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Abstract: The degradation of reinforced concrete (RC) structures has raised major concerns in the
concrete industry. The demolition of existing structures has shown to be an unsustainable solution
and leads to many financial concerns. Alternatively, the strengthening sector has put forward many
sustainable solutions, such as the retrofitting and rehabilitation of existing structural elements with
fiber-reinforced polymer (FRP) composites. Over the past four decades, FRP retrofits have attracted
major attention from the scientific community, thanks to their numerous advantages such as having
less weight, being non-corrodible, etc., that help enhance the axial, flexural, and shear capacities
of RC members. This study focuses on predicting the compressive strength (CS) of FRP-confined
concrete cylinders using analytical models and machine learning (ML) models. To achieve this, a
total of 1151 specimens of cylinders have been amassed from comprehensive literature studies. The
ML models utilized in the study are Gaussian process regression (GPR), support vector machine
(SVM), artificial neural network (ANN), optimized SVM, and optimized GPR models. The input
parameters that have been used for prediction include the geometrical characteristics of specimens,
the mechanical properties of FRP composite, and the CS of concrete. The results of the five ML models
are compared with nineteen analytical models. The results evaluated from the ML algorithms imply
that the optimized GPR model has been found to be the best among all other models, demonstrating a
higher correlation coefficient, root mean square error, mean absolute percentage error, mean absolute
error, a-20 index, and Nash–Sutcliffe efficiency values of 0.9960, 3.88 MPa, 3.11%, 2.17 MPa, 0.9895,
and 0.9921, respectively. The R-value of the optimized GPR model is 0.37%, 0.03%, 5.14%, and 2.31%
higher than that of the ANN, GPR, SVM, and optimized SVM models, respectively, whereas the root
mean square error value of the ANN, GPR, SVM, and optimized SVM models is, respectively, 81.04%,
12.5%, 471.77%, and 281.45% greater than that of the optimized GPR model.

Keywords: compressive strength; FRP; concrete cylinder; machine learning; ANN; GPR; SVM

1. Introduction

The rehabilitation and retrofitting of existing deteriorated and reinforced concrete (RC)
structures are needs of the construction industry. RC structures need periodic maintenance
to ensure their safety and serviceability [1,2]. The main reason behind the deterioration of
RC structures is the corrosion mechanism. Corrosion affects the durability and safety of
the structures. The structures built adjacent to coastal or marine environments are more
prone to corrosion [3]. From various studies, it can be said that corrosion mostly occurs in
25-year-old existing structures [4]. Rebar corrosion occurs due to two reasons. Carbonation-
induced corrosion is one of the key reasons; in this process, the carbon dioxide from the
atmosphere reacts with the steel rebar which in turn initiates the process of corrosion. Due
to the alkaline behavior of concrete material, a film of passivity is developed around the
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steel rebar. The penetration of carbon dioxide into concrete breaks the alkalinity of concrete,
reduces pH, and diminishes the passive layer resulting in rebar corrosion. The second major
reason for corrosion is chloride-induced corrosion. Chlorides from the marine environment
ingress into concrete due to which the de-passivation of the steel rebar occurs [5]. The
initiation of corrosion in the steel rebar induced through chlorides mainly depends on
the coefficient of chloride diffusion of concrete [6]. Both corrosion mechanisms reduce
the mass percentage area of the steel rebar which diminishes the ultimate strength of the
structure [7,8].

Existing RC structures should meet loading requirements under critical conditions,
resist corrosion, and sustain blast attacks. Therefore, from time to time, strengthening of
structures should be done to improve the service life by following recommended codal pro-
visions. The ACI Committee Report 546 [9] has given guidelines for the material selection
for concrete repair. There are limited studies done on repairing concrete structures affected
by corrosion [10]. Because of the upgradation and strengthening of the already-constructed
structures, fiber-reinforced polymer (FRP) composites have attracted the attention of re-
searchers across the world [11], and the lack of applications of conventional repairing
material has led to the evolution of FRP [12]. Composites are considered promising materi-
als for the retrofitting and repair of structural concrete. Composites are the combination
of two or more material; one of them is the matrix phase, and the other is fiber such as
Carbon, Glass, Aramid, Basalt, etc. [13]. The use of FRP in newly constructed structures as
well as in prevailing RC structures has increased in past decades [14]. The FRP-confined
concrete specimens depend on factors such as the specimens’ diameter (D), the thickness
of FRP (t f ), the tensile strength of FRP ( f f ), and the unconfined compressive strength (CS)
of concrete ( f ′co).

