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Abstract: As a systematic, preventive, and structural adjustment method of improving building
energy conservation and carbon emission reduction, urban planning has received extensive attention.
However, due to the insufficient interface between energy-saving technology and urban planning
systems, urban planning has not properly played a role in building energy conservation. Scientific
and innovative technical methods are urgently needed to explore the role of coordinating multiple
effective planning elements in overall building energy conservation through urban planning means.
Due to climate conditions, there is high demand for conserving building energy in severe cold
regions, but research into this has not been thoroughly carried out. Harbin, located in the northeast
of China, belongs to the Dwa zone of the Köppen–Geiger Climate Classification, and is also a typical
city of severe cold regions where the daily average temperature is lower than 5 ◦C for more than
145 days in a year. This study takes Harbin as an example and uses agent-based modeling to
establish an urban-scale building energy consumption simulation model. The model contains four
types of agents (a global agent, building agent, residential agent, and household equipment agent)
and two types of influence factor modules (an urban form module and a climate module). Three
simulation scenarios were designed, including a baseline scenario, an urban form scenario, and a
climate scenario. The baseline scenario provided an overview of the urban-scale building energy
consumption distribution characteristics of Harbin and served as a reference group for the simulation
results of other scenarios. The urban form scenario results show that when the elements with a
highly significant impact change by 1 unit, the retail building block has the most obvious change
in energy consumption, up to 44.7 × 106 kWh/105 m2/year, while the office building block has the
lowest change, with 34.5 × 103 kWh/105 m2/year. The fluctuation of electricity is the most obvious,
but the total change is lower than the heating energy consumption. The climate scenario shows
that the energy consumption of residential land in urban centers will consistently rise in the next
50 years, up to 5.3 × 105 kWh/105 m2/year. Based on these results, this study puts forward future
building energy conservation planning strategies for Harbin, focusing on three aspects: the planning
and control of urban form, the optimization and adjustment of the climate, and the building energy
conservation planning system. These research results are expected to provide scientific support for
transforming Harbin into a low-carbon city.

Keywords: urban energy efficiency planning; building energy consumption; agent-based model;
severe cold regions

1. Introduction

The building and construction sector is the primary focus of attempts to reduce green-
house gas emissions. In 2018, it accounted for the largest share of global energy use (36%)
and energy-related CO2 emissions (39%) [1]. The impact of urban spatial planning on
building energy consumption has been widely recognized. Creating an energy-efficient
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and low-carbon-oriented spatial environment through urban and rural planning is essential
for optimizing and improving the overall low-carbon development of buildings [2]. Urban
building energy conservation planning provides a platform for comprehensive considera-
tion of the interaction between buildings and multiple urban environment elements, which
is conducive to improving scientific and operational decision-making [3].

Planning for building energy conservation is a systematic task, and many factors need
to be considered, including building monomer factors and urban planning elements that
affect its energy consumption, as well as the interactions between the urban environment
and building monomer thermal elements. Besides the physical condition of a building (the
building type [4], the construction [5], the material, etc.); its heating, ventilation, and air
conditioning system (the HVAC) [6]; and its energy consumption patterns (ECP) [7], urban
form and climate are the two main aspects that are widely regarded as the influencing
factors of building energy consumption at an urban scale. They are also factors that can
be adjusted through urban planning [8]. The impacts of neighborhood building height [9],
building density [10], aspect ratio [10,11], etc., on building energy consumption have been
confirmed by several studies. Meanwhile, the effect of climatic conditions has also been
widely discussed. Air temperature, wind speed, and relative humidity are the three main
climate variables used in most models that investigate the potential impacts of climate
change on the energy demands of heating and cooling buildings [12–15]. Existing studies
have explored building energy conservation planning methods by optimizing the above
factors [16]. However, most of these studies generally focus on one specific influencing
factor. This is because the complexity of urban systems and the uncertainty of the interaction
between multiple influencing factors limit traditional research methods in simulating the
dynamic changes in multiple influencing factors [11,17]. A systematic review shows that
many space-related building energy modeling methods have been developed recently.
However, a comprehensive urban-scale building energy conservation planning framework
has not yet been developed [18]. Currently, most methods have not integrated all stages of
urban planning. That is, not all planning aspects have been considered. The main reason
for this is that the formation of a complete urban building energy conservation planning
model faces several obstacles. First of all, it needs to integrate a wide range of disciplines
and needs to combine various different methods to deal with the correlations between
different planning elements. Second, it requires high-level data and high analog computing
capabilities. Large standardized databases and public data sources have limited availability
and reliability at the local level. This problem is very challenging because data are not
always open-source or up-to-date. Finally, a comprehensive and clear planning framework
is necessary so that decision-makers can understand it. Therefore, it is essential to promote
future research to develop more integrated technologies for various planning approaches
related to the vision of sustainable urban planning.

In order to solve the above problems, the technology of urban system simulation has
been constantly innovated in recent years. These models can be generally divided into
top-down models and bottom-up models [19]. Among them, agent-based modeling (ABM),
with its ability to synchronize and dynamically adjust multiple planning elements, has
become one of the most popular technical tools for studying complex urban issues [20–22].
This kind of model is usually bottom-up or a combination of top-down and bottom-up.
Compared with other models, it shows great advantages in simulating active and passive
changes in the object of study in real-time and providing corresponding feedback to achieve
dynamic equilibrium of the overall system [23]. The use of ABM has been widely explored
by scholars in the urban planning field. It is used to build land-use planning models [24,25],
urban space expansion models [26], models for public participation in urban planning [27],
housing demand models, etc. [28,29]. In the study of building energy consumption, al-
though ABM is more often used in research related to energy-use behavior [30,31], it has
also been attempted in other areas in recent years, such as thermal energy transition in the
built environment and energy feedback methods [32–34]. Relevant research results have
confirmed that the application of this technique can effectively improve the simulation
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accuracy of urban systems. Considering the current knowledge, this study aims to explore
a method to comprehensively consider various factors of urban-scale building energy con-
sumption from the perspective of urban planning. The simulation results will support the
formulation of energy efficiency planning decisions and facilitate planners. The technical
advantages of ABM can provide support in solving the challenges of this study.

