risk pathways for commuters.
This study simulated the pollutant concentration distribution in an idealized urban area in different
scenarios. We then used a back propagation (BP) neural network to predict the pollutant concentration.
The commuter respiratory deposition dose was calculated based on the BP prediction results, and
the respiratory deposition dose was converted into obstacles on the commuting map. Finally, the
rapidly exploring random tree star (RRT*) algorithm was used to plan low-risk paths for commuters.
The results indicate that pollutants discharged by cars and tree planting can significantly affect the
pollutant concentration. A 30.25 µg/m3 increase in the pollutant concentration discharged by cars
resulted in a 7~13 µg/m3 increase in the traffic-related air pollution concentration on sidewalks.
Combining a computational fluid dynamics simulation, a BP neural network model, and the RRT*
algorithm provides a system to plan low-risk paths for commuters. This work proposes artificial-
intelligence-based models for calculating the exposure risk to traffic-related pollutants (PM2.5) and
choosing a low-risk commuting path to ensure healthy travel.

Keywords: traffic-related air pollution; CFD simulation; BP neural network; path planning; RRT*
algorithm

1. Introduction

The global economy has developed rapidly in recent years, and the number of motor
vehicles and the level of associated traffic-related air pollution (TRAP) have increased
sharply. The negative impact of air pollution on human health has attracted wide attention,
and motor vehicle exhaust emissions are the primary source of air pollution on urban
roads. According to a report by the World Health Organization (WHO) in May 2018,
approximately 4.2 million deaths a year are caused by exposure to polluted air [1].

Exposure to urban air pollutants leads to an increased risk of respiratory and cardio-
vascular diseases or premature death [2]. Fine particulate matter with an aerodynamic
diameter of less than 2.5 µm (PM2.5) is a critical environmental pollutant. It is associated
with lung injury and several types of cancers [3], including oral, nasopharynx, esopha-
gus, stomach, colorectal, liver, gallbladder, larynx, lung, bone, skin, female breast, cervix,
prostate, and brain cancer and leukemia [4]. Children have significant vulnerabilities to
PM exposure [5]. They have high respiratory pollutant intakes because of their higher
ventilation rates and lung surface area versus weight ratio greater than adults [6]. Increased
healthcare visits for childhood bronchitis during the cold season are significantly associated
with the level of TRAP [7]. A one-year study of primary school children has shown that the

Buildings 2022, 12, 1227. https://doi.org/10.3390/buildings12081227 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings12081227
https://doi.org/10.3390/buildings12081227
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0003-3608-8203
https://orcid.org/0000-0001-7385-6959
https://doi.org/10.3390/buildings12081227
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings12081227?type=check_update&version=2


Buildings 2022, 12, 1227 2 of 28

levels of PM resulting from traffic exposure were associated with reductions in cognitive
growth. Reducing air pollution from traffic near primary schools may improve cognition [8].
Traffic-related pollutants are associated with mortality, and although the risk is relatively
low the public health impact of exposure to air pollution may be large because of the large
number of exposed people [9].

Traffic pollution poses a serious threat to the health of commuters; thus, many scholars
have carried out studies on traffic pollution and environmental epidemiology [10]. Many
studies have focused on commuting and commuting methods because people’s exposure
to pollutants is the highest during commuting.

An Italian study found that the cumulative exposure to ultrafine particles was 50%
lower on the optimum commuting path than on the worst routes [11]. In one such study,
people who took alternative routes substantially reduced the annual NO2 concentrations to
around 10 µg/m3, providing a method for children and their escorting parent to reduce the
exposure risks to high NO2 concentrations [12]. Some countries (Australia, New Zealand,
Canada, UK) have proposed strategies [13,14] to influence children’s school travel behavior
by focusing on education, motivation, encouragement, and infrastructure improvement to
reduce children’s pollutant exposure during their commute [12].

The commuting mode also affects daily exposure risk. Active transportation modes
such as walking are more physically demanding, increasing the ventilation rate and acceler-
ating the exposure risk [15]. Gilliland et al. [16] tested the exposure to PM in 36 lower-grade
students for different commuting types (walking, bus, and car). Those who walked to
and from school had the lowest mean PM2.5 exposure, whereas those that used buses or
cars had higher exposures. On the other hand, when children’s commutes consisted of
taking the bus and walking, the bus component resulted in a significantly higher mean
personal exposure than the walking component. Tang et al. [17] tested people’s pollutant
exposure for four major commuting transportation modes in Dublin, Ireland. The results
showed that cyclists had the highest rates of PM2.5 deposition in their lungs, followed by
bus users, pedestrians, and automobile users. Car passengers had the highest absorption
of volatile organic compounds (VOCS), followed by cyclists, pedestrians, and bus users.
Chaney et al. [18] found that active commuters received a greater PM2.5 dose and had
higher rates of exposure than other commuters.

High concentrations of TRAP are related to the pollutant source and the concentration
distribution and diffusion of pollutants. Numerous investigations have been carried out in
the last few decades to study the flow and pollutant dispersion in urban areas [19–27]. These
can be categorized as three main research methods with distinct characteristics [28–31], in-
cluding full-scale measurements, reduced-scale wind tunnel or water channel experiments,
and numerical simulations using computational fluid dynamics (CFD). The first category
provides measurements but is prone to uncontrollable factors and meteorological variabil-
ity [32]. Although reduced-scale experiments can control boundary cases and building
configurations, they must meet the similarity criteria and have high costs. CFD provides
full control over the initial and boundary cases, as well as relevant parameter data for all
points in the computing domain, combining the advantages of the other two methods.
Cities are typically regarded as wind blockages in CFD simulations due to the city’s shape,
building area density, and street configuration, according to Hang et al. [21]. The most
important parameters affecting the air quality at the pedestrian level are the urban street
width (WD) and street building height (BH) [33]. Pollutant dispersion is determined by
urban airflow characteristics. The efficiency of removing pollutants by the wind depends
on obstacles. Although tree plantings dilute pollutants, they also reduce the wind velocity
(VEL) and affect the diffusion of pollutants [28].