Apart from the above-mentioned factors, other parameters, such as aggregate size and
imperfections in the bond, also affect the properties of FRP composites. Recent research has
proven that the CS of FRP-confined concrete is affected by utilizing coarse aggregate-free
concretes as well. Jiang [15] explored different concrete types and observed their strength
performance. The author used FRP-confined ultra-high-performance concrete (UHPC) and
FRP-confined engineered cementitious composite (ECC) specimens. It was reported that
the strength-enhancement coefficient of both types of concrete was almost identical due to
FRP confinement. The author revealed that similar strength enhancement for FRP-confined
UHPC, ECC, and mortar was due to the inexistence of coarse aggregate. Jiang et al. [16]
examined the stress-strain behavior of FRP-confined concrete with aggregate size effects.
The experiments were performed on concrete cylinders with different sizes of aggregates.
It was concluded that aggregate size had no influence on the stress-strain behavior of
unconfined cylinders but had a significant impact on the stress-strain curve of FRP-confined
concrete. Jamatia and Deb [17] studied the size effect in FRP-wrapped specimens under
axial loading. It was witnessed that large columns showed significant size effects, whereas
cylindrical columns with smaller size ruptured due to plastic deformations in concrete.
Khalil et al. [18] examined the response of circular silos used in industries to store the
bulk of solid material with a greater storing capacity up to 1000 tons. The vulnerability
of the failure modes of silos and cylindrical shells was assessed too. Several mitigation
methods were employed to retrofit silos, and were classified into strengthening techniques,
seismic isolation technique, and bulk material response improvement. Jamatia et al. [19]
investigated the effects of imperfections in the bond on strength of FRP-wrapped cylindrical
columns. It was noted that imperfections in the bond were responsible for deformations
and reduced the capacity of FRP-confined concrete. Some insights on vulnerability and
risk associated to cylindrical structures were also demonstrated in the study. In addition,
Ruggieri et al. [20] conducted vulnerability studies on existing buildings in Italy. They used
available photographs as input data to analyze vulnerability. The study involved collecting
images from specific locations, labelling and storing them, training machine learning (ML)
models to classify the images, ranking the images, and assigning a vulnerability index to
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each building. The researchers compared their results with manual computations using the
same ML algorithms and found that the ML-based approach was effective.

FRP offers several advantages to the construction industry, for example, greater weight-
to-strength ratio, non-corrodibility, ease of installation, lightweight, high durability, etc.
The lightweight characteristic of FRP produces low construction costs with high efficiency.
FRP acts as a promising composite technique for the strengthening and rehabilitation of RC
structures, which enhances the working life of RC structures and is resistant to severe envi-
ronmental actions [21]. Homam et al. [22] evaluated the effect of environmental conditions
and the durability of FRP composite material. They found that FRP strongly resisted envi-
ronmental actions. However, adverse changes in tensile strength were seen due to moisture
interaction. The performance of FRP decrease when FRP is used at elevated temperatures,
which has emerged as a major drawback of FRP. High-strength fiber embedded in epoxy
resin undergoes the liquid-glass transition at higher temperatures. According to technical
approvals and specification sheets, resin is safe to use up to +50 ◦C [23]. Other drawbacks
include difficulty in applying the material to wet or cold surfaces, the high cost of epoxy
resins, limited reversibility, insufficient vapor permeability, vulnerability to UV radiation,
hazards for manual labor, diffusion tightness, and the need for skilled labors to properly
apply FRP to a substrate. To overcome the aforementioned issues, the best alternative to
FRP is fiber reinforced cementitious matrix (FRCM), which provides good bond behavior
with the concrete substrate [24]. The epoxy-based organic resins are replaced by inorganic
cement-based mortar, which offers several benefits in contrast to FRPs. The inorganic
matrix has a number of advantages, such as good compatibility with the concrete substrate,
heat and fire-resistance, applicability on wet and cold surfaces, economic strength higher
than FRP, suitability for irregular or rough substrates, no requirement of skillful labors, and
exhibition of sufficient vapor permeability and high reversibility.

ML models such as artificial neural network (ANN), Gaussian process regression
(GPR), support vector machine (SVM), optimized GPR, and optimized SVM have been
used in the current research work to predict the CS of FRP-confined concrete cylinders.
This article is divided into six sections. In Section 1, the deterioration of the concrete
structure, causes of degradation, FRP, and the ML models have been discussed. In Section 2,
a literature review of the past studies and research significance of this work are reported.
Section 3 deals with the organization of this research work which includes database col-
lection, processing of data, application of performance measures, analytical models of
the FRP-confined concrete cylinders, and the ML models used in this study. Section 4
presents the results and discussion, including a comparison of the ML models with the
existing models, and the formulation of the ML models. The conclusions and the future
scope of the research are provided in Section 5. The objective of this study is to suggest a
prediction model for the CS of concrete cylinders confined using FRP composite. However,
previous research works have demonstrated comparable methods to estimate the CS of the
FRP-confined concrete cylinders with a limited number of specimens. Therefore, this study
utilizes a large database of 1151 specimens to develop the best ML model for prediction.

