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Abstract: The present study aims to investigate the effect of coal aggregates (CA) in the compressed
earth bricks (CEBs) in order to reduce the footprint of the coal industry. For this purpose, three soils
of the Marrakesh region were studied in terms of their chemical composition, and their thermal and
mechanical behavior. Then, the selected soil was mixed with different amounts of CA (10%, 15%,
and 20% by weight) and compressed in a Brava machine to produce (CEBs). A significant drop in
the specific weight of our CEBs was registered with the increase of CA percentage. Besides, the
compressive strength showed a linear drop with the increase of (CA) percentages. In fact, for bricks
with 20% of CA, the decrease in compressive strength reaches 32.95% in respect to the reference bricks.
Moreover, CA showed interesting gain in thermal conductivity reaching 60% while the diminution in
compressive strength was still acceptable according to norms in the state of the art. Thereby, we can
say that using CA in earth bricks can, with the suitable architecture, contribute not only to reduce
the building charges, but also to provide a good thermal comfort without increasing the thickness of
the walls.

Keywords: earth construction; thermal comfort; mechanical resistance

1. Introduction

Nowadays, the explosion of construction costs has generated overpriced habitation
gear for a large number of people. This situation arises due to the deficiency in the
employment of common small fee constructing provisions and a variety of techniques in
domestic development. Therefore, affordability and sustainability are two crucial elements
in evaluating new means and ways related to establishing buildings [1]. Stabilized earth is
an alternative component that is both enduring and economical compared to the standard
use of bricks and concrete [2].

Earth construction has been playing a significant role in building for centuries. For
earth bricks, several techniques were employed; the most used are adobe and compressed
earth bricks (CEB) [3]. Being deployed in various studies, CEB proved considerable advan-
tages including low cost, durability, and efficiency in eco-friendly construction [4]. The
use of compression provides sustainable bricks, with interesting mechanical properties.
However, not all soils are suitable for manufacturing CEB. The proper soil should fulfill
specific requirements, which are not available in many cases. Therefore, many scientists
have used the reconstruction of soil, requiring the addition of stabilizers, binders, or even
both [5–8].

The construction heritage preservation until our days was especially wellkept due to
several factors, among them, the maintenance and use of binders to provide basic resistance
and durability. Various studies showed the importance of adding binders to promote the
mechanical behavior of CEB. In a review article, on earth construction in Spain, for unstable
soils, Delgado and Guerrero argue that the compressive strength varied between 0.60 and
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1.8 MPa for CEB. Then, with the addition of 3% to 6% of lime, the compressive strength
increased by a factor of 2 to 3 [9]. A similar study [10], found the optimal value of lime
to be 10% to enhance the mechanical properties. In the work of Mequeleiz et al., [11],
they exhibited the fact that adding 18% of lime in a brick’s sample volume increased
the compressive strength in the long term to 13 MPa compared to 1.3 MPa without lime.
The same impact has been reported in a study by Nagaraj [12]. However, we cannot
unconditionally increase the amount of lime, as was shown in the work of [13,14]. The
increase of lime percentage above 4% generates the creation of lime aggregates enfeebling
the material. In other research, they used CEB reinforced by waste materials, such as
recycled aggregates [15] and coal mine waste [16].

As for thermal insulation, the CEB can provide, with the appropriate reinforcement,
great thermal insulation. For this purpose, great attention has been focused lately on
the use of cellulose fiber as a reinforcement element to enhance thermal behavior. In the
literature, many studies investigated the potential of cellulose fibers, such as straw [17],
barley [18], Alfa [19], and palm [20,21], to reinforce the CEB. However, the proprieties of
vegetal fibers are highly affected by the growing condition and extraction area. Moreover,
the biodegradability of the vegetal fibers will reduce the durability of CEB.