In summary, the pollutant exposure of commuters depends on the commuting type,
3D building configuration, tree cover, and airflow characteristics. We propose a commuting
path optimization to reduce the impact of traffic pollution on commuters. Recent research
on pathway optimization has focused on transportation, logistics, numerical control, and
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cloud computing. However, few studies have applied pathway optimization to reduce
pollutant exposure to commuters.

Many researchers have used neural network models to predict pollutant concentration,
but these studies only forecast short- and mid-long-term concentrations of some well-
known pollutants [34]. This study employs an artificial neural network (ANN) to predict
the traffic-related PM2.5 concentration, uses the predicted data to assess the exposure risk,
and optimizes the commuting path using artificial intelligence to plan low-risk paths
for commuters.

The flowchart of this study is shown in Figure 1. First, the research status of the
exposure, distribution, and diffusion of traffic-related pollutants is presented. CFD is used
to simulate the pollutant distribution for different cases using the building type, green
infrastructure, and wind environment as variables. The resulting data are used to predict
the pollutant concentration utilizing a back propagation (BP) neural network in an idealized
urban area. The prediction results are converted into the respiratory deposition dose (RDD),
representing the pollutant exposure on different roads to plan low-risk commuting paths
using the rapidly exploring random tree star (RTT*) algorithm. The results provide urban
designers with references for road network layout, green layout, wind environment, and
other factors to improve urban air quality and create a sustainable city.

Figure 1. Flowchart of this study.

2. Methodology
2.1. CFD Simulation
2.1.1. Fundamental Theory

CFD simulations have been widely used for urban physics and computational wind en-
gineering research in recent decades [35,36] and have been applied to a wide range of topics.
Many studies have been summarized in several review articles [37–39]; therefore, we only
provide an overview of this topic. CFD modeling with a high spatiotemporal resolution is
an efficient and relatively low-cost method for studying flow and dispersion features. It
provides control over the initial and boundary cases and whole flow field data, including
outdoor and indoor air temperatures, water vapor concentration, CO2 concentration, solar
radiation, VEL, and wind direction. However, the accuracy and reliability of the CFD
simulation are critical [40–42]. Therefore, solution verification and validation studies are
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particularly important. CFD turbulence simulations are often performed using Reynolds-
averaged Navier–Stokes (RANS) approaches and large eddy simulations (LESs). LESs are
more accurate than the RANS method for simulating and predicting turbulence [43–45].
However, the LES model requires substantial computational resources. Thus, RANS models
are preferably used in turbulence simulations and have been successfully validated by
wind tunnel measurements [46–48]. Despite the limitations, RANS simulations provide
very good performance for general and more complex urban configurations [49–52]. In
the RANS models, the standard k-ε model has excellent performance for predicting urban
airflow and pollutant diffusion [53,54]. Thus, this study uses the PHOENICS 2021 software
with the standard k-ε model for isotherm simulation using CFD.

The transport equations of the turbulent momentum (k) and its dissipation rate (ε) in
the proposed CFD model are shown in Equations (1)–(7) [55]:

Continuity equation:
∂ui
∂xi

= 0, (1)

Momentum equation:

uj
∂ui
∂xi

= −1
ρ

∂P
∂xi

+
∂

∂xj

(
ν

∂ui
∂xj
− u′iu

′
j

)
, (2)

− u′iu
′
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− 2

3
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k and ε equations:
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vt =
Cµ · k2

ε
, (6)

Pk = vt·
(

∂ui
∂xj

+
∂uj

∂xi

)
·∂ui
∂xj

, (7)

where ui, uj, and P are the fluid velocity in the i direction, the fluid velocity in the direction,
and fluid pressure, respectively; ρ is the fluid density; and δij is the Kronecker delta. ν and
νt are the kinematic viscosity and the kinematic turbulent viscosity; Pk is the volumetric
production rate of k by shear forces; Cµ = 0.09.

The tree canopy on both sides of urban roads affects pollutant diffusion. The canopy
and the individual branches are considered a porous medium in turbulence models [56].
The canopy produces drag and pressure, reducing the energy in the kinematic airflow and
affecting atmospheric particle adsorption.

The flow resistance induced by turbulent flow through the plant canopy is described
by the sink term in the momentum Equation (8) [57]:

Sd,i = −ρ · Cd · α(z) · ui · |U|, (8)

where Cd is the leaf drag coefficient, α(z) is the leaf area density (LAD) perpendicular to the
flow direction in m2/m3, and |U| is the magnitude of the superficial velocity vector.
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The vegetation density is characterized by the LAD and its integral value, the leaf area
index (LAI), which is defined by Equation (9):

LAI =
∫ h

0
α(z)dz, (9)

where h is the average height of the canopy in m. A vertically constant LAD is assumed for
computational convenience. It is computed based on the LAI and canopy height (h) as:

α =
LAI

h
, (10)

The following additional source terms are added to the transport Equations (11) and (12)
for k and ε to simulate the turbulent interaction between airflow and the plant canopy:

Sk = ρCdα(z)
(

βp · |U|3 − βd · |U| · k
)

, (11)

Sε = ρCdα(z)
(

C4εβp|U|3
ε

k
− C5εβd|U|ε

)
, (12)

where Sκ and Sε are the turbulent kinetic energy and turbulent dissipation rate of trees,
respectively. Bp, βd, C4ε, and C5ε are empirical constants. The constant βp is the portion of
turbulent kinetic energy converted from the mean flow kinetic energy under the influence
of drag, and βd is the fraction of k dissipated by the short circuit of the energy cascade.
The sink terms in these equations account for the spectral shortcut associated with the
production of turbulence in the wakes behind the individual canopy elements, such as
branches and leaves. The empirical constants must be adjusted to the measured data. The
default values used in the PHOENICS implementation are those of Green [58], i.e., βp = 1.0,
βd = 4.0, C4ε = 1.5, and C5ε = 1.5.

