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Abstract: Owing to historical reasons, only a few locations in the Guangdong province use heating to
enhance interior thermal conditions. With the variation in climate and increase in people’s lifestyle re-
quirements, winter heating has become increasingly necessary. However, a literature review revealed
that only a few studies have investigated the heating requirements during winter in the Guangdong
province. In this study, we compared the thermal comfort of radiant floor heating with wall-mounted
air conditioner heating. A Guangzhou University climate chamber was used in several investigations.
The findings revealed that the thermal neutral temperatures of radiant heating and air conditioner
heating were 22.0 ◦C and 23.0 ◦C, respectively, about 1 ◦C variation in temperature. Additionally,
in the research on thermal reactions and local skin temperature measurements, the impact of local
thermal discomfort on the overall thermal experience was also considered. The findings showed
a direct relationship between the local thermal discomfort caused by radiant heating and general
thermal sensation. Thermal sensation of the subjects mainly originated from the lower extremities and
was significantly affected by Va (air velocity). The relationship between the local thermal discomfort
of convective heating and general thermal sensation was weak and mainly caused by the uneven
thermal environment. Thus, in south China, for lowering energy usage, radiant floor heating should
be used to create an improved indoor thermal environment in winter.

Keywords: radiant floor heating; convection heating; thermal environment; thermal comfort

1. Introduction

China’s Pearl River Delta (PRD) is situated in a region characterized by hot, muggy
summers, and chilly to mild winters [1]. For historical reasons, central heating has not been
adopted in winter in this area. Some occupants use individual heating to create a comfort-
able indoor thermal environment [2]. Reducing the share of building energy consumption
in the overall energy consumption is vital, given the rapid growth and urbanization of the
economy. Some investigations have reported that heating energy consumption accounts
for more than half of building energy consumption [3]. However, because living standards
have recently improved, many residential buildings have heating terminals for thermal
comfort [4]. The two most frequently employed heating terminals in these structures are air
conditioners and radiant floor heating [5,6]. Moreover, with the deterioration of the global
climate and recent carbon peaks, carbon neutrality has been proposed. Global awareness
of the thermal comfort of various heating terminals has increased, particularly for radiant
floor and air convection heating [7].

1.1. Literature Review and Problem Statement for the Work

The effects of convection and radiant heating on thermal comfort have been extensively
investigated in human subjects. These studies evaluated the performance of different
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heating terminals in providing thermal comfort [8–11]. In addition, during actual operation,
thermal comfort is accompanied by continuous or indirect operation [12–14]. According to
Bozkr et al. [8], radiant systems outperform convective heating systems in terms of heating
quality and comfort. According to the results of simulation and experimental research, the
temperature distribution in radiant systems is generally even and consistent. In radiant
systems, there is less danger of drafts because there is less air movement, as demonstrated
by simulations of computational fluid dynamics and experiments by Catalina et al. [9].
Radiant heating systems use radiation heat transfer, which reduces noise production
during operation and produces a more comfortable and quieter environment [10]. Based
on experimental investigations, Imanari et al. [11] found that the use of radiant heating
systems might reduce the vertical temperature disparities in a space, thereby enhancing
thermal comfort ratings.

More recently, other approaches have been employed to understand the thermal
comfort from continuous or indirect operations during the actual operation. According
to Tian and Love [12], occupants liked a certain amount of draft to supply fresh air, and
there were no appreciable differences in airflow during the continuous operation of radiant
and convective terminals. Furthermore, Lin and Wang [13] discovered that even with
greater air movement in a convective heating environment, there were no appreciable
variations in the overall thermal experience between the long-term convective and radiant
heating systems [14]. A constantly operating fired heater (FH) system, radiator, and a fan
coil system were tested by Hu et al. for their ability to distribute temperature. According
to the findings, there was no discernible variation in the thermal comfort between the
various terminals.

In addition, the literature review shows that numerous studies have examined the
thermal comfort parameters of various heating terminals. The relevant details and results
are presented in Table 1.

Table 1. Research findings of various heating terminals’ thermal comfort ranges.