As an alternative to vegetal fibers, we propose in the present study, to reinforce CEB
with coal aggregates. These aggregates are immediately linked with fossil energy, which
is responsible for significant carbon dioxide emissions, leading to significant damage to
the ecosystem [22]. Thereby, it is interesting to find new ways of using these aggregates
instead of burning them [23]. To our knowledge, coal aggregate in its natural form has not
been mined to manufacture CEB.

For this purpose, different percentages of (CA) (10 %, 15 %, and 20 % by weight) were
incorporated in the CEB. Firstly, three different soils in the region of Marrakesh, Morocco,
were investigated in terms of their chemical composition and thermo-mechanical behavior.
Then, the selected soil reinforced with CA and lime was compressed in a Brava machine to
produce CEB. The mechanical and thermal behavior of the produced CEB proves that we
can achieve interesting thermal conductivity without influencing the compressive strength.

2. Materials and Methods
2.1. Materials

The area chosen for this study is defined by a circle with a radius of 100 km around the
city of Marrakesh (Figure 1) [24]. According to artisans, we collected the most used soils
for earth construction in this region. The first extraction site, called Zrekten, is about 72 km
southeast of Marrakesh. The second site, called Ouled Dlim, is localized in the northwest
of Marrakesh, at 65 km. Finally, the third soil was the dam’s deposit, extracted from
Ouirgane’s dam area (91 kms to the south). Several studies used dredged sediment [25,26].
The three soils belong to the main Tensift watershed, the main drainage basin nearby
Marrakesh. Zrekten is a sample of the upper stream of the watershed, Ouled Dlim’s sample
from the downstream of the watershed, and the sample from Ouirgane represents a deposit
from the watershed tributary (Figure 1). Samplings were taken at a depth of 1 m from the
level of the ground.

The used lime is a dry powder traditionally manufactured by calcining natural calcium
carbonate rocks in the region of Marrakesh (Figure 2a). Lime is a hydraulic binder that
needs water to become slaked according to Equation (1).

CaO + H2O→ Ca(OH)2 (1)

In the present study, lime was sifted at 1 mm, to avoid forming granular particles. Ac-
cording to Lyons [27], using hydraulic lime provides some of the Portland cement properties.

The used natural coal aggregates, imported from China (Figure 2b), were taken from
the thermal power factory’s stocks of Safi. This city is located in the west of Marrakesh
(157 km). The granulometry of these aggregates is between fractions of 0/40 mm. In this
study, we opted for the fraction 2/20 mm.
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2.2. Experimental Methods

To identify the soil properties, it has to undergo several known tests, such as particle
size analysis, plasticity index, chemical, and mechanical tests [28]. Afterward, we will
choose among the three soils we have, which one is the more suitable for earth construction.
Then, the selected soil will be reconstructed by adding lime and coal aggregates to obtain
better thermo-mechanical properties.

The particle size analysis was realized according to the Moroccan standard NM EN
933-1 [29]. The soil is sieved in a series of sieves with a diameter from 0.08 up to 2 mm.
Then, the results were compared with standards used in earth construction in France [30,31]
and Spain [32].

The Atterberg limits test was realized according to the Moroccan standards NM
ISO/TS 17892-12 [33]. The test is conducted with a fraction of soil less than 400 µm.
After sieving the soil, it was slightly dried in the oven. Then, the soil was retrieved and
thoroughly mixed to pass it on a process of lowering the water content until reaching
the plastic and liquid limits. The Proctor test was established according to the Moroccan
standard [34]. In this test, the soil is placed in a standard mold in five compacted layers.
Then, we calculate the optimal dry density in the function of the water content of the soil.

The chemical analysis was conducted by the ICP-MS (Inductively Coupled Plasma-
Mass Spectrometry), which was then carried out on powdery samples by an Epsilon
4 Benchtop XRF-EDS (X-ray fluorescence -Energy Dispersive Spectrometry) Analyzer.
Samples were milled and put in the sample container [35,36].

The specific weight was calculated by measuring weight and dividing by volume at
0 days and 28 days. As to the compressive test of the CEB, two approaches were considered.