The modified generalized drift flux model takes into account the slip between the par-
ticle and the fluid phase [57]. In this model, the 3D tree model enhances the PM deposition
through turbulent diffusion. The aerodynamic and deposition effects of plants on PM are
represented by additional source and sink terms (Ssink and Sresuspension), enabling a compre-
hensive and accurate description and simulation of plant effects on PM dispersion [59].
The revised generalized drift flux model can be expressed as Equation (13):

∂
[(

uj + uslip

)
· C
]

∂xj
=

∂

∂xi

[
εp

∂C
∂xj

]
+ Sc − Ssink + Sresuspension, (13)

However, the primary factor affecting particle slip include gravitational settlement,
thermal force, and particle fluctuation. They are calculated as Equations (14)–(18) [57]:

uslip,j = τpgj + τp ∑ Fj +
τp

C
Smj −

τp

C
∂
(
upjupiC

)
∂xi

, (14)

Smj =
∂

∂xi

[
εpC

(
∂upj

∂xi
+

∂upi

∂xj

)]
+

[
∂

∂xi
εp

(
upi

∂C
∂xj

+ upj
∂C
∂xi

)]
, (15)

τp =
Ccρpd2

p

18µ
, (16)

Ssink = LAD×Vd × C, (17)

Sresuspension = Ssink ×
(
−0.00041v2 + 0.017v− 0.0016

)
, (18)

where uslip,j is the gravitational settling velocity of particles in direction j (m/s). C is the
particle concentration at the inlet (µg/m3). εp is the turbulent diffusivity (m2/s), which can
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be simplified to 1.0 m2/s [57,58]. Sc is the formation rate of the particle sources (kg/m3·s).
Ssink is the mass of particles absorbed by the vegetation (µg/m3). Sresuspension is the secondary
pollutant on the foliage (µg/m3·s) [60]. upj and upi are the particle velocities in the j and
i directions (m/s), respectively. τp is the particle relaxation time (s). ΣFj is the resultant
force exerted upon the particle (m/s2). Smj is the momentum source of the particle in the
j direction kg/(m2·s2). µ is the molecular kinematic viscosity of air (Ns/m2). dp is the
particle diameter (m). Cc is the Cunningham factor induced by slippage. Vd is the particle
deposition velocity on the foliage (m/s), and v is the magnitude of air velocity (m/s).

2.1.2. Urban Model

We simulated the flow field and pollutant diffusion on the street scale using CFD
modeling. Three 3D idealized urban models were constructed. They were composed of
a 5 × 5 building matrix with 25 cubes (L × L × BH = 20 m × 20 m × BH) representing
the buildings with a plan area density (λp) of 0.25. The BHs of the three models are 10 m,
20 m, and 40 m, representing different floor area ratios (FARs). The WD is 20 m. Street trees
(L1 × L2 × L3 = 16 m× 2.5 m× 1 m) are located on both sides of the road. Figure 2a shows
the simulation area of case I (BH = 10 m, FAR = 0.75) with a parallel approaching wind
(θ = 180◦) and dimensions of 580 m (X) × 580 m (Y) × 120 m (Z). The distance between the
entrance (inflow boundary) and the target area is 10 BH, and the distance from the target
area to the outlet (outlet boundary) is 28 BH. The distance between the left boundary and
the target area is 10 BH, and the distance between the right boundary and the target area is
28 BH. The distance between the top and the ground boundary is 12 BH. The domain top
has symmetric boundaries, while the domain outlet has a zero-gradient boundary [61].

The oncoming wind at the inlet has a gradient. The parameters are calculated by
Equations (19)–(21):

Uinz = U0 ×
( z

H

)0.16
, (19)

kin = (u∗)2/
√

Cµ, (20)

εin(z) =
C

3
4
ink

3
2
in

κνz
, (21)

where U0 is the velocity at the height of 10 m and u* is the friction velocity. The von Kármán
constant κv is 0.41. The empirical constant Cµ is 0.09.

2.1.3. Case Description

Three building configurations with heights of 10 m, 20 m, and 40 m representing dif-
ferent FARs were investigated to determine the influence of different FARs on the pollutant
concentration of traffic-related PM. Five variables were selected to analyze the influence of
green infrastructure, wind environment, and pollutant concentration discharged by cars on
the pollutant distribution and diffusion: the background concentration (Cback), the VEL, the
angle between the wind direction and true north (VDR), the LAD, and the concentration of
pollutants discharged by cars (Ccar). The details of three cases are summarized in Table 1.
Cback and Ccar are the PM contaminants (µg/m3).
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Figure 2. Geometric model of the CFD simulation. (a) The computational domain of case I: BH = 10 m,
FAR = 0.75; (b) 3D urban models for cases I, II, and III; (c) the buildings, trees, and pollutant sources.

Table 1. Details of three cases in the numerical simulations.

FAR Cback (µg/m3) VEL (m/s) VDR (θ + 180◦) LAD Ccar (µg/m3)

I
12.10 1, 3, 5, 7 180◦, 195◦, 210◦, 225◦ 0.25 90.75
36.30 1, 3, 5, 7 180◦, 195◦, 210◦, 225◦ 1.00 121.00
60.50 1, 3, 5, 7 180◦, 195◦, 210◦, 225◦ 4.00 151.25

II
12.10 1, 3, 5, 7 180◦, 195◦, 210◦, 225◦ 0.25 90.75
36.30 1, 3, 5, 7 180◦, 195◦, 210◦, 225◦ 1.00 121.00
60.50 1, 3, 5, 7 180◦, 195◦, 210◦, 225◦ 4.00 151.25

III
12.10 1, 3, 5, 7 180◦, 195◦, 210◦, 225◦ 0.25 90.75
36.30 1, 3, 5, 7 180◦, 195◦, 210◦, 225◦ 1.00 121.00
60.50 1, 3, 5, 7 180◦, 195◦, 210◦, 225◦ 4.00 151.25
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2.1.4. Grid Description

A structural mesh was applied in this study, and a grid independence analysis was
conducted. We chose 88 × 88 × 58 (coarse), 105 × 105 × 68 (medium), and 126 × 126 × 82
(fine) for the numbers of x, y, and z grids for case FAR II. We compared the TRAP concen-
tration in the commuter breathing area at 1.6 m from the ground. The results are listed in
Table 2. As the computing unit increased from a coarse grid to a medium grid and fine grid,
the relative differences in the pollutant concentrations were 2.5% and 1.1%, respectively.
Thus, we chose the medium grid for the simulation. All the horizontal routes in the building
area and the BHs were encrypted to ensure accurate results. There were about 740,000 cells,
meeting the requirements recommended by the CFD Guide [62].