2. Literature Review

According to the survey of the literature, the available analytical models to predict
the CS of the FRP-confined concrete cylinders are very limited. It has been observed that
developed analytical relationships are dependent on a specific parameter; therefore, some
specific limited databases are required to predict the CS of the FRP-confined concrete
cylinders. Moreover, various assumptions were applied by researchers that reduce the
efficiency of models. The development of robust and accurate models has become necessary
to evaluate the FRP-wrapped CS of cylinders. Artificial intelligence (AI) has contributed to
almost all the specializations of civil engineering such as concrete technology, structural
health monitoring, green buildings, water management, hydropower plants, etc. [25–27].
One of the ways to develop efficient models is the application of AI in the computation of
the confined CS. Some of the ML models developed by researchers are discussed below.
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Cevik and Guzelbey [28] applied a neural network (NN) technique for the investiga-
tion of the confined CS of carbon-FRP (CFRP). A total of 101 databases were collected from
seven literature studies. Input parameters taken from the studies include the cylinder’s
diameter, unconfined CS, FRP’s tensile strength, and its thickness, whereas the confined
CS of CFRP is considered to be the output parameter. The result proposed by the NN
models was satisfactorily found to have an R-value equal to 0.98 when compared with the
experimental results. Moreover, the CS predicted using the NN models was more accurate
than the existing models. Gandomi et al. [29] investigated the ultimate confined CS of
CFRP-wrapped cylindrical specimens using linear genetic programming (LGP). The au-
thors utilized two sets of input databases, in which the first set consisted of D, t, f f , and f ′co,
and another set included f ′co and Pu. The results from the proposed formulation illustrated
that the confined CS was found to be accurate and precise in comparison with the existing
models. Naderpour et al. [30] carried out research on the confined CS of FRP-wrapped
cylinders by using ANN. Several databases were collected from past literature to formulate
a new proposed model. Authors employed various input variables in the study, such as
D, L, f ′c , t, f f rp, and E f rp. The error percentage provided by the ANN models was less than
9%. The confined CS obtained from the developed formulation using ANN demonstrated
good precision and accuracy when compared with the existing models.

Cevik et al. [31] examined the effect of stepwise regression (SR) and genetic program-
ming (GP) to predict the CS of CFRP cylinders. The authors also used fifteen empirical
models from the past literature and compared the results with predicted ML models. The
proposed formulations were found to be satisfactory with respect to observed values. It
was resulted that the suggested model was more precise and efficient in comparison with
the results of the existing analytical models. Cevik [32] computed the confined CS of cylin-
ders by using novel AI methods such as SR, GP, neuro-fuzzy, and NN. The experimental
database of 180 specimens was taken from seventeen published studies. The authors took
ten analytical models developed by researchers. It was pointed out that the results achieved
by the suggested formulation of AI techniques were quite accurate and precise compared
with the experimental and mathematical results. Elsanadedy et al. [33] predicted the CS
and strain of cylinders with FRP confinement utilizing the regression and NN models.
A single hidden layer of NN was prepared and training, testing, and validation of test
results were accomplished by taking a total of 272 datasets of cylindrical specimens from
the literature. It was found that the NN predictions were more accurate and precise than
those of the mathematical relations developed by researchers. In addition, the obtained
results were also better than the developed model in the study.

Jalal and Ramezanianpour [34] examined the enhancement of the CS of the FRP-
confined concrete cylinders using ANN. A dataset of 128 specimens of concrete cylinders
was chosen for the strength prediction. A total of six basic input parameters were considered
to develop the ML models. Results from the proposed formulation were compared with
five existing models, which revealed that the mean percentage error of the ANN model was
about 10%. The results from the proposed ANN models were found to be more accurate and
precise. Pham and Hadi [35] predicted the CS and strain of confined columns with square
and rectangular cross-sections by implementing the ANN technique. The authors applied
104 datasets for the CS evaluation of FRP-wrapped rectangular columns and 69 datasets
for the strain assessment of FRP confined square columns. The general correlation factor
of the proposed model of rectangular and square columns was found to be 96% and 98%,
respectively. Lim et al. [36] evaluated the confined CS of cylinders by applying GP. Based
on the wide-ranging database accumulated to predict the accurate results, a large dataset
of 832 cylinders was taken in the study. The models were examined by certain standard
criteria, and it was found that the proposed model obtained by GP predicted the ultimate
CS more accurately and precisely than those developed by experiments.

Mansouri et al. [37] predicted the CS and strain of cylinders using the radial basis
neural network (RBNN), adaptive neuro-fuzzy inference system (ANFIS) with subtrac-
tive clustering (ANFIS-SC), ANFIS with fuzzy c-means clustering (ANFIS-FCM), and the
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M5 model tree (M5Tree). In computing the CS of the FRP-confined concrete cylinders,
RBNN and ANFIS-FCM methods contributed same level of outcomes with respect to other
applied methods, while for computing strain, ANFIS-SC was superior to other models.
Mozumder et al. [38] utilized the support vector regression (SVR) technique to calculate
the CS of the FRP-confined concrete cylinders. The authors employed the SVM technique
to CFRP and GFRP in the study. The model proposed by the SVR approach was compared
with the ANN models. The SVR models were found to be more accurate and precise in com-
parison with the ANN models. Kamgar et al. [39] investigated the ultimate FRP-wrapped
cylindrical CS of cylinders by using the feed-forward back propagation neural network
(FFBPNN) method. The authors chose 281 datasets based on published literature to test
and train the network. A new formulation was proposed by utilizing the FFBPNN method
and was equated with other existing models. The R-value obtained for the proposed
formulation was found to be 0.9809 and the error percentage was very low (3.49%). The
results indicated that the confined CS predicted by FFBPNN was more accurate and precise
compared with the existing models.