Terminal Type Location Thermal Comfort Range

Zhang et al. [15] Split Air-conditioners Guangzhou 16.9–34.2 ◦C (80%);
20.6–30.5 ◦C (90%)

Qun et al. [16] Radiation floor heating Suihua 21.9–25.8 ◦C (80%)
Mui et al. [17] Air-conditioned Hong Kong 19.5–21.5 ◦C (90%)

Xu et al. [18]
Split air conditioners Nanjing Jiangsu 8.1–25.6 ◦C (80%);

12.48–21.23 ◦C (90%)

Central heating systems Yangzhou, Jiangsu 13.26–23.86 ◦C (80%);
15.91–21.21 ◦C (90%)

Sanjay et al. [19] Natural ventilation India 22.7 ◦C
Marina et al. [20] Heating by air conditioning Tokyo and Kanagawa 23.5–26.6 ◦C (80%)

Wu et al. [21] Natural ventilation Guangzhou 23.3 ◦C

Indraganti et al. [22] Air-conditioned
Hyderabad, India 27.0 ◦C

Chennai, India 26.1 ◦C

1.2. Objectives and Significance for the Study

In the aforementioned context, it is easy to see that air convection heating and radiation
floor heating typically have different comfort effects on the human body. However, the
conclusions in the literature are inconsistent and contradictory. Therefore, more efforts are
required to discuss the influence of two different types of FH and AC heating systems on
thermal combustion, which is the first goal of this study.

The second goal of this study is to understand regional heat discomfort. Compared
to air convection heating, radiant floor heating typically has various comfort effects on
the human body because it affects different portions of the body differently. Because
different bodily regions are given varying weights when calculating the overall body’s
thermal comfort, two different heating terminals can cause differences in local thermal
discomfort. Based on the current literature, neither equations nor local thermal discomfort
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curves have been created for these two heating systems. Therefore, further research is
required to determine how well the two heating systems perform in terms of reducing local
thermal discomfort.

Therefore, the results of this study provide a scientific research basis for thermal
comfort response under different heating forms in South China, including the selection of
heating forms and local thermal response. This study provides reference and support for
winter heating in hot summer and warm winter areas, and is important for the development
of the economy and the promotion of the low-carbon era to ensure the thermal comfort of
residents and the low-carbon rationality of heating forms.

2. Materials and Methods
2.1. Experimental Facility

Two climate chambers were created in Guangzhou for this investigation. Guangzhou
is a city with hot summers and warm winters. As shown in Figure 1a, the dimensions of the
chamber are 2.8 × 2.7 × 2.6 m, with a 1.54 × 0.96 m window in the south wall. Two labora-
tories utilized different types of heating systems for wall-mounted air conditioners: radiant
floor heating and convection heating. The heating systems were arranged as shown in
Figure 1c,d, and to reduce the exposure of the experiment to direct sunlight, the windows
were covered, as shown in Figure 1b. This experiment examined and analyzed the primary
environmental factors affecting indoor thermal comfort in winter including air temperature,
radiant temperature, relative humidity, and air velocity. Thermal parameters, such as Ta,
Va, RH, and Tg in the outdoor environment were recorded and utilized to examine how the
external environment affected the indoor environment.
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ant floor heating and (d) convection heating for wall-mounted air conditioners.

2.2. Experimental Design
2.2.1. Subjects

A total of 24 males and 24 females were selected for the experiments. All participants
were college students who were residents of Guangzhou for at least a year. They consumed
less than 1 cup of coffee and alcohol or 2 cigarettes per day, and their regular exercise
frequency was 2–4 times per week.

Notably, all subjects were between the age of 21 to 25 years, disregarding the impact
of age on thermal perception. Additionally, all participants were asked to wear similar
clothing, including underwear, a T-shirt, pants, a pair of regular socks, and a pair of shoes.
The influence of various garment insulation values on thermal sensation was not considered,
leaving a total clothing insulation of 0.7 clo. Table 2 provides thorough information on
the subjects.

Table 2. Details on the subjects.

Gender Age (Year) Height (cm) Weight (kg) Body Surface Area

Male 21–25 171.2 (6.5) 63.9 (10.3) 1.75 (0.15)
Female 21–24 156.6 (4.9) 44.6 (4.2) 1.4 (0.08)
Average 21–25 163.9 (9.3) 54.3 (12.4) 1.58 (0.21)

Note: body surface area calculation formula is given by A = 0.202 W0.425H0.725.

2.2.2. Subjective Questionnaire

All test subjects were instructed to perform sedentary activities at a metabolic rate
of roughly 1.1 throughout the experiment. Furthermore, with varying air temperatures,
subjects may have different thermal sensations; thus, the individuals were questioned
subjectively on how they felt about the local body-part sensation and overall perception of
whole-body thermal comfort. The thermal perceptions of the subjects were evaluated using
the ASHARE 7-point scale. However, additional elements, including air velocity, radiation
temperature, happiness with the environment, and relative humidity, may also be related to
thermal comfort. Thermal comfort cannot be accurately reflected by information on thermal



Buildings 2022, 12, 2232 5 of 19

senses alone [23]. As a result, in addition to a satisfaction vote and other random data, the
questionnaire also asked about thermal, humidity, and other sensations. The participants
were asked to describe what they thought the environment would be like. Table 3 lists the
voting scales used in this study. They comply with the global thermal comfort database
scales and ASHRAE standard scales [23,24].