Table 2. Results of the grid independence analysis.

Number of Cells in x, y, and
z Directions

Relative Difference in the
TRAP Concentration

Coarse grid 88 × 88 × 58
Medium grid 105 × 105 × 68 2.5%

Fine grid 126 × 126 × 82 1.1%

2.1.5. Simulation Validation

We measured the PM concentration on two different routes of a student commuter
near a school in Jinan. The starting point of the test was the JianDa Garden Community,
and the endpoint was the second school gate of Shandong Normal University. Route A
consisted of busy main roads and intersections. The total length of route A was 760 m.
Route B went through a residential area and park path. The total length of route B was
742 m, but it contained some steps. The key points of each route were numbered during
the CFD simulations (Figure 3).

Figure 3. The two routes of the simulation validation.
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Two air quality detection instruments (CEMDT-9883M, China) were used to record
the PM2.5 and PM10 concentrations on the routes. The instrument was placed in the tester’s
backpack at a height of about 1.2 m, and the Global Positioning System (GPS) coordinates
were recorded. The background PM concentration was obtained from the air quality
monitoring point of Shandong Jianzhu University 1500 m from the study area.

We used Autodesk CAD to create maps of the buildings and roads and numbered each
feature point. The data were exported as an STL file format and imported into PHOENICS.
Two cases were used to validate the simulation accuracy. The parameters of case 1 were as
follows: vehicle exhaust emission PM2.5 concentration: 241.3 µg/m3; background PM2.5
concentration: 92.9 µg/m3; VEL: 1 m/s; VDR: N. The parameters of case 2 were vehicle
exhaust emission PM2.5 concentration: 241.3 µg/m3; background PM2.5 concentration:
65.1 µg/m3; VEL: 4.7 m/s; VDR: NW. These two cases were tested in January 2021, and
the test period was 07:00–08:00. The weather on the test day was clear, and the average air
temperature during the test was 3–5 ◦C. The results of the two validation cases are shown
in Figure 4.

Figure 4. Numerical simulation results of PM2.5 concentration. (a) Case 1; (b) case 2.

The measured and simulation values are shown in Figures 5 and 6. The error is 7% for
route A and 6% for route B for case 1 and 9% for case 2. Thus, the parameter values and
boundaries of the PHOENICS simulation are accurate, and the results are credible.

Figure 5. Comparison of measured values and simulation values for validation case 1.
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Figure 6. Comparison of measured values and simulation values for validation case 2.

2.2. BP Neural Network

An ANN is a machine learning tool used to learn the relationship between input and
output variables to predict system performance [63,64]. ANNs use many neurons in a
topological structure to store and process complex information. An ANN includes an input
layer, output layer, and one or more hidden layers. Each layer consists of neurons that
receive signals from the previous layer and generate an output using an activation function.
The most widely used ANN structure for prediction is the multi-layer perceptron (MLP)
model. An MLP model with a single hidden layer with a sufficient number of neurons can
approximate any function with the desired accuracy [65]. The MLP network consists of the
input, hidden, and output layers; all inputs are connected to the neurons, and all neurons
are connected to the output. Therefore, this study established an MLP network to predict
the effect of the variables on pollutant diffusion.

In an MLP network, the correlation between the input x(k) and output y(k) is expressed
as Equations (22) and (23) [66]:

y(k) = f2

(
w2x(k) + b2

)
, (22)

x(k) = f1

(
w1x(k) + b1

)
, (23)

where x(k) is the output vector from the hidden layer. w1 and w2 represent the connection
weight matrices from the input layer to the hidden layer and from the hidden layer to the
output layer, respectively. f 1(.) and f2(.) represent the transfer functions of the hidden and
output layers, respectively, and b1 and b2 represent the numbers of deviations in the input
and output layers, respectively. The transfer function used in this study is a tangent s-type
function, which is defined in Equation (24) [67]:

f (z) =
(
1− e−2z)
(1 + e−2z)

, (24)

where z represents z = f (Σwixi), where xi is the input of the neuron, wi is the weighting
factor of the input, and z is the weighted input. We used the root mean square error (RMSE)
to measure the prediction accuracy; it is defined by Equation (25) [68]:

RMSE =

√
1
p ∑j

∣∣tj − oj
∣∣2, (25)

where p is the number of measurements, tj is the target value, and oj is the output value.
The training procedure was performed by optimizing the weights and bias coefficients

to minimize the error between the target and the neural network output. A BP neural
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network was used in this study. The structure of the ANN is shown in Figure 7; it has
6 inputs, 10 neurons, and 1 output. The input values are the Cback, VEL, VDR, LAD, FAR,
and Ccar. The output values were classified into different exposure levels. The 1296 outputs
obtained from the simulation were divided into two parts; 70% of the data was randomly
selected for neural network training, and the remaining 30% was used for validation.

Figure 7. Structure of the BP neural network model.

The BP neural network model is a multi-layer feed-forward neural network that
submits samples to the network according to a preset error. When the network converges,
the training ends. When the number of training iterations reaches the maximum value, the
training is terminated, representing the end of the learning process if the network does not
converge. Error propagation is performed by continuous training based on error feedback
until the case requirements are met or the network is trained to the maximum number of
iterations [69]. BP neural networks are mainly used for function approximation, relationship
recognition, data classification, and data compression. When a BP neural network is used
as the core of a predictive model, it functions approximately as a nonlinear model.

Figure 8 shows the flowchart of the BP neural network algorithm. The computational
process of the BP neural network consists of forward and backward propagation. In the
forward propagation, the input signal from the input layer is processed by each layer and
transmitted to the output layer. The state of neurons in each layer affects only the state
of neurons in the next layer. The output layer compares the actual output value with
the expected output value. If the output layer does not obtain the desired output, the
error is back propagated along the original connection path, and the error is minimized
by modifying the weights of each neuron. The training and learning of the BP neural
network model consist of taking the error signal as the basis for modifying neuronal weight
and performing forward and back propagation to obtain the expected accuracy or the
predetermined maximum number of training epochs.