Keshtegar et al. [40] established a novel hybrid model using the SVR and response
surface model (RSM) to compute the CS of the FRP-confined concrete cylinders and axial
strain. The authors collected the findings of 780 circular specimens from previously pub-
lished studies. The collected data were categorized into the training phase (574 samples)
and testing phase (191 samples). D, H, t f , f ′co, E f , and εh,rup were the considered input
parameters in the study for the strength prediction. The novel approach illustrates robust
behavior compared with the other models with the lowest mean absolute error (MAE) and
root mean square error (RMSE) values. Kumar et al. [41] investigated the CS prediction
of the lightweight concrete (LWC) by using the GPR, optimized GPR, ensemble learning
(EL), support vector machine regression (SVMR), optimized SVMR, and optimized EL
algorithms. It had been noted that the optimized GPR was considered to be the best model
with a high value of R (0.9803). The performance of the optimized SVMR and EL methods
was also satisfactory with the R-values of 0.9777 and 0.9740, respectively. Kumar et al. [42]
presented a study on sustainable concrete and evaluated its CS. Fly-ash-based geopolymer
concrete was used and optimized SVM, GPR, and EL were accompanied by the linear
regression (LR). The EL, SVM, and GPR methods were the applied prediction models. The
maximum R-value of 0.9590 was attained by the optimized GPR model and outperformed
all the models with an RMSE value of 1.7132 MPa.

Prediction of the CS of the FRP-confined concrete cylinders was undertaken by Ja-
mali et al. [43]. A total of 1066 samples of cylinders were collected from the literature and
ML models such as the multi-layer perceptron (MLP), SVR, and a combination of ANFIS
with particle swarm algorithm (PSO) were used to evaluate the CS. In addition, the Kriging
interpolation method was also utilized to calculate the CS of the FRP-confined concrete
cylinders. The effective input variables taken in the study were f ′co, H, D, E f , Ff , and t
for the strength prediction. The authors have used eleven existing analytical models and
compared the best analytical model with the ML models. The statistical measures taken in
the study were mean error, standard deviation, mean square error (MSE), RMSE, absolute
error (IAE), and total error. It was concluded that the Kriging method was found to be the
best effective model with higher accuracy. The R-value obtained by the model was 0.985,
whereas the SVR and MLP models acquired the second and third places, respectively, in
terms of accuracy. Table 1 displays the ability of the developed ML models to predict the
CS of the FRP-confined concrete cylinders, as available in the literature. This table shows
the input parameters selected by various researchers to develop the ML models. The table
also lists the R-value and range of the CS of the FRP-confined concrete cylinders of the
developed ML models.
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Table 1. Details of developed ML models to predict CS of FRP-confined concrete cylinders.

Reference Input Parameters ML Technique f’
cc (MPa) R Value

Cevik and Guzelbey [28] D, nt, E f , f ′co ANN — 0.98
Gandomi et al. [29] D, t, f f , f ′co LGP 33.8–137.9 0.9392

Naderpour et al. [30] D, L, f ′c , t, f f rp, E f rp ANN 30.80–241 0.9439
Elsanadedy et al. [33] D, tj, Ej, f ju, f ′c ANN — 0.95

Jalal and Ramezanianpour [34] d, h, t, EFRP, εrup, f ′c ANN 31.40–303 0.9731
Mansouri et al. [37] D, t, f ′co , E f RBNN, ANFIS-SC, ANFIS-FCM, M5 Tree 31.40–372.20 0.9503

Mozumder et al. [38] D, H, f ′c , t f rp, f f rp,u SVR, ANN 40–303 0.9990
Keshtegar et al. [40] D, H, t f , f ′co , E f , εh,rup RSM, SVR 24.1–372.2 0.9423

Jamali et al. [43] f ′co , H, D, E f , Ff , t MLP, SVR, ANFIS-PSO, ANFIS, Kriging 17.8–381 0.985
Jalal et al. [44] d, h, t, EFRP, εrup, f ′c MR, ANN, GP, ANFIS 31.40–303 0.9997

Ahmad et al. [45] D, H, nt, E f , f ′co ANN 18.5–302.2 0.912

CS is an important property of concrete. Predicting the CS of the FRP-confined concrete
cylinders is a laborious work, and high-cost large test setups are required, which are time-
consuming. For a large database, we cannot predict the CS using trial-and-error methods.
In the literature, various analytical models are available and widely used to calculate the
CS of concrete. Sometimes, these models are not able to predict accurate results due to
the complexity of the design mix, code requirements, the type of FRP, orientation of FRP,
other properties of FRP, etc. To overcome these issues, the application of AI is useful to
predict the CS of the FRP-confined concrete cylinders. ML is one of the promising domains
of AI in the field of computation. ML techniques not only produce accurate results but
are also less time-consuming. In this research work, ML techniques such as ANN, GPR,
SVM, optimized GPR, and optimized SVM are employed to accurately predict the CS of
the FRP-confined concrete cylinders. This is the first study in which a large range of the
FRP-confined CS datasets has been utilized to develop the ML model, and it increases the
reliability of the proposed models.