Table 3. Subjective vote scale.

Subjective Perception Subjective Vote

TSV Cold
(−3)

Cool
(−2)

Slightly
cool (−1)

Neutral
(0)

Slightly
warm (1)

Warm
(2)

Hot
(3)

HSV Very dry
(−3)

Dry
(−2)

Slightly dry
(−1)

Neutral
(0)

Slightly
wet (1)

Wet
(2)

Very wet
(3)

Perception of air velocity Very small
(−3) Small (−2) Slightly

small (−1)
Neutral

(0)
Slightly
big (1)

Big
(2) Very big (3)

Satisfaction
with temperature Satisfaction Dissatisfaction

Satisfaction with humidity Satisfaction Dissatisfaction

Satisfaction with
air velocity Satisfaction Dissatisfaction

Temperature expectation Prefer cooler No change Prefer warmer

Humidity expectation Prefer dryer No change Prefer wetter

Air velocity expectation Prefer smaller No change Prefer bigger

In addition to the subjective questionnaire, skin temperature sensors were used to
gauge the body temperature of each subject. To record local thermal perceptions, the sensors
were affixed to seven body areas (forehead, left chest, left upper arm, left hand, anterior
thigh, anterior calf, and left foot). The mean skin temperature (MST) can be calculated using
one of two methods: (1) techniques that use constant weighting factors based on the relative
regional surface area of particular measurement sites; and (2) unweighted methods using
the same weighting factors for all measurement sites, whose result is the average of the
entire local skin temperature. The distribution of surface temperature of the human body is
better described by weighted calculation methods than by unweighted approaches [25],
and it is valuable for researching thermal comfort. Therefore, weighted calculation methods
were mainly used in this study. MST was calculated using Equation (1) [25,26].

Tsk = 0.07Tforehead + 0.14T left upper arm + 0.35Tleft chest + 0.05Tleft hand + 0.19Tanterior thigh + 0.13T anterior calf + 0.07T left foot (1)

2.2.3. Measurement Parameters and Instruments

In addition, the air temperature, radiation temperature, relative humidity, and air
velocity were measured along with the skin temperature during the experiment. Table 4
lists the measurement apparatus used in this study. During the experiment, the physical
parameters were measured in the chamber at a height of 1.1 m.

Table 4. Measurement devices and accuracy.

Instrument Type Parameter Measuring Range Accuracy Sampling Rate (s)

Thermal comfort level recorder SSDZY-1
Ta (◦C) −20–80 ◦C ±0.3 ◦C 30 s
RH (%) 0.01–99.9% RH ±2% RH (10–90% RH) 30 s
Tg (◦C) −20–80 ◦C ±0.3 ◦C 30 s

Temperature and humidity
automatic recording instrument WSZY-1

Ta (◦C) −20–80 ◦C ±0.3 ◦C 30 s
RH (%) 0.01–99.9% RH ±2% RH 30 s

Button-type thermometer DS1922L Tskin (◦C) −40–85 ◦C ±0.5 ◦C 30 s
Recorder of temperature and
wind speed that is wireless WFWZY-1 Va (m/s) 0.05–5 m/s 5% ± 0.05% m/s 30 s
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2.3. Test Procedure

Seven test groups were used in the experiment. Each test group was divided into
four phases at four set temperatures. Each phase was divided into two parts, which lasted
for 2 h. The 2-h tests comprised three steps. First, prior to the beginning of preparation
phase, the subjects were given 30 min to relax and put on the skin temperature sensors.
The experimental results from prior research showed that when exposed to a new thermal
environment, the MST and thermal sensation stabilized after approximately 40 min (the
environmental temperature change was less than 10 ◦C) [27–29]. Therefore, the subjects
were allowed 30 min to familiarize themselves with the chamber setting and cast their
votes. Finally, the subjects had a 60 min stable period to experience. The voting and
body temperature recording frequencies are shown in Figure 2. Subsequently, the interior
design temperature of the two chambers remained unchanged, and the subjects in the
two chambers swapped rooms to conduct the next part of the experiment using the same
experimental procedure as in the previous section. In this experimental investigation, the
indoor air temperatures were maintained at different levels (20 ◦C, 25 ◦C, 30 ◦C, and
35 ◦C). However, the indoor air temperature fluctuated because of the limitations of the
test conditions and the disturbance of external environment. Therefore, by monitoring
the changes in room temperature and debugging several times before the test, the air
conditioning and radiant floor heating equipment screen-display parameters were changed
such that the two climatic indoor air temperatures were maintained in the same range at
the same test time, and this was used as the basis for grouping the test arrangements. Data
processing using the actual air temperature in the climate chamber for analysis did not
affect the experimental results. The actual air temperature in the chamber at different levels
is shown in Figure 3.
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2.4. Data Processing