2.3. Optimal Path Prediction
2.3.1. RRT* Algorithm

The rapidly exploring random tree algorithm (RRT) algorithm is a path planning
algorithm based on random sampling. It was proposed by LaValle et al. in a complex
environment. The RRT algorithm does not require a function expression of the planning
space. It uses sampling point collision detection to avoid obstacles and plan the optimal
path between nodes. Therefore, it can solve high-dimensional path planning problems
with complex constraints and has the advantages of probabilistic completeness and strong
scalability. However, since it uses machine learning for searching, the convergence speed
is relatively slow, and the generated path is not necessarily the optimal path. To optimize
the RRT algorithm, scholars have thus proposed the RRT* algorithm, which reconnects the
trees, finds new low-cost paths in the tree nodes, reduces the path length, and converges to
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the optimal solution. The RRT* algorithm constructs a path by randomly selecting points
in the search space.

Figure 8. The flowchart of the BP neural network.

The search space is constructed first with an empty tree, and the starting point is added
to the tree as the root node. When the algorithm is executed, the starting point is the initial
point (Xinitial). A random point (Xrandom) is created according to the random function. The
Euclidean distance is used to find the nearest point Xnearest on the tree to connect Xrandom to
Xnearest. Xrandom becomes the center with ri as the radius. The algorithm searches for nodes
on the tree to identify a potential set of parent nodes Xpotential_parent. It then calculates the
cost of Xparent as parent 1 and selects a potential parent node Xpotential_parent. If no collision
occurs, the algorithm connects Xpotential_parent to Xrandom, calculates the cost of path 2, and
compares cost 2 to cost 1. Collision detection is performed if cost 2 is smaller than cost 1.
Otherwise, the algorithm selects the next potential parent node. If the collision detection
fails, the potential parent cannot act as the new parent, and the next potential parent node
is considered. The above steps are repeated. If a collision is detected, the algorithm deletes
the previous edges in the tree and adds new edges using Xpotential_parent as Xparent. It then
traverses through all the potential parents to obtain an updated tree. These steps are
repeated to complete route planning.

2.3.2. Exposure Evaluation Indices

TRAP exposure assessments have considered external and internal exposures. Studies
on the spatiotemporal distribution of traffic-related particles have mostly used external
exposure evaluations. The RDD is commonly used to assess pollutant exposure levels in
China. It is calculated using Equation (26):

RDDPM f ractions, i = (VT × f )× DFi × PMi, (26)

The RDDPM(fractions,i) is the respiratory deposition dose of the measured pollutant
(µg/s), and DFi and PMi (µg/m3) are the deposition rate and concentration of the group i
particles, respectively. In addition, the median mass diameters (dp, µm) of different-sized
PMs are calculated using Equations (27) and (28):
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DF = IF
(

0.0587 +
0.911

1 + exp(4.77 + 1.485ln dp)
+

0.943
1 + exp(0.508− 2.58ln dp)

)
, (27)

IF = 1− 0.51

(
1− 1

1 + 0.00076dp
2.8

)
, (28)

where IF is the inhalable fraction and dp (µg) is the mean particle diameter of the coarse
and fine-grained fractions. VT is the tidal volume, and the f is the typical respiratory rate.
The values of VT = 1250 cm3 and f = 0.34 times/s are chosen according to the reference by
Hinds [70].

2.3.3. The RRT* Path Planning Algorithm

First, we predicted the pollutant concentration using the BP to calculate the RDDPMi.
The results were ranked from small to large. We determined the radius range of the newly
added obstacle areas R1~Rn according to the road width in the designated area, where
R1 = 0, Rn is half of the widest road width, and n is the number of calculated RDDs. The
radius of the newly added obstacle area could not exceed Rn to prevent the excess area
covered by the barrier area from affecting the commuting path planning. The RDD values
were standardized and ranked from small to large, where RDDPMi corresponded to Ri
(Figure 9). The center of each obstacle area was located at the road center and contained
the building layout, transportation network, and the calculated PM2.5 exposure risk. The
map was imported into the RRT* algorithm to determine the optimal commuting path. The
results are shown in Section 3.3.

Figure 9. Schematic of calculating the values of respiratory deposition dose at different points.

3. Results
3.1. CFD Simulation Results
3.1.1. Impacts of Pollutant Concentration Discharged by Cars on the Pollutant Distribution
and Diffusion

After the CFD simulation, we selected 15 points on each road around the center
buildings to determine the pollutant concentration using Python (Figure 10). We averaged
the values of 60 points to represent the pollutant concentration in this area. It was found
that the concentration of traffic-related fine particles increased with an increase in the traffic
flow for different values of the BH, Cback, VEL, VDR, and LAD. The TRAP concentrations
(CTRAP) on sidewalks increased by about 7–13 µg/m3 for each 30.25 µg/m3 increase in Ccar.
The dilution level of the pollutants by the wind differed for different Ccar values. When Ccar
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was 90.75 µg/m3, CTRAP decreased by about 2.8% for every 2 m/s increase in VEL. When
Ccar was 121.00 µg/m3, CTRAP decreased by about 3.5% for every 2 m/s increase in VEL.
When Ccar was 151.25 µg/m3, CTRAP decreased by about 4.0% for every 2 m/s increase in
VEL. The results for a BH of 20 m, Cback = 12.10 µg/m3, VDR = 195◦, and LAD = 0.25 are
shown in Figure 11.

Figure 10. Selection of the sample points using Python.

Figure 11. The pollutant concentrations for different wind speeds in FAR II. (a) VEL = 3 m/s,
Ccar = 90.75 µg/m3, (b) VEL = 3 m/s, Ccar = 121.00 µg/m3, (c) VEL = 3 m/s, Ccar = 151.25 µg/m3,
(d) VEL = 5 m/s, Ccar = 90.75 µg/m3, (e) VEL = 5 m/s, Ccar = 121.00 µg/m3, (f) VEL = 5 m/s,
Ccar = 151.25 µg/m3, (g) VEL = 7 m/s, Ccar = 90.75 µg/m3, (h) VEL = 7 m/s, Ccar = 121.00 µg/m3,
and (i) VEL = 7 m/s, Ccar = 151.25 µg/m3.