Buildings 2022, 12, 1730 4 of 14

Firstly, as it is outlined in the standards of Colombia [37], France [30], and the RILEM TC
164 [38], CEB were cut in halves, stacked, and bonded with the aid of earth mortar, cement
mortar, or both, then, bed jointed to double the slenderness ratio of the test specimen.
Secondly, the Spanish standard UNE 41410 [39] measures the compressive strength by
putting the whole CEB directly between platens. In our case, both techniques were used
and compared.

Thermal conductivity is defined as a substance’s capacity to transmit temperature.
As the substance’s thermal conductivity “λ” decreases, it turns isolated. In this study, the
thermal conductivity was measured using an FP2C device [40], each brick was halved into
two symmetrical pieces, then a hot wire probe was placed in between them to calculate the
thermal conductivity, and the results were read with an FP2C software [41].

2.3. Brick Preparation

After sieving each soil in a sieve of 0/2 mm, they are mixed in a concrete mixer
(Figure 3). The shaking test [42] was used to find the optimal amount of water. This method
consists of picking a small quantity of soil, compressing it in the hand, opening the hand,
and then letting it drop. In case the sample is fine-grained and did not maintain the form
produced by the hand, this means that you should add more water to the mixture. If the
soil retains its shape and gets ruptured into pieces at the moment of its dropping, this
allows the inference that it contains a proper wetness for a good compaction. Finally, if the
soil is plastic in the hand, leaves small traces of moisture on the fingers, and stays in one
piece when dropped, it has too much moisture for compaction [42]. Then, the mixture is
embodied into the mold of the Brava machine (Figure 3b). The Used Brava machine is an
industrialized machine to prepare CEBs (Figure 3c,d).
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3. Discussion
3.1. Soil Identification Results

The results of the particle size analysis are shown in Figure 4. The standard limits
were taken from the minimums and maximums of the previous norms [28,29,32]. The
comparison outlined that the soil of Ouirgane is the only one out of standard recommenda-
tions [30,43], considering the important amount of sand in this soil as in Figure 3 and our
previous work [44].
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As Table 1 shows, the plasticity index (PI) approximated 17%, 15%, and 14% for “Ouled
Dlim”, “Zrekten”, and “Ouirgane”, respectively. Thereby, we can say that all the studied soils
are considered slightly clayey with medium plasticity. Indeed, in the work of Siwei et al. [45],
the soil is considered slightly clayey, once Liquidity Limit (LL) and Plasticity Limit (PL) are
within margin of the following equation: LL/3 < PI < LL/2.

Table 1. Proctor tests and Atterberg limits for the soils.

Soils
Proctor Test Atterberg Limits

Dry Density
(kg/m3)

Water
Content (%)

Liquidity
Limit (%)

Plasticity
Limit (%)

Plasticity
Index (%)

Zrekten 1.98 10 39 19 17
Ouirgane 1.98 8 32 21 15

Ouled Dlim 1.97 7 34 20 14

To recognize if the soil is compressible, we have to calculate its density and water
content through the Proctor test. Craterre et al. [28] showed that for compressible soil,
the specific weight and water content ranged between 1.6–2.2 and 5–15%, respectively.
In a similar study, Jimenez et al. [46] indicated that compressible soil has 1.75–2.3 kg/m3

for density and 5–15% of water content. Nevertheless, for the mechanical proprieties,
according to Koutous et al. [47], an elevated amount of humidity in the soil implies low
resistance and is equivalent to lower resistance. Accordingly, we can say from the results in
Table 1, that our three soils are within range of the required values.