Considering that materials making up the artificial climate chamber are different from
that of the actual residential building, it is impossible to overlook the body’s ability to store
heat and how radiation heat-exchange affects it. The operational temperature considers
both the air temperature and the average radiation temperature to compensate for this
modest deficiency caused by merely using the air temperature as the thermal environment
evaluation indicator. The equation presented in ASHRAE standard 55 [23] was used to
calculate the room operating temperature in this experiment:

Top = ATa + (1 − A)Tmrt (2)

where Ta is the temperature of the indoor air, Tmrt is the mean radiant temperature, and A
is a constant factor. Tmrt was calculated using Equation (3), and the value of A was obtained
as shown in Table 5.

Table 5. Relationship between A and Va [25].

Va <0.2 m/s 0.2–0.6 m/s 0.6–1.0 m/s

A 0.5 0.6 0.7

Black-globe thermometers are currently the most popular tool for determining the
mean radiative temperature [30]. The globe bulb temperature (Tg) was measured in the
experiment using a typical globe thermometer that had a diameter (D) of 0.15 m and
was matte-black coated (globe emissivity, g = 0.95). The mean radiant temperature was
calculated by combining the measured air temperature, black-bulb temperature, and indoor
wind speed, and the specific calculation is based on ISO 7726 [31] as follows:

Tmrt =

[(
Tg + 273

)4
+

1.1 × 108 × Va ×
(
Tg − Ta

)
εg × D0.4

] 1
4

− 273 (3)

3. Results
3.1. Outdoor Air Parameters

Thermal comfort was measured in a climatic chamber located in Guangzhou, China.
Measurements were made for external ambient factors. According to the tested outdoor
climatic conditions, the outdoor temperature varied widely during the test days, with a
difference of 26.6 ◦C between the highest and lowest temperatures. Therefore, although
the average winter temperature in Guangzhou was 22.66 ◦C, low temperatures were often
observed, with only 8.7% of the temperatures being above 28 ◦C. Additionally, owing to the
rainy winter in Guangzhou, the humidity reached a maximum of 91.3%. A higher humidity
at the same temperature can result in a more uncomfortable feeling.

3.2. Indoor Environmental Parameters

During the investigation, the climatic parameters of the two laboratories were recorded
(Table 6). Additionally, the distributions of temperature and humidity levels in the air in
the two climatic chambers were determined, as shown in Figure 4.

Figure 4a shows the distribution of the air temperature in the two rooms with more
than 50% of the test time and the indoor temperature of the air in the two rooms was
between 25 ◦C and 30 ◦C. Moreover, the temperature change in the room heated by
the wall-mounted air conditioners was relatively higher. However, the high-temperature
anomalies were significantly higher than those in radiant floor heating rooms. Additionally,
because both climate chambers had insulation, the inside temperature was less affected
by the outside temperature, and the indoor temperature changes were derived from the
heating of both devices.
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Table 6. Descriptive statistics on the parameters affecting the interior environment.

Environmental Parameters Minimum Maximum Average Standard Deviation

Radiant floor heating

Ta (◦C) 11.74 34.74 26.68 4.22
RH (%) 29.5 85.1 61.82 11.76
Tg (◦C) 10.36 35.9 26.69 4.26

Va (m/s) 0 0.11 0.05 0.02

Convection heating

Ta (◦C) 14.1 38.2 28.09 3.33
RH (%) 15.9 77.2 47.73 12.94
Tg (◦C) 16.3 43 28.21 3.4

Va (m/s) 0 0.89 0.12 0.13
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Figure 4. Indoor thermal parameter distribution: (a) air temperature, (b) relative humidity, (c) air
velocity, and (d) mean radiant temperature.