We assessed adult male commuters. Since the breathing area of adult men is located
at the height of 1.5–1.6 m, we used a height of 1.6 m in the CFD simulation to evaluate the
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pollutant exposure of commuters. A comparison of Figure 11a–c shows that the pollutant
concentration in this ideal urban block increased with the pollutant concentration released
by vehicles. The same pattern is observed when the wind speed increased to 5 m/s and
7 m/s (Figure 11d–i). In addition, the buildings represent obstacles to the wind. Therefore,
commuters should avoid longer traffic paths to reduce the exposure risk.

3.1.2. Impacts of Wind Direction on the Pollutant Distribution and Diffusion

The diffusion of traffic-related particles is related to the VDR. The influence of different
VDRs on the TRAP distribution was evaluated for a BH of 20 m, Cback = 60.50 µg/m3,
Ccar = 151.25 µg/m3, VEL = 3.0 m/s, and LAD = 1.00. The simulation results for different
VDRs are shown in Figure 12. The distribution of the traffic-related pollutants differs for
different VDRs, leading to large differences in the distribution of particulate matter on
different routes. The pollutants are more likely to be diffused when the street direction is
parallel to the wind direction. In contrast, pollutants accumulate in streets perpendicular
to the wind direction. In addition, the pollutant accumulation differs for different wind
directions. However, most of the pollutants accumulate at the junction of the downwind
area of the building. Therefore, the influence of wind speed should be considered when
planning low-risk paths.

Figure 12. PM2.5 distributions in different wind directions of FAR II, VEL = 3 m/s, Ccar = 151.25 µg/m3.
(a) VDR = 180◦, (b) VDR = 195◦, (c) VDR = 210◦, and (d) VDR = 225◦.
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3.1.3. Impacts of Trees on the Distribution and Diffusion of Pollutants

Figure 13 shows the influence of three different tree configurations on the pollutant
distribution for a BH of 20 m, VEL of 3.0 m/s, and VDR of 225◦. Figure 13b,d,f show
the results for an LAD of 4.0, and Figure 13a,c,e show the results for an LAD of 1.0. The
pollutant concentration was significantly lower in areas with trees on both sides of the road
than in other areas, indicating that trees dilute the pollutant concentration. At a Ccar of
90.75 µg/m3, the CTRAP in the two building blocks was 60–80 µg/m3 with LADs of 1.0
and 4.0. However, for an LAD of 4.0, the CTRAP was 12 µg/m3 in areas with trees on both
sides of the road. As the Ccar increased, the pollutant concentration increased for LADs
of 1.0 and 4.0, but it decreased in areas with trees on both sides of the road for an LAD of
4.0. Therefore, commuters should choose routes with a large LAD such as parks to avoid
exposure to high pollutant concentrations.

Figure 13. The concentrations of pollutants for different LADs in circle of FAR II, VEL = 3 m/s.
(a) Ccar = 90.75 µg/m3, LAD = 1.0, (b) Ccar = 90.75 µg/m3, LAD = 4.0, (c) Ccar = 121.00 µg/m3,
LAD = 1.0, (d) Ccar = 121.00 µg/m3, LAD = 4.0, (e) Ccar = 151.25 µg/m3, LAD = 1.0, and
(f) Ccar = 151.25 µg/m3, LAD = 4.0.
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3.1.4. Impacts of Background Concentration on the Pollutant Distribution

Figure 14a–c show the pollutant concentrations at Cback values of 12.10, 36.30, and
60.50 µg/m3, respectively. The CFD simulation results show an increase in the pollutant
concentration within the regular building space with the background concentration. Al-
though the wind direction is parallel to the street direction, the pollutants accumulate
with an increase in the background concentration. At a Cback of 12.10 µg/m3, the pollutant
concentration was significantly higher inside than outside of the block, but the accumula-
tion of pollutants was not obvious. At a Cback of 36.30 µg/m3, the pollutant concentration
increased inside and outside of the block. When Cback reached 60.50 µg/m3, the pollutant
concentration increased again. When the Cback was 36.30 µg/m3 and 60.50 µg/m3, the
pollutant concentration was very high and most pollutants had accumulated at the intersec-
tion of the downwind building space exit and the downwind area. Therefore, a change in
Cback affects the choice of the commuting path by affecting the pollutant distribution. The
high-concentration areas should be avoided.

Figure 14. The pollutant concentrations for different background concentrations and FAR II, VEL = 1 m/s,
and VDR = 180◦. (a) Cback = 12.10 µg/m3, (b) Cback = 36.30 µg/m3, and (c) Cback = 60.50 µg/m3.

3.2. BP Neural Network Prediction
3.2.1. Training Result of BP Neural Network

The BP neural network was implemented in Python, and the data obtained from the
CFD simulation were used to train the model. The concentration of traffic-related pollutants
in the normal configuration was predicted for different cases. Figure 15 shows the training
results of the BP neural network for predicting the pollutant concentration. The results
are consistent with the simulation results. The coefficient of determination (R2) for the
predicted and simulated pollutant concentrations was 0.9459, and the RMSE value was
0.4327. The high R2 value indicates a good fit for the BP neural network.
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Figure 15. The training results of the BP neural network for predicting the TRAP concentration:
(a) comparison of the simulation and prediction results; (b) predicted versus simulated values.

3.2.2. Validation Result of BP Neural Network

A well-trained model was obtained by the repeated training and continuous debug-
ging of the learning rate of the BP neural network. The validation results are shown in
Figure 16. The R2 and RMSE of the predicted and simulated pollutant concentrations were
0.9072 and 0.3339, respectively, indicating a good fit for the BP neural network.

Figure 16. Cont.
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Figure 16. The validation results of the BP neural network for predicting the TRAP concentration:
(a) comparison of the simulation and prediction results; (b) predicted versus simulated values.

3.2.3. Prediction Results of BP Neural Network

The results show that the proposed BP neural network model provides accurate
predictions of traffic-related PM concentrations. Commuting routes with a lower exposure
can be selected based on the predicted pollutant concentrations. We used the BH, Cback, VEL,
VDR, LAD, and traffic flow as input variables and predicted the pollutant concentration
for different cases to perform path optimization. The results show that the pollutant
concentration increased with the BH (Figure 17).