3. Methodology
3.1. Details of Collected Database

From an extensive study of published literature on the FRP-confined concrete cylinders,
an experimental database of 1151 specimens was collected [46–89]. Input parameters
considered in this study are the diameter of the cylindrical specimen (D), the height of
the cylindrical specimen (h), concrete grade ( f ′c), FRP type (Fty), orientation of FRP (O f ),
unconfined CS of the concrete cylinder ( f ′co), FRP width (b f ) and thickness (t f ), modulus
of elasticity of FRP (E f ), FRP tensile strength ( f f ), and number of FRP layers (n). The
FRP-confined CS is taken as the output ( f ′cc).

f ′c ranges between 8 to 204 MPa with 49.37 MPa as an average value. D and h of the
cylinders range from 50 mm to 310 mm and 100 mm to 1000 mm with a mean value of
142.9 mm and 294.15 mm, respectively. f ′co ranges from 6.2 MPa to 200 MPa with 49.32 MPa
as a mean value. Fty used in the study are carbon, glass, aramid, and basalt with their E f
ranges from 21.3 GPa to 251 GPa and f f ranges from 69 MPa to 4580 MPa. Moreover, CFRP
is wrapped on 822 cylindrical specimens while glass-FRP (GFRP), aramid-FRP (AFRP), and
basalt-FRP (BFRP) are applied on 267, 38, and 24 cylindrical specimens, respectively.

The number of FRP layers used in the collected database are in the range of 1 to 14
and having thicknesses of 0.0501 mm to 5 mm. The collected dataset contains both the
unidirectional and bi-directional fibers. The number of specimens chosen for unidirectional
orientation and bi-directional orientation of fibers are 1107 and 44, respectively. The
statistical indicators of all variables are listed in Table 2, and the input variables selected for
the research are displayed in Figure 1.
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Table 2. Statistical indicators related to variables.

Parameters Symbol Unit Min. Mean Max. Std. Type

CS of concrete f ′c MPa 8 48.35 204 30.38 Input
Diameter D mm 50 144.40 310 38.60 Input

Height H mm 100 297.48 1000 106.77 Input
Unconfined CS f ′co MPa 6.20 48.16 200 31.23 Input

Type of FRP Fty - 1 1.36 4 0.65 Input
Number of FRP layers n - 0.30 2.43 14 1.86 Input

Width of FRP b f mm 15 263.81 1000 141.89 Input
Thickness of FRP t f mm 0.05 0.65 3.90 0.74 Input

Orientation of FRP O f - 1 1.02 2 0.14 Input
Elastic modulus of FRP E f GPa 21.30 171.10 251 84.97 Input
Tensile strength of FRP f f MPa 69 3025.64 4580 1308.11 Input

Confined CS f ′cc MPa 12.60 81.26 381 43.88 Output
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Figure 1. Details of input parameters.

The heat plot elaborates on the R-value between the output and input variables. As
depicted in Figure 2, the R-value is calculated for all the input parameters of the collected
database. The value of R equal to 1 indicates a good correlation between the two values
and vice versa. As demonstrated in Figure 2, the R-value between f ′co and f ′c is 0.96, which
is the highest among all the parameters. Similarly, the R-value between E f and f f is 0.87,
which is the second highest value. The worst R-value of 0.66 can be seen in between Fty
and E f . The R-value in between f ′cc and f ′c , f ′cc and f ′co, and h and D are found to be 0.71,
0.73, and 0.78, respectively. To evaluate the optimal ML, the adopted methodology can be
seen clearly in Figure 3.
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Figure 2. Heat plot of input and output parameters.

3.1.1. Data Filtration

Data filtration plays a significant part in defining the accuracy of the ML model. Most
of the datasets contain unwanted and incomplete information, which causes obstructions
in defining robust and accurate models. Therefore, all the data collected from the dataset
are filtered and refined from a 1271 to 1151 dataset.

3.1.2. Processing of Data

Processing of data is a vital phase in the ML models in order to analyze the ML models
without difficulty, since the dataset comes in a variety of units. This step of processing the
dataset makes data easy to understand by the ML algorithms, which enhances the compu-
tational stability. Therefore, all the data collected from the literature have been normalized
in the range of −1 to +1. The expression of normalization is given in Equation (1).

Onormalized =

[
2× d− dmin

dmax − dmin

]
− 1 (1)

where Onormalized is the normalizing value, d is the original value, dmax is the maximum
value of data, and dmin is the minimum value of data.

3.1.3. Splitting of Dataset

For the ANN algorithm, the dataset was grouped into training, testing, and validation
sets. 70% of the data (805 samples) were utilized for the training phase, while 15% of data
were used for the testing phase (173 samples) and the validation phase (173 samples). For
the GPR, SVM, optimized GPR, and optimized SVM models, the set of the data was divided
into two parts in the ratio of 7:3 to avoid any overfitting of data. For the training set, 70% of
the data (805 cylinders) were considered, while 30% (345 cylinders) were utilized for the
testing phase. 10-fold cross-validation was used to validate the SVM and GPR algorithms.