Figure 4b shows the distribution of the relative humidity (RH) in the two rooms in
the experiment. The relative humidity of the radiant floor heating room was concentrated
between 53% and 71%. The relative humidity of the wall-mounted air-conditioned heating
room was mainly concentrated in the range of 38–58%. This phenomenon may be related
to the automatic adjustment of the air conditioner. According to ASHRAE 55, the comfort-
able humidity range for occupants is 40–60%. The relative humidity was high because of
the rainy winters in Guangzhou. Moreover, because of the body’s self-adaptation to the
climate, people who live in the Guangzhou area often tend to have slightly higher comfort
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requirements for humidity than normal, and the relative humidity of the floor-heated
room is significantly closer to the level of thermal comfort for the human body. Addi-
tionally, a wall-mounted air-conditioner heated room will produce drier conditions, and
drier conditions at the same heating temperature will significantly reduce human thermal
comfort. Therefore, relative humidity should be properly controlled while maintaining the
heating temperature.

Air velocity was recorded in the two rooms during the experiment, and the room
doors and windows were closed tightly without ventilation. The results are shown in
Figure 4c. The radiant floor-heating room had almost no wind speed. The wall-mounted
air-conditioned heating chamber saw winds on average of 0.12 m/s, with gusts exceeding
0.2 m/s after around 30% of the time and clearly unstable.

Additionally, this study calculated the average radiation temperature (Tmrt) of the
two rooms, the results of which are displayed in Figure 4d. The calculation results show
that the average radiation temperature is the same as that of room temperature. This was
primarily due to the slow wind speed of the room.

3.3. Subjective Thermal Responses

During the experiment, the subjects were dressed in the same manner, which ruled out
sensory differences due to clothing insulation. The subjective thermal responses, including
thermal sensation vote (TSV), humidity sensation vote (HSV), and thermal preferences,
were analyzed throughout the test.

An analysis of TSV is shown in Figure 5a. The rooms with radiant floor heating and
those with wall-mounted air conditioning heating had average TSV values of 1.00 and 0.76,
respectively. For the air-conditioned heating room, the subjects felt more heat in the floor
heating room. However, Figure 3 shows that the maximum temperature of the convection
room is higher than that of the radiant heating room. Therefore, the subjects were more
adapted to high temperatures in the wall-mounted air-conditioned heating room than in
the radiant floor heating room.
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Figure 5. Distribution of the subjective thermal responses: (a) TSV, (b) HSV.

Humidity Sensation Vote (HSV)

An analysis of HSV is presented in Figure 5b. The distribution showed no votes greater
than 2. Figure 3 shows that there is high relative humidity in both rooms, which indicates
that the subjects living in the Guangzhou area have adapted to a high-humidity environ-
ment. Additionally, the percentage of HSV between −1 and 1 reached 80%. However, the
percentage of votes between −3 and −1 indicates that the subjects in the radiant floor
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heating room were more likely to have dry sensations. This differs from Sun et al. [7], who
asserted that under radiative and convective conditions, the variation in relative humidity
has no impact on people’s perceptions.

Professor de Dear [28] believes that a thermal preference scale is more appropriate
for measuring thermal comfort. The test divides thermal preferences into three categories:
warmer, no change, and cooler. Information regarding the subjects’ thermal preferences
was obtained from the questionnaire.

The statistics of the distribution of thermal preferences corresponding to the subjects’
hot-sensation polls are shown in Figure 6. This graph demonstrates that the radiant floor
heating room exhibits distinct regularity. The preference of “no change” is concentrated
between −1 and 1. Additionally, as the grade of thermal sensation increased, the percentage
of votes preferring colder conditions gradually increased and the preference for hotter
conditions gradually decreased. Despite the constant overall trend of the air-conditioned
heating room, there was a noticeable fluctuation phenomenon that was compatible with the
temperature instability of the air-conditioned heating room. At a heat sensation vote of −1,
the percentage of votes preferring hotter conditions in the radiant floor heating room was
higher than that in the wall-mounted air-conditioned heating room, and the percentage of
votes for no change was lower than that in the air-conditioned heating room. However,
at a thermal sensory vote of 1, the percentage of votes preferring cooler conditions and
no change in the radiant floor heating room were essentially the same as those in the
wall-mounted air-conditioned heating room. This indicates that the subjects were more
tolerant of colder sensations in the air-conditioned room. At heat sensation voting values
from −2 to −3, all subjects in the floor-heated room preferred hotter conditions, which is
more indicative of subjects who could not tolerate cold sensations in the floor-heated room.
Additionally, the heat sensation voting values from 0 to 3 essentially showed the same
percentage of the three heat preferences in both chambers for all the subjects. This indicates
that the subjects’ tolerance for heat sensation was essentially the same in both rooms.
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3.4. Thermal Comfort Analysis

The thermal comfort of the individuals was further examined in this study under
various heating terminals based on the statistical analysis of the indoor thermal and
humid settings discussed above and the subjective human voting. Different mathematical
techniques were used to determine the participants’ thermally neutral temperatures and the
temperature ranges that they could tolerate under radiant and convective heating conditions.
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3.4.1. Linear Regression

According to Lin [32], to exclude the influence of outliers in the TSV data, Top was
grouped and solved for the mean TSV (MTSV) data in the corresponding group. Subse-
quently, linear regression analysis was conducted for MTSV and Top. The results are shown
in Figure 7.
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The relationship between the MTSV of the two chambers and indoor Top can be
determined using linear fitting, as shown in Figure 7.