As for the chemical composition of the soils (Figure 5), the ICP-MS results combined
with the XRF-EDS indicate that the sample of Ouled Dlim contains the upmost Magnesium
Oxide (MgO) amount. Magnesium oxide refers to a low alkaline solidifying component
with the least environmental burden that is employed for boosting compressive strength
and CEB’s water resistance [48]. Ouirgane’s soil contains fewer amounts of Magnesium
Oxide and Calcium Oxide (CaO), which shows that this soil has poor cementitious behavior.
Finally, despite the weak amount of Magnesium Oxide in Zrekten soil, it contains an
important amount of Calcium Oxide (17.93%) that will create cementitious bonds within
the soil.
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As to the geological age, our previous work [40], showed that Ouled Dlim’s soil
belongs to the Lower Cretaceous, according to Kamal Taj-Eddine [49], confirming the
possible cementitious behavior of the soil. Secondly, the soil of the Ouirgane dam is of
heterogeneous origin, mainly from Medium Cambrian. Finally, it can be seen that the soil
of Zrekten is from the Basalta of the upper Triassic [50].

Using the Brava machine, CEB were made from each soil with no additives. After
28 days of curing, their compressive strengths were investigated (Figure 6). It was found
that the soil of Ouled Dlim has the highest compressive strength (0.88 MPa). These results
confirmed our chemical and geological conclusions, whereas the dam’s deposit soil has the
least amount of strength, with a value of about (0.62 MPa). This can be accounted for the
small percentage of soil fragments and the sand’s great percentage in the dam’s deposit
soil. The strength values of the three soils are low according to Colombian standards [37]
France [30], and the RILEM TC 164 [38] where the down limit for the compressive strength
is 1.2 MPa. As a consequence, these soils should be reinforced to use in earth construction.
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3.2. Formulation

Based on the identification results, we selected Ouled Dlim soil to prepare our CEB.
This soil will be reinforced by lime (and CA) to enhance its mechanical and thermal
properties. As we can notice in Table 2, the used CA have a low specific weight which
will contribute to producing lightweight construction materials. Moreover, the used lime
contains an important percentage of CaO and MgO that confirms its cementous behavior.
Lime will fill the emptiness that appears in the fragments of soil and consolidate them,
leading to the enhancement of the mechanical proprieties and endurance of the bricks.

Table 2. Materials composition.

Soil
Granulometric

Sieve (mm)
Specific Weight

(kg/m3)
Chemical Analysis (%)

SiO2 Al2O3 Fe2O3 CaO MgO K2O MnO TiO2 Na2O

Lime 0/1 0.67 2.68 1.50 0.05 42.52 31.36 0.08 0.02 0.02 0.66
Coal aggregate 2/20 1.39 20.22 7.05 1.58 2.10 0.71 1.01 0.02 0.40 0.57

In this study, three weight percentages of CA were studied (10, 15, and 20 %wt). First,
we checked the granulometry of all mixtures embedded standards recommendations for
earth construction established by Craterre and Houben et al. [30,43] (Figure 7). Then, to
enhance the cohesion between the soil and CA, we added 4% lime to the formulations.
Many works indicated that the optimum percentage of lime is 4% of volume to avoid
forming lime aggregate [49,51]. To bring insights on the influence that lime has on our
bricks, the three percentages of CA were used with and without lime. These bricks will
be referenced to bricks made with raw earth and others with raw earth and lime, which
leads us to eight formulations, as indicated in Table 3. The percentage of water used for
the mixture is based on the shaking hand test [42]. After several trials, the result found is a
water ratio of 25.5% combined with raw earth, and that ratio changes after adding lime or
CA or both (Figure 8).
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Table 3. Formulations composition.

Raw Earth L10CA L15CA L20CA L 10CA 15CA 20CA

Lime (%) - 4.0 4.0 4.0 4.0 - - -
CA (%) - 10.0 15.0 20.0 - 10.0 15.0 20.0

Earth (%) 74.5 63.5 58.0 52.5 71.52 67.0 63.3 61.6
Water (%) 25.5 22.5 23.0 23.5 24.48 23.0 21.7 18.4
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3.3. Reconstructed Soil Results
3.3.1. Specific Weight

The specific weight (SW) of all formulations was calculated twice, just after the pro-
duction and after 28 days of curing (Figure 9). It was found that with the incorporation of
CA, the SW has decreased slightly by 1, 3, and 6% for CEB reinforced by 10, 15, and 20% of
CA in respect to the reference brick (Figure 9a). After 28 days of curing, we noticed that the
decrease in SW was more significant. For example, CEB with 20% has reached a difference
of 12%.