Figure 17. Predicted concentration for different building heights and Ccar.
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3.3. Optimal Routes Obtained from the RRT* Algorithm
3.3.1. Exposure Analysis

We calculated the RDD values according to the BP prediction results to assess the
pollutant exposure risk of commuters for different cases. Table 3 lists the CTRAP and RDD
values for Ccar values of 36.30, 60.50, 90.75, 121.00, and 151.25 µg/m3 and VDRs of 225◦,
195◦, and 180◦ at FAR I, VEL = 1 m/s, and LAD = 4. The RDD value was calculated for adult
men walking on the street. The VDR was 225◦, the Ccar was 36.30 µg/m3, and the RDD value
was 0.60 µg/min. As the concentration of pollutants released by vehicles increased, the
RDD value showed an upward trend. The maximum RDD value (0.83 µg/min) occurred
at a Ccar of 121 µg/m3. As the Ccar increased to 151.25 µg/m3, the RDD decreased to
0.74 µg/min. The values of the RDD differed for different wind directions. These results
are in agreement with the CFD simulations.

Table 3. Exposure analysis results for different Ccar and VDR values.

FAR Cback (µg/m3) VEL (m/s) VDR LAD Ccar
(µg/m3)

CTRAP
(µg/m3)

RDD
(µg/min)

I

60.50 1 225◦ 4.00 36.30 25.30 0.60
60.50 1 225◦ 4.00 60.50 24.30 0.58
60.50 1 225◦ 4.00 90.75 28.18 0.67
60.50 1 225◦ 4.00 121.00 34.92 0.83
60.50 1 225◦ 4.00 151.25 30.97 0.74

60.50 1 195◦ 4.00 36.30 40.89 0.97
60.50 1 195◦ 4.00 60.50 38.81 0.92
60.50 1 195◦ 4.00 90.75 47.05 1.12
60.50 1 195◦ 4.00 121.00 51.77 1.23
60.50 1 195◦ 4.00 151.25 49.13 1.17

60.50 1 180◦ 4.00 36.30 37.31 0.89
60.50 1 180◦ 4.00 60.50 40.81 0.97
60.50 1 180◦ 4.00 90.75 43.14 1.03
60.50 1 180◦ 4.00 121.00 46.60 1.11
60.50 1 180◦ 4.00 151.25 53.35 1.27

3.3.2. Optimal Routes

We constructed an idealized building space with a height of 10 m, a background
concentration of 0.005, and an LAD of 4.00 to assess the influence of different VDRs,
VELs, and Ccar values on the choice of commuting path. The wind directions were 180◦,
195◦, and 225◦, and the wind speed was 1.0 m/s. The Ccar ranged from 36.30 µg/m3

to 151.25 µg/m3. The results of the BP prediction for different cases were converted to
the exposure assessment value, and obstacles were drawn on the map according to the
exposure level. The distance and exposure risk were considered, and two routes with the
shortest distance and lowest exposure risk were obtained.

The commuting maps are shown in Figure 18a,c,e. The optimal path obtained from the
RRT* algorithm is shown in Figure 18b,d,f. The exposure risk ranges in the configuration
space were 1.22–1.75 µg/min, 1.34–1.61 µg/min, and 0.83–1.02 µg/min for VDRs of 180◦,
195◦, and 225◦, respectively, and the corresponding R1~Rn was 1~10 m. As the VDR
increased, the RDD of the CTRAP on the road increased and the exposure risk decreased.



Buildings 2022, 12, 1227 21 of 28

Figure 18. Optimal paths for different cases of FAR I: Cback = 60.50 µg/m3, VEL = 1 m/s, LAD = 4.0,
and Ccar = 36.30~151.25 µg/m3. (a) VDR = 225◦, (b) optimal path for VDR = 225◦, (c) VDR = 195◦,
(d) optimal path for VDR = 195◦, (e) VDR = 180◦, and (f) optimal path for VDR = 180◦. The red lines
represent the optimal paths obtained from the RRT* algorithm.
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The exposure risk represented by the circular radius can only be compared for the
same working condition. The results show that the RRT* algorithm can plan the optimum
target route for the three working conditions. When the range of exposure risk is large,
the route includes more turns, and when it is small, there are more straight-line sections.
When the exposure risk has a large range, so does the radius of the circular obstacles, and
more roads can be selected. Therefore, using the algorithm for optimal path selection is
advantageous when the pollutant concentration is variable.

4. Discussion

Three-dimensional idealized city models consisting of 5 × 5 building matrices were
constructed, and the effects of the building type, green infrastructure, and wind environ-
ment on the pollutant distribution and concentration were evaluated. CFD was used to
simulate the pollutant distribution of 1296 cases for three heights. The CFD simulation
results were used as input into a BP neural network model. A good fit of the model was
obtained for predicting the pollutant concentration for different cases. The BP predic-
tion results were converted into the RDD to represent the pollutant exposure on different
commuting paths. Path optimization was performed using the RTT* algorithm.

It should be noted that nitrogen oxides, VOCs, and inert gases, such as CO, are traffic-
related air pollutants. However, we did not analyze them because this paper focuses on the
impact of particulate matter on commuters.