Introducing “TSV = 0” into the regression equation, the calculated thermal neutral
temperatures of different climate chambers were 21.20 ◦C and 23.01 ◦C for the radiation
and convection conditions, respectively.

Rijal et al. [33] found that linear regression methods used to estimate thermal neutral
temperatures may produce errors when adaptive behavior is present in subjects. The Grif-
fith technique was applied to simultaneously determine the thermal neutral temperatures
of the two climate chambers to prevent inaccuracies.

3.4.2. Acceptable Temperature Range

The ASHRAE 55 standard provides a comfort range of 90% and acceptable range
of 80%. The thermal comfort sensations were −0.5–0.5 and −1–1, respectively. Using
the regression model of MTSV and Top derived in the previous section, the acceptable
temperature ranges are presented in Table 7.

Table 7. Summary of the acceptable temperature range.

Heating Condition MTSV Range

Radiant flood heating −0.5–0.5 18.79–23.72
−1–1 16.32–26.19

Convection heating −0.5–0.5 20.1–25.93
−1–1 17.19–28.84

The acceptable temperature ranges obtained using these two methods are summarized
in Table 7. This table shows that the width of acceptable temperature range is the same
for both heating conditions. Additionally, the upper and lower temperature limits of the
acceptable rates of 90% and 80%, respectively, under convection conditions increased by
2–3 ◦C compared with those under radiation conditions. This indicates that subjects in wall-
mounted air-conditioned heating rooms have a stronger adaptability to higher temperature
environments in the range of 20–30 ◦C.



Buildings 2022, 12, 2232 12 of 19

3.4.3. Thermal Comfort Temperature Using the Griffith Method

Griffith’s method is based on Equation (4) to solve the indoor thermal neutral temper-
ature, where the regression coefficients (b) are typically considered to be 0.25 [34], 0.33 [35],
and 0.50 [36] respectively. The data from each test day were pooled to determine the re-
gression coefficient values for this study. First, the Top and TSV (Tf) obtained from each
testing day were subtracted from their daily averages (Topm, Tfm) to form two new variables:
δTop = (Top − Topm) and δTf = (Tf − Tfm). Subsequently, data from all test days were pooled
for regression analyses of δTOP and δTf.

Tc = Top + (0 − TSV)/a (4)

Table 8 presents the regression coefficients and other information. Humphreys
et al. [36] suggested that faults may unavoidably occur during testing and may have
an impact on the regression coefficients; hence, the adjustment of the regression coefficients
is based on Equation (5).

badj = b
(

σ2
δTop

)
/
(

σ2
δTop − σ2

ERR

)
(5)

where badj is the corrected regression coefficient, b is the regression coefficient, σ2
δTop is the

variance of δTop and σ2
ERR is the error variance of δTop.

Table 8. Regression coefficients from the data.

Heating Condition N σδTop σ2
δTop b badj σ2

ERR

Radiant 1285 3.01 9.06 0.138 0.15 0.99
Convection 1444 3.41 11.63 0.244 0.26 0.67

Nicol, Fanger, and Humphreys proposed three regression coefficients of 0.25, 0.33,
and 0.50, based on the study of massive data, and these three coefficients are also the most
commonly used in related studies. The regression coefficient badj (0.26) obtained in this
study under radiation conditions is not significantly different from the commonly used
coefficient of 0.25. The thermal neutral temperature in the room with radiant floor heating
was calculated using a regression coefficient of 0.25 and used for further analysis. The
regression coefficient (0.15) obtained from the wall-mounted air-conditioned heating room
differs significantly from the common coefficients currently used. The regression coefficient
of the wall-mounted air-conditioned heating room was adopted based on the results of
this study.

The thermal neutral temperature calculated by Griffith’s method, whose values are
22.73 ◦C and 22.83 ◦C for radiation and convection conditions, respectively.

The calculated results are not exactly the same as the thermal neutral temperature
derived using linear regression, especially for radiant floor heating rooms.