In the existing research on macro-level urban energy conservation planning, cities in
severe cold regions are not the main focus. However, due to the current climate, cities in
severe cold regions usually face the complex issue of heavy energy-saving and emission-
reduction tasks caused by the high building energy demand [35]. The term “severe cold
region” usually refers to an area where the daily average temperature is lower than 5 ◦C
for more than 145 days in a year, and it is also one of the five different climate regions in
China. However, the research on building energy conservation from a planning perspective
in this area is insufficient. Most research on building energy consumption in severe cold
regions focuses on the design and thermal performance of a single building. Building
materials [36] and reconstruction and optimization methods of single buildings [37,38]
are usually the focus of such research. These research results and methods are more
convenient for engineers and architects than for urban planners. Although some studies
have begun to pay attention to the impact of urban planning elements on building energy
consumption, most focus on hot summer and cold winter areas with a strong dependence on
air conditioning, or are general studies that do not consider climate zoning. Urban planning
elements that significantly affect energy consumption related to air conditioning [39], and
a general energy-system planning-evaluation simulation research framework [40], have
been proposed. These studies can provide a reference for cities in severe cold regions, but
they cannot be entirely suitable for these regions. The heating demand for urban buildings
in severe cold regions is far higher than the demand for electricity throughout the year.
Climate protection in urban planning is essential for building energy consumption. In
summer, the residents’ cooling method is still the use of natural ventilation rather than
air conditioning [22]. These differences lead to the need for extra attention being paid to
severe cold regions, rather than solely general research.

Based on the above research background, this study took Harbin, a typical city in the
severe cold region of China, as the research object and built an agent-based simulation
model by integrating the influencing factors of building energy consumption at an urban
scale. We referred to our previous quantitative research on influencing factors as the
parameters of the model [41]. This paper takes the influencing factors identified in [41] as
the basic variables under the influence module of the model, and model programming is
conducted based on the quantitative influence relationship calculated in [41]. Finally, the
strategies for building energy conservation planning in severe cold regions are proposed
based on the scenario simulation results. The model and the strategies are supposed to
provide a scientific basis and quantitative support for transforming Harbin into a low-
carbon city.

2. Materials and Methods

In general, the ABM method has the following advantages over other methods that
have been confirmed in many studies [42,43]: (1) ABM has the characteristics of modu-
larization, flexibility, large-scale expressiveness, and parallel execution and can naturally
describe complex adaptive systems in reality. (2) Unlike traditional modeling methods,
which directly describe the system behavior, ABM starts from the description of behavior
at the micro-level of the system, taking into account the autonomy and heterogeneity of
the agents. (3) The idea of “bottom-up” modeling is adopted to effectively establish the
relationship between the behavior of micro-agents in the system and the macro-attributes
of the system, which is conducive to the study of system emergence. (4) This method is
suitable for hypothesis testing, and the model has good reusability. (5) It can be combined
well with other methods, such as discrete methods or system dynamics. Based on the above
characteristics and advantages, our research selects this method to establish an urban-scale
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building energy consumption simulation model. The application is based on Harbin, China.
This section provides a detailed description of the basic data, system construction and
functional design of the model.

2.1. Study Area and Data

Harbin is the political, economic, and cultural center of northeastern China and a
typical representative of cities in the severe cold region [44]. Since building electricity and
heating energy are the most critical aspects of building energy consumption [45], this study
focuses on the impact of urban planning on these two types of energy consumption at an
urban scale.

The database of building energy consumption used in this study was obtained from the
Harbin Municipal Leading Department of Building Energy-Saving Wall Material Reform.
This came from a monitoring project on building energy consumption in Harbin in 2017.
The electricity consumption information was provided to the government by the State Grid
Corporation of China. Some heating energy consumption data were obtained from the
National Energy Monitoring System for large public buildings, and the heating company
provided the rest. Most cities in severe cold regions in China use central heating systems,
also known as district heat supply; these use steam or hot water as the medium to supply
domestic and production heat to users throughout the city or one of the regions through
the heating pipe network. The heating company is the primary department responsible for
adjusting the central heating system to supply heat to buildings according to the external
temperature and heating standards. For example, in Harbin, the indoor heating standard
of a residential building is 20 ◦C. In the original database, the unit of building electricity
data is kWh/year, while the unit of heating is kJ. In order to facilitate the comparison
and calculation of total energy consumption, the unit of heating energy consumption is
converted into kWh/year in subsequent research. Energy-use intensity (EUI) is used as the
measurement index, which is usually expressed as the total amount of energy consumed
per unit of building area in one year (kWh/m2/year) [46]. In addition to the energy
consumption data, the database also records the physical information of each building,
including the location, floor numbers, height, function, and build time. After the initial
selection of the sample buildings, we determined the cooling and heating methods of
the buildings through field surveys, such as consulting the community managers and a
questionnaire survey of residents. In addition, some building characteristic values were
revised using the field surveys, such as the number of floors, the floor height and whether
there is a basement.

In order to study the influencing factors at the macro-level of the city, we set some con-
ditions for the selection of sample buildings to control the physical variables of individual
buildings and avoid any difference in energy consumption caused by these micro-factors.
(1) Location: Four administrative districts in the central urban area were selected as the
study area, and the distribution of building samples were uniform and scattered. (2) Build-
ing age: The “JGJ26-1986 Standard for Energy Efficiency Design of Civil Buildings (Heating
Residential Buildings)” was issued to regulate the design standards related to the heating
of buildings. Therefore, buildings built after 1986 were selected to ensure unity of the
design standards, structure, and materials, ensuring relatively consistent thermal perfor-
mance of buildings with the same function. (3) Building type: Building types were used
whose energy consumption is significantly affected by the external urban environment,
including residential buildings, retail buildings, medical buildings, education buildings,
hotel buildings, and office buildings. (4) Building form: The possible building forms of
various building types, such as bungalows, low-rise, mid-rise, and high-rise buildings,
were comprehensively considered. (5) Heating method: This mainly included buildings
with a centralized heating system in winter to ensure a consistent statistical caliber of
heating data. For public buildings with independent heating, the statistical value of heating
energy consumption was converted into the unit of urban central heating.
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Finally, 609 civil buildings in the central area of Harbin were selected as samples,
including 242 residential buildings, 48 hotel buildings, 50 retail buildings, 35 medical
buildings, 107 educational buildings, and 127 office buildings. These six types of buildings
are considered to be the ones whose energy consumption is more affected by the urban
environment. Table 1 shows the range of physical information for each type of building in
this study. Gross floor area refers to the total area of each floor of a building. Footprint area
refers to the area of land occupied by the building.