Once the lime is added to the formulations, the loss in SW gradually becomes more
notable, especially after 28 days of curing. In fact, after the production, the SW loss was
only about 6% under 4% of lime, and reached 12 % after 28 days of curing. As an example,
CEB with 20% of CA and 4% of lime has reached a 12% difference to raw earth results
under the same circumstances (Figure 9b).

This result can be linked to the fact that lime increases the bond between soil particles
and CA, which gives more soil pores. All brick samples show a specific weight between
1.60 t/m3 and 2.00 t/m3.
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3.3.2. Compressive Strength

According to the PR XP P13-901 norm [30], bricks were cut in halves and bonded with
cement mortar. Then, the obtained halved brick was compressed. Figure 10 clearly shows
that the compressive strength (CS) obtained with this technique is less than half of the one
using the whole brick. This can be explained by the fact that the cutting leads to cracks
creation, which weakened the halved bricks. We do not recommend this technique for
CEBs. Thereby, our analysis of the effect of CA and lime on the CEBs strength is based on
the technique of using the whole brick.
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Moreover, we can see from Figure 10 that an incorporation of 4% of lime enhanced the
compressive strength at 28 days of curing by 25.57%, in regard to raw earth bricks. This
result is in line with many studies in the literature [11,13,14].
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However, the compressive strength dropped linearly with the increase of CA per-
centages, reaching a 32.95% loss compared to raw earth for formulation with 20% of CA
(Figure 10a). The addition of lime increased the compressive strength by 37.5%, 20%, and
5%, respectively, for formulation with 10%, 15%, and 20% of CA, with respect to formula-
tions without lime (Figure 10b). The increase in CS is related to a higher amount of CA,
presenting a lack in connecting CA particles with the soil, which needs more binder to
bond its granular particles to those of the soil.

Our formulations present intermediate results of 0.99, 0.81, and 0.62 MPa with
L10CA, L15CA, and L20CA, respectively, compared to reinforcements, such as barley
straw 0.4 MPa [18] and lavender straw 0.6 MPa [18] from the literature (Table 4).

3.3.3. Thermal Conductivity

The thermal conductivity results of the studied bricks are presented in Figure 11.
Adding only lime has a very slight impact on the thermal conductivity of the CEBs. How-
ever, the incorporation of coal aggregates shows a significant impact. The thermal conduc-
tivity decreased linearly with the addition of CA, especially with the presence of lime. For
example, bricks with lime and 20% of CA have a thermal conductivity of less than 60%
regarding the reference CEB. This is due to the low thermal proprieties of CA compared
to the one of raw earth. Nevertheless, the thermal conductivity based on the CA amount
in the bricks behaves differently with and without lime. The linear dependency of ther-
mal conductivities observed in Figure 11, were obtained with resolution coefficients of
R2 = 0.8963 without lime and R2 = 0.931 with 4% lime, and with the following equations,
Equations (2) and (3):

With lime λ = −1.8617(CA%) + 0.6429 (2)

Without lime λ = −0.5686(CA%) + 0.6437 (3)
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At its heart, this investigation aims to identify and optimize the formulation of CEBs
boosted with CA. Therefore, as in Figure 12, the optimal reinforcement percentage of CA
is 15%, due to its mechanical properties and suitable thermal behavior. The addition of
lime makes soil particles coarser which results in creating important macropores in the
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soil, leading to the enhancement of the thermal behavior of brick samples, as explained by
Le Runigo [52].
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Using 15% of CA with lime prevents the brick from brittle by providing a slight drop
of 9% in the compressed strength but reducing its thermal conductivity by 37.17%, with
respect to the reference CEB.