The Griffith method is essentially calculated by determining the Griffith coefficient.
Ricardo Forgiarini Rupp et al. [37] studied thermal comfort sites in different building types
and statistically derived the thermal sensitivity of building users, ultimately concluding that
the thermal sensitivity of office buildings in air conditioning operations (air conditioned
and mixed buildings) was closest to the commonly used Griffith constant, while users in
other rooms had sensitivity of only about half that of the air-conditioned rooms. Thus, the
thermally neutral temperatures obtained by the Griffith method for the floor-heated rooms
deviate more from those obtained by the linear regression method. To account for the slight
deviation between the two results, the thermal neutral temperature was finally determined
as the arithmetic mean of the results obtained by the two methods. Thus, thermal neutral
temperatures of the radiant floor heating room and the wall-mounted air-conditioned
heating room were 21.97 ◦C and 22.92 ◦C, respectively.
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3.5. Local Thermal Sensation

The different installation locations of different heating terminals can lead to significant
local differences in the thermal sensation. In this study, ten different areas of the human
body were given a subjective questionnaire. The subject’s whole-body thermal sensation was
compared to the local site thermal sensation using regression analysis, and the results are
displayed in Figure 8. The findings indicate that under the radiation condition, as opposed
to the convection condition, the correlation coefficients of the overall thermal feeling and
the thermal sensation of each component are higher. This indicates that the subjects had a
more stable and positive response to radiant heating. Additionally, the correlation coefficients
for radiation conditions MTSVface–MTSV, MTSVhead–MTSV, and MTSVhand–MTSV were
significantly higher than those for convective conditions. Comparatively, the number of
correlations for MTSVthigh–MTSV and MTSVcalf–MTSV were slightly lower.
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According to previous research, the most uncomfortable or unneutral local body areas
generally dominate the overall thermal feeling or thermal comfort perception. For instance,
suffering from a cold foot or hand may cause discomfort to the body [38]. This may partly
explain why the subjects were less receptive to cold conditions in the radiation-heating
condition. Temperature changes under radiation conditions usually have a stronger effect
on exposed body parts, such as the face, head, and hand.

Additionally, for the analysis of the two different working conditions, according to this
study, the following factors had varying degrees of influence on the overall temperature ex-
perience caused by radiation: hand > face > head > small arm > chest > back > large
arm > feet > thigh > calf; that for the convection conditions was small arm > large
arm > back > thigh > calf > hand > chest > foot > head > face. Therefore, the overall
heat sensation under radiation conditions is mainly from the upper body, whereas that
under convection conditions is mainly from the extremities. This is also related to the
uneven airflow under convective conditions, which causes the local heat sensation in the
exposed body regions to fluctuate more.

As is evident from the previous section, the total temperature sensation of the subjects
was significantly influenced by the local thermal feeling. In this study, the skin temperatures
of seven different parts of the subjects were also recorded, and the local skin temperature
was regressed against the mean thermal feeling. The results are shown in Figure 9.

By combining the two tables, changes in the thermal sensation of subjects under
radiation conditions can be reflected in the skin temperature. Under the same skin tem-
perature, the thermal sensations of the subjects under convective conditions fluctuated
significantly. Thus, it was inferred that the thermal sensation changes under convective
conditions were attributed more to the thermal perturbation of the environment. Although
transient changes in air velocity and relative humidity do not significantly affect skin tem-
perature, local changes in sensation can significantly affect the overall thermal sensation of
the subjects.

Additionally, as the test was conducted in a small climate chamber, the doors and win-
dows were tightly closed, resulting in an unventilated environment. Figure 4 shows that the
radiation-heating condition occurred in a windless state, resulting in a stuffy environment.
Thus, the thermal sensation in the head and skin temperature are closely related to the
overall thermal feeling. Additionally, as shown in Figure 9, for MTSV–MSTforehead, the
forehead skin temperature and radiation conditions under convective heating conditions
are essentially the same; however, there is a wide range in the relationship between skin
temperature and overall thermal perception, which may be attributed to fluctuations in
wind speed leading to fluctuations in thermal sensory changes under convective heat-
ing conditions. Therefore, measures such as changing the wind speed magnitude and
controlling the fluctuation of wind speed can effectively improve thermal sensation.
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4. Discussion
4.1. Analysis of Subjective and Objective Results

The test results showed no significant differences between radiant and convection
heating systems in terms of thermal comfort during the stabilization phase. During the
stabilization phase, the room’s operating temperature ranged was 20 to 30 ◦C. The air
velocity and relative humidity of the two climate chambers stabilized at different levels.
The thermal preference and sensation were not significantly different. However, thermal
perturbations were evident under convective conditions, including large temperature strat-
ification, unstable air velocity, and differences between the air and radiation temperatures.