Table 1. Range of physical information for different types of sample buildings.

Building Type Building Height (m) Gross Floor Area (m2) Footprint Area (m2)

Hotel 5.92–108.73 941.13–6036.59 172.00–4018.23
Retail Business 6.00–97.00 1536.6–238,437.16 269.12–101,453.12

Medical 3.29–57.42 810.65–76,286.13 223.51–3632.20
Education 3.49–57.00 503.04–85,500.63 174.10–6276.32
Residential 11.39–111.84 158.06–45,679.20 158.06–5279.00

Office 4.00–115.25 941.61–106,209.65 50.30–5373.42

2.2. Model System

The identification results of the influencing factors quantitatively describe the relation-
ship between the urban form, climate factors, and energy consumption of different types
of buildings in Harbin. Based on this relationship, the agent-based modeling technique
will mainly solve the following two problems: First, to realize the integration of multiple
influencing factors within the same simulation system and to accurately simulate the influ-
ence mechanism of specific influencing factors on the overall building energy consumption.
Second, to propose planning strategies that can meet the building energy-saving targets
based on the energy-saving prediction results of different planning scenarios.

Based on the above objectives, the design idea of the model is to first build a framework
of urban-scale building energy consumption simulation system, and set the buildings,
residents, and household equipment as agents at different levels. Each agent interface
will contain its own parameters and environmental parameters. This study converts local
influencing factors and their quantitative influence relationships into model parameters.
The model operation environment and rules are set as the action of the parameters, and
urban form and climate are set as condition modules. During simulation, the household
equipment agent in the building agent can automatically call the parameter values in the
condition module and the characteristic values of the residents to calculate their individual
energy consumption, summarize them in the building agent, and finally, output the overall
or regional total building energy consumption value through the calculation function on
the main panel. The study takes systematic thinking as the starting point, fully considers
the operability and scalability of the model, and relies on the AnyLogic software platform
to complete the model construction. The general idea of the model design is shown
in Figure 1.

2.2.1. Classification of Agents

The design of agents for the urban-scale building energy consumption simulation
model includes a “global agent”, “building agent”, “resident agent”, and “household
equipment agent”.

The global agent is the overall control area of the model, including the group of build-
ing agents and variables at the macro-level of the city, such as climate factors, socioeconomic
factors, population, policies, and guidelines related to building energy conservation.

The building agent includes physical information, such as the building number, func-
tion, location, resident agent, and household equipment agent within the building. In
addition, it also includes the urban form parameters within the neighborhood where the
building is located, such as building density, floor area ratio, aspect ratio, building height,
and shape factor (Figure 2).
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The resident agent contains all information related to energy users, including their age,
gender, education level, income level, energy-saving awareness level, and daily energy-use
habits (Figure 3). In this agent, the residents’ energy-use behavior is quantified by the
probability values obtained from the questionnaire survey. Although each agent has its
own parameters, the overall behavior exhibited by its group can represent the general rules
of residents’ energy-use patterns at the city scale.
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The household equipment agents are located within the building agent, representing
the energy-use pattern and intensity of the equipment in the building. The types of
equipment are not identical in each building and are set based on the holding data obtained
from the survey. The equipment use pattern is associated with the resident agent and
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controlled by the individual characteristic parameters and climate conditions. For example,
Figure 4 shows a state diagram of the heating behavior of the air conditioner and the
settings of key process nodes.
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2.2.2. Influence Modules

The agent-based model in this study operates via the feedback mechanism of building
energy consumption on influence factors. Therefore, it is essential to integrate the main
influencing factors into the same simulation system. According to the existing research, the
influencing factors of building energy consumption at the urban scale can be divided into
urban form and climate. This study designs two different functional modules to realize
the integration of multiple parameters. Each module has its own relatively independent
parameters, which are related to each other through temporal or spatial variables. The
interaction between different agents and the dynamic changes between agents and the
environment are realized through the code settings of the actions (“Entry Action” and
“Exit Action”).

The urban form module exists at two positions in the model. The first position is
within the global agent, also referred to as the main panel. Through the pre-processing
of the ArcGIS software, the central area of Harbin is divided into blocks, with the effec-
tive influence radius of the external environment on building energy consumption set at
340 m [47]. The land-use types of each block are categorized to form a table function named
“TypeOfBlock”. The second location of the urban form module is within the building agent.
Following pre-processing through ArcGIS software, five types of urban form factors of
77,637 buildings in the central area were obtained, including building density, floor area
ratio, aspect ratio, building height, and shape factor, which were set as “variable” in the
model. The building density refers to the proportion of the total building footprint area to
the total land use area. The floor area ratio is calculated by dividing the gross floor area
by the total land use area. The aspect ratio is calculated as the ratio of building height
to the width of the distance between buildings. The shape factor reflects the ratio of the
external surface area of a building in contact with the outdoor atmosphere and the volume
enclosed by it. The urban form variable of each building will be assigned according to the
building serial number, and the data type is set as “double” in the model. Figure 5 is an
example of a coding window for building height variables. The building type parameter is
retrieved from the database during the simulation process according to the agent number
of each building.