3.1.4. Performance Metrics

In this research, the overall outcome of the ML models is assessed by measures such
as R, a20-index, Nash–Sutcliffe efficiency (NS), MAE, mean absolute percentage error
(MAPE), and RMSE. When the R-value is nearer to unity, it illustrates better results while
more than a 0.85 value suggests a positive output. It can be summarized from previously
published studies that the lower values of MAE, MAPE, and RMSE, and higher values of R,
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a20-index, and NS represent positive outcomes of the models. The expressions of statistical
indices [90,91] are given below:

R =
∑N

i=1 (Ei −
−
E)(Pi −

−
P)√

∑N
i=1 (Ei −

−
E)

2
(Pi −

−
P)

2
(2)

MAE =
1
N

N

∑
i=1
|Ei − Pi| (3)

MAPE =
1
N

N

∑
i=1

∣∣∣∣Ei − Pi
Ei

∣∣∣∣× 100 (4)

RMSE =

√
∑N

i=1(Ei − Pi)
2

N
(5)

NS = 1− ∑N
i=1 (Ei − Pi)

2

∑N
i=1 (Ei −

−
Pi)

2 (6)

a20− index =
m20

N
(7)

where N is the number of specimens in dataset, Ei is the experimental value,
−
E is the mean

of the measured values, Pi is the predicted value,
−
P is the mean of predicted values, and

m20 is the number of specimens with experimental and predicted values (ranges from 0.8
to 1.2).
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Figure 3. Methodology of this study (Benzaid et al. [48], Liang et al. [58], Wu and Wei [92], Pham
and Hadi [93], Youssef et al. [94], Kumutha et al. [95], Samaan et al. [96], Toutanji [97], Wei and
Wu [98], Saafi et al. [99], Teng et al. [100], Mander et al. [101], Spoelstra and Monti [102], Mark and
Sofi [103], Karbhari and Gao [104], Lam and Teng [105], Cusson and Paultre [106], Al-Salloum [107],
and Qazi et al. [108]).
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3.2. Details of Analytical Models

Many researchers in the past have developed an analytical relationship to calculate the
CS of the FRP-confined concrete cylinders. This work presents nineteen analytical models
from the published studies [48,58,92–108]. The empirical relationships include inputs
such as unconfined CS, FRP thickness, the diameter of cylindrical specimen, confinement
pressure, the tensile strength of FRP, and the modulus of elasticity of FRP, and the effects of
these inputs on the confined CS have been investigated.

Wu and Wei [92] proposed a steel or FRP-confined model to predict the CS of the
FRP-confined concrete cylinders. The novel characteristics of this model were its continuity
and simplicity in predicting the continuous stress-strain curves for hardening and softening
phases. This model was the extension of the Popovics’s model developed in 1973. The
suggested model demonstrated superiority and flexibility in performance when validated
and related to the existing relationships. Pham and Hadi [93] collected 574 specimens
of RC columns confined with various FRPs and generated an FRP-confined model for
concrete having conventional and high strength. The results obtained from the prediction
of the models fitted the experimental results from the collected dataset. Youssef et al. [94]
established a relationship for FRP-confined columns. The authors used circular- and
rectangular-shaped large-scale columns with high confinement ratios. Kumutha et al. [95]
proposed the simplest analytical relationship to explore the behavior of GFRP reinforced
rectangular columns. They found that the predicted model best fitted with measured values.
Samaan et al. [96] suggested a constitutive relationship for the prediction of FRP-reinforced
columns in unidirectional and lateral directions. The results indicated that the predicted
model provided a strong connection with measured values. Wei and Wu [98] presented
constitutive unified relations to compute the ultimate stress and strain of FRP-confined
concrete columns having rectangular, circular, and square specimens. Teng et al. [100]
established a stress-strain model for FRP-confined concrete columns. The results of this
novel model were applicable to wrapped and un-wrapped concrete specimens. In addition,
the results were not only valid for FRP-confined concrete but also for varying confined
materials. Mander et al. [101] provided a stress-strain relation for concrete confined in
axial and lateral directions. The lateral confinement was applied with steel ties (spiral or
circular). The results were measured under axial and cyclic loading conditions. Spoelstra
and Monti [102] considered a uniaxial analytical relationship for FRP-confined concrete
with steel jacketing as transverse confinement. Karbhari and Gao [104] proposed a uniaxial
model, and considered FRP wraps, fiber orientation, and types of fiber to improve the CS
of the FRP-confined concrete cylinders and found that the predicted model showed a good
bond with measured values. Lam and Teng [105] reported a simple stress-strain model for
FRP-confined concrete subjected to static and seismic loadings. The detailed information
and formulation of each model is summarized in Table 3.

3.3. ML Models

This section describes the implementation of the ML methods to predict the CS of the
FRP-confined concrete cylinders. ML is the branch of AI in which innovatory and difficult
tasks are processed by building algorithms. The ML algorithms employ computational
approaches in which information is directly obtained from datasets rather than relying on
an analytical model.
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Table 3. Analytical models with description.