This study focuses on the prediction and distribution of pollutants and path assessment
under the idealized urban area and does not carry out relevant research on the actual urban
area, which is the deficiency of this study. In fact, there have been a lot of relevant studies
which have done a lot of work on actual, specific building distributions. Taking a large
city in Poland as an example, Kwiecień et al. [71] proposed a comprehensive research
method to evaluate CO concentration in road traffic. Hang et al. [20] studied the impact of
building height on pollutants, and Gu et al. [72] studied the impact of building density on
pollutants. Hang et al. also studied the distribution of pollutants under different aspect
ratios. However, in order to obtain some regular conclusions more intuitively and obviously,
such as the changes in pollutant concentration with different wind speed changes, this
paper only considers the regular and ideal types. In the future, a lot of research could be
carried out on actual buildings. The wind environment significantly influences pollutant
distribution and diffusion. Previous studies have shown that increasing urban airflow can
dilute pollutants [73,74]. However, in our CFD simulation, the pollutant concentration
increased with an increase in the velocity in local areas. Studies have shown that urban tree
planting can weaken pollutant dilution. However, we did not observe that the vegetation
reduced the wind speed in this simulation. Due to uncontrollable factors, such as closure
and control during the COVID-19 pandemic, the simulation was only validated using
limited cases. More scenes should be used for the validation to ensure that the simulation
result is credible. This paper only assessed the pollutant exposure of adult male pedestrians
for path planning. However, the pollutant exposure during commuting depends on the
person, commuting mode, and commuting time [75]. Active commuters received a higher
PM2.5 dose and had higher rates of exposure than other commuters [18]. Kumar et al. [76]
measured the particle number concentration (PNC), PM1, and PM2.5 concentrations along
an established route covering bus stops, primary schools, universities, and intersections.
The PM2.5 and PM1 concentrations and the PNC in the morning were 47%, 31%, and 31%
higher, respectively, than those in the afternoon, and the concentration of coarse particles
was 70% higher in the afternoon. Garcia-Algar [77] found that the pollutant concentration
is higher at the height of a stroller than in the respiratory area of adults. An et al. [75] and
Ahmed et al. [12] observed that the exposure of commuters to pollutants depends on the
commuter route. Therefore, future studies should consider the commuting time and mode
and the unequal exposure of people for path planning.
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5. Conclusions

This study simulated the pollutant concentration and distribution for different urban
morphological parameters and green infrastructure scenarios. We converted the simulated
pollutant concentration into the respiratory deposition to assess the exposure risk. The
traffic-related fine PM exposure risk was mapped to perform path planning using the RRT*
algorithm in an idealized urban area, which provided the shortest commuting distance and
the lowest exposure risk. The novelty of this paper is the combination of a CFD simulation,
BP neural network model, and RRT* algorithm to create a system to plan low-risk paths for
commuters. The results provide urban designers with references for road network layout,
green layout, wind environment, and other factors to improve urban air quality and create
a sustainable city. The following conclusions were obtained:

(1) The concentration of traffic-related fine particles during commuting was related to the
pollutant concentration discharged by cars. The higher the traffic flow, the higher the
pollutant concentration was, and the higher the exposure risk of the commuters was.
A 30.25 µg/m3 increase in the Ccar resulted in a 7–13 µg/m3 increase in the TRAP
concentration on sidewalks.

(2) The wind environment significantly affected the pollutant distribution and diffusion.
The dilution level of the pollutants influenced by the wind differed for different Ccar
values, e.g., CTRAP decreased by about 2.8% for every 2 m/s increase in VEL at the Ccar
of 90.75 µg/m3. Different wind directions also resulted in different levels of diffusion
of traffic-related pollutants, leading to large differences in the pollutant distribution
on different routes. The pollutant concentration was low in windy areas, and the
pollutants accumulated in the downwind areas of buildings. Therefore, the effects of
the wind direction and wind speed should be considered in the design of urban road
networks and road direction.

(3) Vegetation diluted the pollutant concentration. In this study, a large leaf area density
significantly reduced the pollutant concentration at the pedestrian level. Therefore,
trees with a high leaf area density should be considered for street greening.

(4) The BP neural network prediction model had a high R2 value during training. The
results showed that the proposed model could accurately predict the traffic-related
particulate matter concentration to provide data for optimizing the commuting routes.

(5) The BP prediction results were converted into the exposure risk and were mapped to
perform commuting path optimization using the RRT* algorithm. The optimum com-
muter route had the lowest pollution concentration to improve the health of citizens.
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Nomenclature

Nomenclature
b1 number of deviations in the input layer
b2 number of deviations in the output layer
C particle concentration at the inlet, µg/m3

Cc Cunningham factor induced by slippage
Cd leaf drag coefficient, Ns/m
Cµ empirical constant
dp particle diameter, m
f typical respiratory rate, times/s
Fj resultant force exerted upon the particle, m/s2

g gravitational vector, m/s2

h average height of the canopy, m
k turbulent kinetic energy, m2/s2

p number of measurements
P pressure of the fluid, Pa
Pk volumetric production rate of k by shear forces
Sκ turbulent kinetic energy
Sε turbulent dissipation rate for trees
Sc formation rate of the particle sources, kg/m3·s
Ssink mass of particles absorbed by the vegetation, µg/m3

Sresuspension secondary pollutant, µg/m3·s
Smj momentum source of the particle in the j direction, kg/(m2·s2)
tj target value
u* friction velocity, m/s
ui velocity in the direction i, m/s
uslip,j gravitational settling velocity of particles in direction j, m/s
U0 velocity at the height of 10 m
|U| magnitude of the superficial velocity vector, m/s
v magnitude of air velocity, m/s
Vd particle deposition velocity on the foliage in m/s
wi weighting factor of the input
w1 connection weight matrix from the input layer to the hidden layer
w2 connection weight matrix from the hidden layer to the output layer
xi input of the neuron
x(k) output vector from the hidden layer
z weighted input
Abbreviation
ANN artificial neural network
BH building height
BP back propagation
CFD computational fluid dynamics
DFi deposition rate of the group i particle
FAR floor area ratio
IF inhalable fraction
LAD leaf area density
LAI leaf area index
LES large eddy simulations
MLP multi-layer perceptron
PM2.5 particulate matter with an aerodynamic diameter less than 2.5 µm
PMi concentration of the group i particles, µg/m3

RANS Reynolds-averaged Navier–Stokes
RDD respiratory deposition dose
RMSE root mean square error
RRT* rapidly exploring random tree star algorithm
TRAP traffic-related air pollution
VT tidal volume, m3

VDR angle between the wind direction and true north
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VEL wind velocity, m/s
WD street width, m
Greek letters
α(z) Leaf area density, m2/m3

βp portion of turbulent kinetic energy
δij Kronecker delta
ε turbulent dissipation rate
εp turbulent diffusivity, m2/s
κv von Kármán constant
µ molecular kinematic viscosity of air, Ns/m2

ν kinematic viscosity
νt kinematic turbulent viscosity
ρ fluid density, kg/m3

τp the particle relaxation time, s
Subscripts
i the direction i
j the direction j
t turbulent
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