In the climate module, all parameters are set as global variables within the global agent
since they represent the macro-climate environment in the central area of Harbin. The three
types of climate parameters in the database are set as the table functions “TEMP”, “WSP”,
and “RH”, respectively. In addition, the climate variables “monthlytemp”, “monthlywsp”,
and “monthlyrh” are also set for the model simulation. For example, the command to
assign a value to the temperature is “monthlytemp = TEMP (MonthOfYear)“. In most
urban-scale building energy consumption modeling studies, the climate module usually
adopts the urban climate mathematical model at the source-code level or the pre-processed
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meteorological data in the meteorological database. Most studies use the latter method [48].
For example, CitySim software uses pre-processed urban macro-, meso-, and urban canopy
climate data to modify the climate input values of other sub-models [43]. In order to ensure
the calculation capacity of the model at the current stage, the climate module in this study
also uses pre-processed climate data, which are set on the main panel of the model in the
form of table functions. The climate value is captured in 24 h, and the updated rule settings
are shown in Figure 6. The energy consumption simulation calculation function is also set
on the main panel, and the command set is shown in Figure 7.
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2.2.3. Parameter Values

Urban form influences building energy consumption levels by changing the thermal
performance of buildings, including the building density, aspect ratio, floor area ratio,
building height, and shape factor [49–53]. The climate is mainly composed of temperature,
wind speed, and relative humidity. In order to remain consistent with the actual database
of building energy consumption, this model is temporarily constructed using climate
data for the year 2017. According to a previous study by our team, the quantitative
relationship between building energy consumption and various impact parameters at
the urban scale is shown in Tables 2 and 3 [41]. That study used the same research area,
sample buildings, and basic data as this paper. Therefore, the identified influencing
factors and quantitative relationships in [41] are applicable to the parameters required
for the model built in this study. Correlation, regression, and sensitivity analyses are
widely used in current research on the factors that play a leading role in building energy
consumption. This study chose stepwise regression to solve the problem of multicollinearity
among elements and ensured that influence relationship determination was carried out at
a highly significant level. The study followed a standard statistical analysis process. Firstly,
correlation analysis was conducted to select the factors that preliminarily impact building
energy consumption. Then, the variance inflation factor (VIF) was used to determine
whether there was multicollinearity between the impact factors [54]. This was calculated
by taking the ratio of the variance of all of a given model’s betas divided by the variance of
a single beta if it were fit alone. Following this, the stepwise regression method was used
to quantify the influence level between the factors and energy consumption. In the end,
an independent two-sample t-test was performed to examine whether the independent
variable in the regression model was correlated to the dependent variable. In this study,
the identified influencing factors were used as the “variables” and “parameters” set on the
agents’ panel. The constant and denormalization coefficient results obtained from each
stepwise regression will be used as the input information of the model. The denormalization
coefficient is the slope of the regression equation, indicating that each independent variable
changes by one unit, and the dependent variable changes by a number of units. The
coefficient is related to the unit taken by the independent variable, so it can be used for
prediction and calculation. In order to avoid repetition of the previous article’s content, this
article will not repeat the detailed data and theoretical analysis process.

Table 2. Stepwise regression results of urban form factors and building EUI.

Building Type

Electricity EUI (kWh/m2/Year) Heating EUI (kWh/m2/Year)

Variable Denormalization
Coefficient Variable Denormalization

Coefficient

Hotel
/ / (Constant) 192.037
/ / Building Height (m) −0.601

Retail
(Constant) 21.081 (Constant) 105.508

Shape Factor 357.346 Aspect Ratio 51.45
/ / Shape Factor 239.71

Medical
(Constant) −17.89 / /

Building Density (%) 2.514 / /

Education
(Constant) 50.964 (Constant) 170.211

Building Height (m) −0.775 Building Height (m) −0.65

Residence
(Constant) −18.732 (Constant) 99.013

Shape Factor 266.632 Floor Area Ratio 9.516
/ / Shape Factor 217.762

Office
(Constant) 51.519 (Constant) 179.642

Building Height (m) −0.279 Building Height (m) −0.369
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Table 3. Stepwise regression results of climate factors and building EUI.

Building Type

Electricity EUI (kWh/m2/Year) Heating EUI (kWh/m2/Year)

Variable Denormalization
Coefficient Variable Denormalization

Coefficient

Hotel
(Constant) 6.669 (Constant) −1.074

Wind Speed −1.264 Wind Speed 6.856
Temperature 0.087 Temperature −1.003

Retail
/ / (Constant) 57.233
/ / Wind Speed −10.281

Medical
/ / (Constant) 23.458
/ / Temperature −0.639

Education
/ / (Constant) 43.923
/ / Wind Speed −7.303

Residence

(Constant) 10.231 (Constant) 0.553
Wind Speed −0.598 Wind Speed −7.187

Relative Humidity −0.073 Temperature 0.627
/ / Relative Humidity 0.792

Office

(Constant) 42.605 (Constant) 44.302
Wind Speed −8.686 Wind Speed −2.342
Temperature 0.382 Temperature −1.060

Relative Humidity −0.183 Relative Humidity −0.315

2.2.4. Model Validation

Model testing and validation are essential aspects and the most challenging and
controversial issues in agent-based modeling. Usually, an agent-based model includes
multiple non-associated variables and attributes to express factors’ heterogeneity, which
verify such models based on their construction principle and structure. Considering that
this model is built based on mathematical statistics, we refer to the method of Ciulla G [55].
To assess the stability of the model parameter values and whether the model can be used
in ranges other than the sample observations, this study compared the simulated values
with the standardized residual analysis of the actual energy consumption dataset. The
results show that the standardized residual values are within ±2 for both the simulated
data values and the actual energy consumption data (Figure 8), indicating that the data
are reliable.
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2.3. Simulation Scenario

The simulation scenarios designed in this study can be cataloged as the baseline, urban
form, and climate scenarios, which are set up mainly through the global parameters in the
main panel of the model and the setting and conversion of the parameters of each influence
module. Since cities in the severe cold regions of China mainly adopt centralized heating
systems, the daily electricity consumption and the winter heating energy consumption of
buildings are different in terms of pathways and statistics. The model calculates electricity
and heating energy consumption separately, then, calculates the block’s total building
energy consumption (Equation (1)).

E = ∑n
i=1[(EUIe,i + EUIh,i) ∗ Ai)] (1)

where E is the total building energy consumption of the block (kWh/year), n is the
number of buildings in the block, EUIe,i is the electricity use intensity of the building i
(kWh/m2/year), EUIh,i is the heating energy-use intensity of the building i (kWh/m2/year),
and Ai is the gross floor area of the building i (m2).