In evaluating how CA affects the thermal insulation performance of CEBs, Table 4
portrays the thermal conductivity results of CEBs boosted with different vegetal fibers.
The difference between the raw and modified state in the case of 20% of CA was similar
to results with Alfa and straw fibers. Nevertheless, the CA have a fixed composition
and constant proprieties unlike the vegetal fibers that are highly affected by the growing
condition and extraction area. Moreover, the biodegradability of the vegetal fibers will
reduce the durability of the compressed earth bricks.

Table 4. Thermal conductivity/compressive strength of our bricks compared to the ones insulating
materials presented in the literature.

Composition
Thermal

Conductivity
(W/m.K)

Raw Soil Thermal
Conductivity

(W/m.K)

Difference between
Raw and

Modified State
Compressive

Strength (MPa) Reference

L20CA 0.256 0.635 60% 0.62 Our Study
L15CA 0.399 0.635 37.17% 0.81 Our Study
L10CA 0.433 0.635 32% 0.99 Our Study

Clay + 4%Alfa 0.372 0.938 60.34% 1.75 [53]
Clay + 4%straw 0.34 0.938 63.75% 1.53 [53]

Clay + 6% argan nuts + 5% cement 0.481 0.865 44.39% 1.85 [54]
Raw earth + 6% barley straw 0.155 0.471 67.09% 0.4 [18]

Raw earth + 6% lavender straw 0.289 0.471 38.64% 0.6 [18]
74%Laterite + 20%sand +6%cement 0.69 0.8 13.75% 2.5 [55]

Raw earth + 30% olive waste 0.4 0.65 38.46% _ [20]
Raw earth + 30% dates palm fiber 0.28 0.65 56.92% _ [20]

Raw earth + 30% straw 0.26 0.65 60.00% _ [20]

3.3.4. Economical Manufacturing CEBs Comparison

In Morocco, the price for manufacturing earth bricks with only raw earth is around
0.21 USD/brick, while the price for earth bricks with 5% of cement as a binder is around
0.37 USD/brick, according to local companies of earth construction. In Table 5, we can see
that the price of earth bricks reinforced with coal aggregates is less than the price of earth
bricks with 5% of cement.
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Table 5. CEB Cost of manufacturing.

Materials Price

Price of CA in Morocco (2021) 0.11 USD/kg
Price of Raw Earth Brick in Morocco 0.21 USD/brick

Price of Earth Brick + 5% Cement in Morocco 0.37 USD/brick
4% of Lime 0.05 USD/brick
L20CA CEB 0.33 USD/CEB
L15CA CEB 0.31 USD/CEB
L10CA CEB 0.30 USD/CEB

4. Conclusions

In general, we can conclude that the soil from Ouled Dlim area is the most suitable
for the compressed earth bricks CEBs production in Marrakech region because of its good
granulometry, specific weight, and plasticity index. Besides, this soil has the highest amount
of magnesium oxide (MgO) and calcium oxide (CaO) that predict a good cementitious
behavior, which was experimentally confirmed with 0.88 MPa in compressive strength.
The addition of coal aggregates to the selected soil has resulted in a significant decrease of
the specific weight of the CEBs. In fact, CEBs manufactured with 15 wt% (optimal value)
of coal aggregates are 11% lighter than the referenced bricks. However, the compressive
strength of CEBs was found to decrease with the addition of coal aggregates. Thereby, even
with the addition of lime, to meet the international standards on compressive strength of
CEBs, we recommend to not exceed 15% of CA. On the contrary, the thermal conductivity
was improved by 60 and 37%, with incorporation of 20 and 15% of CA, respectively.

Considering the above, we can say that CA are a good alternative to vegetal fibers in
CEBs since they are available in large quantities with constant proprieties, reasonably priced
and, not biodegradable. Moreover, the use of CA in CEBs will minimize the environmental
impact of the fossil industry and improve the energy performance of the building sector.
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