S. No. Reference Formulation Description

1 Benzaid et al. [48] f ′cc
f ′co

= [1 + 1.60( fl
f ′co
)] fl = 2 f f t f

D

2 Liang et al. [58] f ′cc = f ′co[1 + (2.61− 0.01 f ′co)(
fl
f ′co
)] fl = 2 f f t f

D

3 Wu and Wei [92] f ′cc = f ′co[0.75 + 2.7
(

fl
f ′co

)0.9
] fl = 2 f f t f

D

4 Pham and Hadi [93] f ′cc = 0.7 f ′co + 1.8 fl + 5.7 t
D + 13 −

5 Youssef et al. [94] f ′cc
f ′co

= [1 + 2.25( fl
f ′co
)

5
4
] CEF = f ′cc

f ′co
; CR = fl

f ′co

6 Kumutha et al. [95] f ′cc = f ′co + 0.93 fl fl = 2 f f t f
D

7 Samaan et al. [96] f ′cc = f ′co + 6.0 f 0.7
l fl = 2 f f t f

D
8 Toutanji [97] f ′cc

f ′co
= [1 + 3.5( fl

f ′co
)

0.85
] fl = 2 f f t f

D

9 Wei and Wu [98] f ′cc
f ′co

= [0.5 + 2.7( fl
f ′co
)

0.73
] fl = 2 f f t f

D

10 Saafi et al. [99] f ′cc
f ′co

= [1 + 2.2( fl
f ′co
)

0.84
] fl = 2 f f t f

D

11 Teng et al. [100] f ′cc
f ′co

= [1 + 3.5( fl
f ′co
)] fl = 2 f f t f

D

12 Mander et al. [101] f ′cc = f ′co(2.254
√

1 + 7.94 fl
f ′co
−2 fl

f ′co
−1.254) fl = 2 f f t f

D

13 Spoelstra and Monti [102] f ′cc = f ′co(0.2 + 3
√

fl
f ′co

) fl = 2 f f t f
D

14 Mark and Sofi [103] f ′cc
f ′co

= 1.1+3.23( fl
f ′co

) CEF = f ′cc
f ′co

; CR = fl
f ′co

15 Karbhari and Gao [104] f ′cc = f ′co[1 + 2.1( fl
f ′co
)

0.87
] fl = 2 f f t f

D

16 Lam and Teng [105] f ′cc = f ′co[1 + 3.3( fl
f ′co
)] fl = 2 f f t f

D

17 Cusson and Paultre [106] f ′cc = f ′co + 2.1 f ′co(
fl
f ′co
)

0.7
fl = 2 f f t f

D

18 Al-Salloum [107] f ′cc
f ′co

= [1 + 2.312( fl
f ′co
)] fl = 2 f f t f

D

19 Qazi et al. [108] f ′cc = f ′co+ 3.2 fl fl = 2 f f t f
D

The architecture of the ML models is displayed in Figure 4. The ML methods (ANN,
GPR, SVM, optimized GPR, and optimized SVM) used in the proposed research are de-
scribed below:

Figure 4. Architecture of ML models (a) ANN, (b) GPR, (c) SVM.
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3.3.1. ANN

ANN is the prominent technique used in ML. ANN contains simple processing units
called neurons that are based on the human brain. The first artificially created neuron was
proposed by McCulloch and Pitts in 1943 [109]. ANN is a series of interconnected large
numbers of neurons or nodes having different weights. Neurons in the network receive
signals as multi-layered input, process it, and send output signals to the brain. Each neuron
receives multiple inputs from the information that is locally available at the nodes and
transmits its output to the other nodes. Artificial neuron has a specific function called as a
function of activation, and the output signal is generated when weighted input data cross
the threshold limit. When the input value is zero, there is no output received, but when the
input crosses the threshold limit, the output is generated [110].

Feed-forward neural network (FFNN) is one of the types of ANN. FFNN comprises of
inputs received from different nodes, hidden layers, and output of the problem [111]. One of
the most common families of FFNN is MLP. In MLP, neurons are arranged unidirectionally
and have a static function that gives a single set of output [112]. The hidden layer builds
non-linearity between input and output variables which can be achieved by activation
functions [113]. These functions are written as:

Tansig =
2

1 + e−2x − 1 (8)

Purelin = f (x) = x (9)

3.3.2. GPR

Gaussian process is the combination of an infinite number of random variables repre-
senting mean and covariance functions [114]. GPR is widely used in the ML applications
due to its flexibility and intrinsic uncertainty measures over predictions [90]. Gaussian
process can be found below:

f (x) ∼ GP
(
µ(x), k

(
x, x′

))
(10)

In the above equation, µ(x) and k(x, x′) represent the mean function and covariance
function, respectively. The mean function is assumed to be zero because the Gaussian
process is the function of a linear combination of random variables. k(x, x′) is defined as a
positive semi-definite kernel function, which is the covariance between f (x) and f (x′), as
shown below:

k
(
x, x′

)
= cov

(
f (x), f

(
x′
))

(11)

µ(x) = 0 (assumed), and the kernel has variable θ, i.e., k(x, x′|θ ). For a finite range
of inputs X = (x1, x2, . . . , xN), the function values f (x) = ( f (x1), f (x2), . . . , f (xN))

T have
joint multivariate Gaussian distribution:

f (X) ∼ N(0, kX,X(θ)) (12)

where elements of N-by-N covariance matrix are defined by the kernel:

[kX,X(θ)]i,j = k
(

xi, xj
∣∣θ) (13)