Baseline Scenario: The building EUI level in the baseline scenario is the standard
reference group for the simulation results of all scenarios. The design of the baseline
scenario should conform, as far as possible, to the reality of urban zoning, economic and
social development, climate, and other factors. In this study, the Monte Carlo method is
used to estimate the total annual building EUI using the actual EUI value of the sample
buildings, and then, determine the benchmark building energy consumption in the central
area of Harbin.

Urban Form Scenario: As the current development of the central area of Harbin is
relatively stable, it is unreasonable to take energy conservation as the only goal to design
urban form indicators that are divorced from the actual situation. The results of this
scenario are expected to support the planning strategy related to the urban form indicators;
they should identify the area of building energy consumption most sensitive to urban
form factors, which will be focused on first, and how much of an energy-saving effect this
area may produce. Therefore, the simulation parameters are designed according to the
significant influencing factors and their impact on each type of building. The value is a
1-unit increase or decrease in the initial value under the baseline scenario (Table 4). During
the urban form scenario simulation, the initial parameter is each block’s current urban
form factor value. The parameter values of the influence factors that significantly impact
building energy consumption are updated according to the settings of the scenario. Climate
parameters and residents’ daily life patterns remain unchanged under this scenario.

Table 4. Parameter settings for urban form scenario.

Building Type Adjusted Parameters Value Changes from Baseline

Hotel Building Height (m) +1.00

Retail Building Aspect Ratio −0.10
Shape Factor −0.10

Hospital Building Density (%) −1.00
Educational Building Building Height (m) +1.00

Residential Building Floor Area Ratio −0.10
Shape Factor −0.10

Office Building Building Height (m) +1.00

Climate Scenario: The main objective of the climate simulation scenario is to predict the
trend of urban-scale building energy consumption under future climate change conditions.
This study uses the BCC_CSM1.1 climate model from the National Meteorological Center
of the China Meteorological Administration climate system to analyze the climate change
projection results in the northeast region of China under the background of RCP2.6 CO2
emissions. The BCC_CSM1.1 climate system model has reached the world’s most advanced
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level of prediction and testing accuracy after a long time-series of climate experiments [56].
The RCP2.6 CO2 emission scenario is one of the four greenhouse gas concentration scenarios
proposed in the Fifth IPCC Assessment Report [57]. RCP represents the Representative
Concentration Pathways, and the figure represents the radiation force level of 2.6 Wm2 in
the year 2100. RCP2.6 is the most ideal of the four scenarios. It assumes that human beings
will use more positive methods to reduce greenhouse gas emissions. By the end of this
century, greenhouse gas emissions will become negative. In this scenario, the temperature
will not rise by 2 ◦C.

This study uses a climate projection scenario for the next 50 years to create a long-term
projection of building energy consumption in the central city of Harbin.

3. Results
3.1. Characteristics of Energy Consumption of Sample Buildings

Building function determines how the building is used, as well as the energy-use
patterns within the building. The electricity EUI and heating EUI of six types of buildings
in Harbin show relatively similar patterns (Figure 9). The overall level and median of
electricity EUI in the hotel, educational, residential, and office buildings do not differ
significantly, indicating that these four types of buildings have some similarities in terms
of electricity demand. The difference in electricity consumption EUI for retail buildings
of different sizes and types is more pronounced. Medical buildings have higher heating
demand in winter than other building types. Retail, medical, and residential buildings
have higher total EUI than others. In general, retail and medical buildings consume the
most energy per unit area of all six types.
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In order to observe the distribution of building energy consumption in urban space,
this study uses GeoDa software for spatial clustering analysis. GeoDa is a free and open-
source software tool that serves as an introduction to spatial data science [58]. The software
can perform many kinds of spatial data analysis, such as spatial autocorrelation statistics
of aggregated data and basic spatial regression analysis of point and polygon data. The
distance weight is set using the k-nearest neighbor algorithm (KNN), and the value is set
to 4. Local Moran’s I is used to identify the relationship between energy consumption at a
specific location and its surrounding energy consumption, that is, the type of clustering
or outliers. Based on the calculation results of Local Moran’s I, we drew a LISA (Local
Indicators of Spatial Association) cluster map of the annual building EUI. We introduced
the method for this in detail in previous research (ref. [41]) and will not repeat it in this
paper to avoid repetition. The distribution of building EUI in the study area is low in the
center and high in the periphery (Figure 10). The possible reason for this is that Harbin
is vulnerable to the cold air from northern Siberia, resulting in lower temperatures in the
outskirts than in the central areas. Additionally, the city’s heat island effect can make
the central area slightly warmer than the fringe area. During the transition season at the
beginning or end of the heating period, the use of electric heating equipment in the edge
zone is higher than that in the central zone, increasing the EUI of buildings in the edge
zone. The northern and eastern parts of Harbin’s central area are prone to high-heating-EUI
clusters, while the central and southwestern parts are mostly low-heating-EUI clusters. The
spatial distribution shows that building heating EUI decreases from northeast to southwest.
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3.2. Baseline Scenario

Figure 11 shows the building EUI simulation results in different blocks under the
baseline scenario. The EUI results show obvious differences across the blocks, which may be
caused by differences in land use and urban form. The building energy consumption in the
central area shows an aggregated spatial distribution pattern. The high-energy-use areas
are located primarily in clusters, mainly in the northern part of the neighboring river and
the periphery of the central area of the main city. Most of these areas are new development
zones built in the main urban area of Harbin in recent years. The low-energy-consumption
areas are mainly distributed in the central area of the main city, which is also the old area
of the city. The building energy consumption of the blocks adjacent to both river banks is
generally higher than that of the non-river-adjacent area.
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The spatial distribution of the electricity and heating EUIs is similar but different. The
difference mainly lies in the distribution of high-EUI areas. The high EUI of electricity and
heating is mainly distributed in the central area to the south of the river and the northern
area to the north of the river. The EUI of blocks on both sides of the river is higher than that
of “inland” areas. To the north of the river, there is an overlap between the high-electricity-
EUI area and the high-heating-EUI area, which indicates that the overall building energy
consumption in this area is high, and it should be a key area for energy conservation.