The test results show that the temperature fluctuations under convection conditions
are greater than those under radiation conditions, and more concentrated in convection
heating systems than in radiant heating systems. Additionally, the regularity of the thermal
environment under radiant conditions is evident, and it is easier to achieve a controlled
and stable thermal environment. Therefore, residents often operate radiant systems all
the time during the winter season, resulting in a thermal environment that is consistently
warm and steady. However, convective conditions result in a faster response to changes in
the thermal environment. The continuous functioning mode uses less energy than radiant
conditions [39]. Therefore, optimization methods should be further explored in the context
of regional climate and residential requirements.

4.2. Analyses of Thermal Neutral Temperature and Thermal Comfort Temperature Range

According to this investigation, there was no discernible difference between the steady
states of the radiant and convective systems in terms of thermal comfort.

The air-conditioned heated rooms had a thermal comfort temperature range of 20.1–25.93 ◦C
and a thermal neutral temperature range of 22.92 ◦C, respectively. This is higher than
the 12.48–21.23 ◦C and 15.91–21.21 ◦C ranges in the Nanjing and Yangzhou areas, re-
spectively [18]. This may be attributed to the high rainfall and humidity in winter in the
Guangzhou area, leading to higher thermal environmental temperature requirements. In
addition, it has been shown [40] that people living in Guangzhou have experienced hot
climates for a long time, have never experienced any severe cold, and require a higher value
for thermal neutrality. Zhang et al. [15] studied the thermal comfort of air conditioning
in the Guangzhou area and suggested a comfortable temperature range of 20.6–30.5 ◦C.
A higher temperature requirement leads to higher energy consumption. The experiment
showed that the thermal neutral temperature and thermal comfort temperature range using
radiant floor heating were lower than those of air conditioner heating.

In addition, radiant floor heating has mostly been used in cold winter areas in the
north in the past, and there is not much research on the wintertime thermal comfort of
radiant floor heating in the PRD region; therefore, this study provides a theoretical reference
for the research application of radiant floor heating in the PRD region in winter.

In summary, in the radiation condition, the heat neutral temperature and thermal
comfort temperature range are lower than those in the convective condition, and the
temperature increase arises from the energy consumption; therefore, the radiation condition
has a higher energy-saving potential compared to the convection condition.

4.3. Limitation and Future Challenge

This study used a wall-mounted air-conditioner heating system and radiant floor heating
system as research tools. Future research should examine more types of heating terminals.

In practice, radiant floor heating systems are generally arranged under the floor, and
the existing residential use area is larger than the climate room used in this study. Therefore,
future studies should include field measurements.

In addition to the aforementioned thermal disturbance, a few more elements like
auditory and visual characteristics as well as air quality can affect thermal comfort [41].
Junfeng Wang et al. [42] refer to the improvement of air quality by clean heating in winter
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in the north. Therefore, the synergistic effects of additional influences on a person’s thermal
comfort of heating systems should be fully considered in future studies.

5. Conclusions

This study conducted a series of human subject experiments in two different climatic
chambers in Guangzhou to investigate the impact of radiant floor heating and air convection
heating on human thermal comfort in the PRD zone during winter. By exploring two issues
of thermal comfort response and the local thermal discomfort performance of subjects
under different heating forms, a practical guideline is provided for winter heating in hot
summer and warm winter regions. Notable findings and recommendations include the
following:

(1) Different heating terminals have different operating methods and working principles.
When both convection and radiation terminals operate continuously, the impact
of an unstable indoor thermal environment on human thermal comfort caused by
convection terminals cannot be ignored. In winter, the radiant floor heating and
thermal neutral temperature of wall-mounted air-conditioner heating are 21.97 ◦C
and 22.92 ◦C, respectively; the acceptable temperature ranges are 18.79–23.72 ◦C and
20.1–25.93 ◦C, respectively.

(2) The overall thermal sensation under radiant conditions is more closely related to the
local thermal sensation, which is evident in the skin temperature. The general thermal
sensation under convective conditions has a weaker relationship with the local thermal
sensation, and thermal comfort is associated with the stability of environmental factors,
such as air velocity, temperature, and relative humidity.

(3) During winter heating, natural ventilation, controllable radiant heating terminals,
or distributed air supply systems can be used to provide residents with better ther-
mal environment management to increase occupant comfort and lower energy use
for heating.
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