3.3. Urban Form Scenario

Figure 12a shows the changes in total annual building energy consumption under the
urban form scenario for each block of the central area. As introduced in Section 2.2.2, the
study uses 340 m as the influence radius to delimit the “block” to collect urban form data.
In the simulation scenario, in order to assist in the formulation of planning strategies, the
building energy consumption data are connected to the land in an urban planning context in
order to calculate the change in overall building energy consumption on the block, as shown
in Equation (1) in Section 2.3. Therefore, in the urban form scenario and climate scenario,
the unit of simulation results is kWh/block. The area of each block is about 105 m2. The
highest reduction appears in the blocks for retail buildings at 44.7 × 106 kWh/block/year.
The blocks for office buildings see the lowest drop, at 34.5 × 103 kWh/block/year. The
simulation results indicate that the south and southwest areas of the river are more sensitive
to urban form factors. This result suggests that building energy conservation through urban
form measures should focus on Harbin’s central and southwestern areas.

It can be seen from the comparison between Figure 12b,c that urban form factors have a
more significant impact on building electricity consumption on an urban scale, with a more
significant proportion of areas with high energy efficiency. These high-energy-efficiency
areas are mainly concentrated in the western region south of the river, which is a new urban
area mainly comprising residential and commercial land. This shows that the adjustment of
urban form indicators is more effective for building energy conservation in new urban areas
with high-quality residential buildings. At the same time, cross-comparison shows that the
main reason that the overall energy-saving effect of these areas is not apparent is that the
heating energy efficiency of these areas is not significant. The total energy consumption
for heating is much higher than that for electricity consumption and it occupies a leading
position in the overall energy-saving effect. Although heating is only available for six
months, the annual change in heating energy consumption is similar to that in electricity
consumption, with the highest drop being 20.1 × 106 kWh/block/year and the lowest
drop being 19.6 × 103 kWh/block/year. This also explains that for severe cold regions, the
conservation of building heating energy is of higher priority than that of electricity.

3.4. Climate Scenario

Under the RCP2.6 CO2 emissions scenario, the average daily temperature in Harbin,
China will increase by about 1.8 ◦C over the next 50 years [59]. The model output results
show that the electricity EUI of residential buildings will increase significantly with the
increase in temperature over the next 50 years (Table 5). Eventually, the increase in electricity
EUI will exceed the decrease in heating EUI, resulting in a rising trend in the total annual
building EUI.

Table 5. The changes in EUI under the climate scenario.

Building Type Total EUI (kWh/m2/Year)

Hotel −1.461
Medical −0.990

Residence 1.129
Office −1.259
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Figure 13 shows the predicted changes in building energy consumption in the central
area of Harbin under the climate scenario for the next 50 years. The energy consumption of res-
idential buildings in the central area shows a slight increase, up to 5.3 × 105 kWh/block/year,
leading to a trend of increasing building energy consumption in the central area. However,
the building energy consumption of land for other functions has decreased, with a maximum
decrease of 8.41 × 105 kWh/block/year. Growth in the central area is still lower than in the
peripheral areas due to the influence of other environmental factors such as geographical
location and building density. Growth is most evident in the southwest part of the central area.
Most of the residential buildings in this area have been newly constructed in recent years, with
relatively well-equipped building facilities and relatively high household living standards.
Therefore, there is higher resident demand for electric cooling or heating equipment such as
air conditioners and intelligent home appliances, which leads to higher energy consumption
in this area.
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4. Discussion

The simulation results confirm the following: (1) Consistent with existing studies,
building energy conservation planning of cities at a macro-scale should pay attention to
both urban form and climate [60–63]. (2) The energy conservation planning strategies
for these two types of influencing factors should vary across the regions in the city. This
section will discuss the planning strategies for building energy conservation based on the
above results. Based on the simulation results, we will first discuss the targeted adjustment
strategies of urban form and climate factors under the energy-saving goal. Secondly, we
will discuss the strategy of incorporating building energy conservation into the current
planning system based on the findings of this study.

4.1. Urban Form Planning and Control

The simulation results show that the energy-saving potential of building energy
consumption through urban form planning changes with location and building type.
The formulation and implementation of Harbin’s planning strategy for building energy
conservation needs to fully consider the correlation between urban form factors and district
development level, which is reflected in the design of the agent-based model in this
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study. Based on the current spatial pattern and distribution characteristics of building
energy consumption, urban planners can identify the sensitive areas of building energy
conservation through scenario simulation and determine the leading areas for planning
strategies for building energy conservation. Considering the current development stage of
Harbin, the urban space form is relatively stable, and large-scale urban form adjustment
based on the purpose of building energy conservation does not conform to the economy
and feasibility of urban construction. Therefore, this strategy should be applied to new
cities and renewal areas. In Harbin, it is in the northern part of the river and in the west
region in the south of the river.

First, we will discuss spatial form coordination and optimization guidance. The
implementation of the strategy should first determine the energy-saving potential area
oriented by the urban form. For Harbin, the simulation results show that the southern and
southwestern regions of the river are high-potential areas for urban form factors. These
areas should be the focus of urban form index optimization. Then, by evaluating the
suitability of building energy conservation in the planned area, optimizing the urban form
and land-use function, and adjusting the intensity of land development and other factors,
the urban form will be guided and controlled in a targeted way (Figure 14). According
to the influence factors identified in this study, cities in severe cold regions should focus
on mandatory control indicators in the detailed planning stage such as building density,
floor area ratio, and building height, and guiding indicators such as aspect ratio and
shape factor.
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Second, we will focus on the differential control of land-use indicators. The content of
the indicator control varies according to the block’s land-use type. Based on the simulation
results, the decreased floor area ratio of residential land and the building density of medical
land in Harbin can reduce the total building energy consumption. The building height of
office land and education land can be appropriately raised. The effect on building heat-
ing energy consumption should be considered first, followed by electricity consumption.
However, it is undeniable that not all actual planning can reduce the floor area ratio due
to the limitation of land cost. Therefore, we suggest that the floor area ratio and building
energy conservation be exchanged through specific policies and financial means. At the
stage of urban design, this study suggests that the shape factor of residential and retail
buildings should be appropriately reduced. The aspect ratio of the commercial area should
be appropriately reduced to avoid the formation of vertical “deep grooves” in the street
space, without damaging the building functions.

4.2. Climate Optimization and Regulation

Since it is difficult to change the climate at the macro-level of the city, the energy
efficiency planning strategy should aim to optimize the local climate environment through
specific planning tools under the background of adapting to future climate change.

First, one should strengthen climate protection and reduce heating energy consump-
tion. From the results of the urban form scenario, it can be seen that heating energy
consumption should be the priority of energy saving as its annual change is similar to that
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of electricity consumption, although it takes half as long as electricity consumption. This
study suggests that at this stage, energy efficiency planning and adjustment should be
carried out for heating energy consumption in winter. By strengthening the planning of
the urban landscape system, the ability of urban ecological barriers to resist and adjust the
high-speed cold air generated by river space can be improved to achieve climate protection.
The opening of an enclosed building complex as a public space can be carried out in the
east or south to achieve ventilation and cooling in summer and cold prevention in winter.

Second, we must consider local climate adjustment in climate-sensitive areas by
ecological means. The climate scenario simulation results show that the area southwest
of Harbin’s central area will show evident energy consumption growth in the future
climate. This area is a new urban area under construction, with great potential for energy
conservation planning and climate-suitable environmental design. Therefore, this study
suggests that at the level of detailed planning, the control of greening rate indicators can be
appropriately improved to create a more energy-saving climate for the region to face future
climate change [64]. Urban street green space should be appropriately supplemented to
enhance the connectivity between green spaces within blocks. The composite green space
structure of trees, irrigation, and grassland can be used to improve green coverage, and the
hard substrate materials can be updated to create an environment with suitable temperature
and humidity to help with building energy conservation and emission reduction.

4.3. Building Energy Conservation Planning System

This strategy is an expanded discussion of the overall research. Urban-scale building
energy conservation planning is a systematic, preventive, and guided approach to carbon
control and emission reduction. Therefore, synergy with the existing planning system
is necessary to ensure the implementation of urban-scale building energy conservation
planning [65]. This study provides detailed coordination of building energy conservation
planning mechanisms and measures in terms of planning content, planning indicators, plan-
ning implementation, and management evaluation for municipal-level territorial spatial
planning, forming a layer-by-layer transmission in the content of the planning system.

First, content relevant to building energy conservation planning should be included in
the preparation of the spatial master plan of the municipal territory. This study supplements
the contents of the master plan of Harbin from the aspects of space development goals,
space structure, development intensity, functional pattern, and public space configuration
to accelerate the improvement of urban building energy conservation (Table 6).

Table 6. Energy conservation planning points in the Harbin Municipal Territorial Spatial Master Plan.

Planning Highlights Highlights

Space development goals Determine the development goal of total building energy
conservation at an urban scale.

Spatial structure Determine the total amount and structure of types of
construction land.

Development intensity

Delineate the key control areas of spatial form under the
guidance of building energy conservation, propose

development intensity zoning, and guide the formulation of
mandatory indicators such as building density, floor area

ratio, and building height.

Functional layout Focus on areas with highly mixed urban land functions and
comprehensively optimize the land-use structure.

Public space configuration

Improve blue–green space system planning, and put
forward the layout and control requirements for ventilation

corridors and greening systems in the areas with
energy-sensitive climate.
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Secondly, at the level of detailed planning, planning indicators are used as carriers to
control specific planning blocks. The mandatory control indicators of energy conservation
planning should be building density and floor area ratio, and the guiding control indicators
should be building height, aspect ratio, and shape factor. In addition, the impact of planning
indicators on local climate and environment, such as temperature, wind speed, relative
humidity, and sunshine, should be comprehensively considered. Especially for cities in
severe cold regions, it is necessary to create a positive climate protection space while
building an energy-saving and emission-reduction urban space environment, to achieve
the dual purpose of improving building energy conservation and urban livability.

Third, in the construction and implementation of urban-scale building energy conser-
vation planning, not all urban areas should be treated in the same way. The differences
between regions in the city should be respected, and planning measures should be for-
mulated according to the energy-saving potential and current development conditions,
development goals, and characteristics of each region. The demonstration role of energy
conservation in new urban areas and urban renewal areas should be strengthened. Energy-
saving-oriented indicator control, green space creation, and other methods can be tried in
the new urban area first, and then, further promoted to other areas of the city. One must
establish an impact chain between the demonstration area and the surrounding areas and
gradually expand the impact of energy conservation to the surrounding areas, or even
wider areas, through the extension and radiation of the environment.

Fourth, “urban physical examination” is an innovative urban governance tool and
an effective way to support high-quality urban development in the future. The “urban
physical examination” should be used as a powerful tool to regularly review, manage,
monitor, and correct the effects of energy efficiency planning and policy measures [66].
This study suggests that the urban form and climate indicators identified in the previous
analysis should be supplemented to conduct a comprehensive review of energy efficiency
planning. These indicators will help monitor the effectiveness of building energy conserva-
tion planning objectives in a specific planning cycle. Based on the eight aspects of the urban
physical examination of China in 2020, this study proposes an urban physical examination
indicator system related to building energy conservation planning (Table 7).

Table 7. Suggested urban physical examination indicators related to building energy conservation.

Objectives Current Indicators Supplementary Indicators

Ecological Livability

Urban population density
(10,000 people/km2)

Floor area ratio of building energy conservation
planning area

Urban development intensity (sqm/km2)
The average height in the building energy

conservation planning area (m)
Urban greenway density (km/km2) Heating days (days)

Percentage of green buildings in new
construction (%) /

Health and comfort Percentage of high-rise, high-density
residential land use (%)

Proportion of land area in building energy
conservation reconstruction area (%)

Convenient transportation Road network density (km/km2)
Road width in building energy conservation

reconstruction area (m)

Innovation

/
Number of participants in the publicity and

education activities of building
energy conservation

/ Number of high-tech enterprises for energy
efficiency per 10,000 people

/ Building energy consumption
monitoring-platform completion (%)
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4.4. Study Limitation and Future Research Avenues

In this study, we use an agent-based technique to build a model and simulate the
overall building energy consumption at an urban scale under different scenarios. There
are two innovations in this research: At the technical level, this research uses the agent-
based modeling technique to realize the systematic coupling calculation of multiple urban
planning elements and building carbon emissions. At the level of findings, based on the
simulation results, this research puts forward urban-scale planning strategies for building
energy conservation for severe cold regions. In general, the agent-based model built in this
study is a combination of top-down and bottom-up models. Compared with other types
of models, it contains both macro- and micro-level information. This feature allows it to
adapt to other research purposes by adjusting information at different levels. The structure,
composition, and code of the model constructed in this research work for cities in severe
cold regions where urban central heating is the primary heating mode in winter. Specifically,
the city or heating company provides heating according to the urban temperature, rather
than the residents independently adjusting the heating demand. In this study, the model’s
parameter values were calculated based on the conditions of Harbin, that is, the specific
impact level of urban form and climate on building energy consumption. Although they
were obtained from statistics based on large sample sizes, we believe that the current
parameter values only work for Harbin and other cities similar to Harbin. For cities in
other severe cold regions, the following parameters should be replaced for the application
of this model according to the local conditions: (1) the influence level of urban form on
building energy consumption in the calculation command codes on the main panel of the
model, and (2) the table function of the historical data of the urban macro-climate on the
main panel of the model.

This research has the following three limitations: (1) Potential inaccuracies may result
from the limits of the data and the correlations between the variables. Since the building
energy consumption data are not open data in China, we have limited access to actual
data, which may lead to errors in determining the impact relationship. To minimize this
problem, we tried our best to set strict selection conditions to ensure that the sample
buildings could represent the general situation of each type of building in the central urban
area of Harbin. (2) The construction of individual buildings, such as the air tightness of
buildings and the quality of the insulation installations, as well as the energy-use behavior
of occupants, are not fully involved in this model. Although we try to avoid the impact
of these factors on different scenarios through sample selection conditions and building
type division, these factors may still lead to controversial results. (3) Although using urban
macro-climate data can meet the research needs of all building groups, it is not enough to
support the improvement of energy efficiency planning strategies in key areas. At present,
obtaining local climate data from authoritative departments is difficult, which is also one
of the challenges in improving the accuracy of the model. Determining how to change the
limitation whereby the climate module in the current model depends on pre-processed
climate data is the first challenge to be solved when updating the model.

We will improve future research based on the above three limitations. (1) The research
will explore other ways to supplement the actual building energy consumption data, such
as cooperation with government departments or demonstration projects. (2) The research
will expand the building types and continue to subdivide them according to the energy-use
characteristics of individual buildings under each category. Refining the building type
will improve the accuracy of the quantitative results, whether they are the influencing
relationships or the simulation results. (3) At the same time, with the increase in basic data
and types of impact factors, the study will also consider using global sensitivity analysis
instead of stepwise regression to improve the accuracy of the impact value of factors.
(4) According to the zoning based on energy conservation potential obtained from the above
climate scenario simulation, the selected key areas of climate-oriented energy conservation
will be added with climate field measurement points to explore more detailed and targeted
energy efficiency planning strategies for the climate. In addition, new ports will also
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be developed under the climate module to link with existing climate models, to achieve
independent energy consumption prediction under future climate conditions. (5) We will
collect more typical urban data in severe cold regions to build a more general model, and
we will try to build an adjustment system within the model to respond to the particularities
of different cities automatically.

5. Conclusions

Reducing the total building energy consumption through urban planning is crucial to
achieve the strategic goal of a sustainable and low-carbon city. Due to the constraints of cli-
mate and development, urban-scale building energy conservation in severe cold regions is
facing many difficulties. It is urgent to explore effective methods and strategies for building
energy conservation through scientific and reasonable urban and rural planning methods.
In this study, taking Harbin as an example, the agent-based modeling method is used to
establish an urban-scale building energy consumption simulation model. The building
energy conservation planning strategies for planning systems, urban form planning, and
climate optimization are analyzed and discussed based on scenario simulation.

The simulation results show that under the baseline scenario, the building energy
consumption of adjacent blocks on both river banks is generally higher than that of non-
river-adjacent areas. The building energy consumption of central urban areas with a
higher density is relatively low. The urban form scenario simulation results confirm that
the selected factors significantly impact building energy conservation, and their impact
varies with location. The elements with a highly significant impact change by 1 unit;
the retail building block has the most obvious change in energy consumption, up to
44.7 × 106 kWh/105 m2/year, while the office building block has the lowest change, with
34.5 × 103 kWh/105 m2/year. Although this effect has a more noticeable impact on elec-
tricity consumption, the total consumption of heating energy is much higher than that of
electricity, occupying the leading position in the overall energy-saving effect. Under the
climate scenario in the next 50 years, this study predicts that the energy consumption of
residential land in urban centers will constantly increase up to 5.3 × 105 kWh/105 m2/year.
Based on the above results, the following three points are proposed for the energy efficiency
planning of buildings in severe cold regions. First, this study believes that a complete frame-
work for a building energy conservation planning system is essential because building
energy consumption and energy conservation potential in different regions are not homoge-
neous. Second, the adjustment and control of urban form are necessary for building energy
conservation planning. Guiding measures for energy-saving-oriented urban form planning
and different control of land-use indicators are proposed. Third, considering the impact of
climate and the unique conditions in severe cold areas, this study proposes suggestions for
strengthening climate protection and saving energy via greening and ecological means.

The results of this scenario simulation provide quantitative support for energy-
conservation-oriented climate protection, planning index adjustment, and optimization
strategies to adapt to future climate conditions in Harbin. The proposal of the planning
strategy further provides guidance for macro-building energy conservation from the per-
spective of urban planning. The model provides technical and methodological support for
urban building energy conservation planning. Meanwhile, as mentioned in 4.4, the specific
parameters in this paper still need to be tested and optimized for long-term application.
The planning strategy will be further refined with the development of the territorial spatial
planning system in future research.
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