All the above formulations of Gaussian process were taken from [115]. The covariance
function is expressed as below:

k(x, x′) = σ2
f exp

[
−r
2

]
(14)
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where r is illustrated in the below equation:

r =
|x− x′|2

l2 (15)

σf and l indicate the model noise and length scale, respectively, which also are the
hyper-parameters that affect the outcome of the Gaussian process. Various kernel func-
tions applied in this investigation are Matern 3/2, Matern 5/2, Exponential, and Rational
Quadratic. All the details of the kernel functions are given in Asante-Okyere et al. [114].
The optimized GPR model is displayed in Figure 5.
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3.3.3. SVM

SVM is a promising ML technique developed by Vladimir Vapnik in 1995 [116,117].
The SVM is generally based on linear functions and called linear SVM (LSVM). Initially,
it was designed on the basis of recognition patterns but through SVM, small sub-sets can
be created from a large number of training data. These smaller subsets are known as
support vectors (SVs). SVs are always smaller than the total samples taken in the study.
SVs are used to compute the values with the least error of margin [118]. Therefore, the SVM
technique is the simplest among other ML methods such as GPR, ANN, etc. The non-linear
classification of SVM is developed by introducing a kernel function called as non-linear
SVM (NSVM).

For the given dataset {(x1, y1), (x2, y2), . . . , (xi, yi), . . . , (xN , yN)} where xiεRn are in-
put values, yiεRn are corresponding output values, and N is number of datasets, LSVM for
the LR problem can be written as:

y = f (x) = w.φ(x) + b (16)

where w is the weight vector, φ(x) elaborates mapping function, and b represents the
bias parameter:

yi =
n

∑
i=1

(αi − βi)× (x, xi) + b (17)

where αi and βi indicate the Lagrange multipliers. In case of non-linearity, the kernel
function is introduced.

yi =
n

∑
i=1

(αi − βi)× k(x, xi) + b (18)

where k(x, xi) is the kernel function.
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The optimized SVM model for the proposed work is depicted in Figure 6.
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4. Results and Discussion

The implementation of the ML algorithms (ANN, GPR, SVM, optimized GPR, and
optimized SVM) on 1151 cylindrical specimens is presented and discussed in this section.
The performance of these algorithms is measured using six different metrics, i.e., R, MAE,
a20-index, RMSE, NS, and MAPE. The outcomes of the suggested analytical models are
displayed and described with the help of a scatter plot, a violin plot of error distribution,
and a Taylor diagram.

4.1. Results of Analytical Models

The performance indices of all the analytical models are listed in Table 4. The predicted
model can be termed as accurate when the error values of MAE, MAPE, and RMSE are
lowest, and the R, NS, and a20-index values are higher. According to Table 4, the model
of Benzaid et al. [48] has a better performance based on the performance criteria. The
highest rank achieved by the model of Benzaid et al. [48] with an R-value of 0.8177 and
RMSE, MAE, MAPE, NS, and a20-index values of 27.02 MPa, 19.05 MPa, 25.75%, 0.6205,
and 0.5065, respectively. The second-best optimal model is recognized as the model of
Kumutha et al. [95] with an R-value (0.8342), RMSE (27.70 MPa), MAE (20.15 MPa), MAPE
(24.61%), NS (0.6356), and a20-index (0.4352) values. Moreover, the maximum R-value
(0.8542) is obtained by the model of Cusson and Paultre [106], while the worst R-value
(0.6572) is attained by the model of Youssef et al. [94]. The model of Teng et al. [100] has
the worst performance according to the performance metrics with R, RMSE, MAE, MAPE,
a20-index, and NS values of 71.99%, 67.25 MPa, 41.37 MPa, 57.23%, 0.4014, and −0.2633,
respectively. In Table 4, the sequence of the analytical models has been arranged according
to the accuracy of the models.

The outcomes of the confined CS of each model are presented in Figure 7, which
depicts a scatter diagram between the measured and predicted CS of the FRP-confined
concrete cylinders. The results provided in Figure 7 illustrate that the data points in the
best-predicted model are uniformly concentrated on the best fitted line and show superior
accuracy. According to this figure, the data points in the model of Wu and Wei [92] are
lying above the diagonal line, which indicates that the model overestimates the confined
CS of the cylinder. However, a good proportion of the data points in the models of Pham
and Hadi [93] and Youssef et al. [94] are evenly scattered on both sides of the straight line.
It has been observed that almost all the data points in the model of Kumutha et al. [95] are
lying beneath the diagonal line, demonstrating that the model underestimates the confined
CS of the FRP-confined concrete cylinders, whereas, in the models of Samaan et al. [96] and
Toutanji [97], a good proportion of the data points are scattered above the diagonal line,
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signifying that the models overestimate the CS of the FRP-confined concrete cylinders. It
has also been witnessed that most of the data points in the model of Wei and Wu [98] are
uniformly distributed along the best fitted line, indicating good accuracy of the model.

The scatter diagram shows that most of the data points in the models of Saafi et al. [99],
Teng et al. [100], Mander et al. [101], Spoelstra and Monti [102], Mark and Sofi [103],
Karbhari and Gao [104], Lam and Teng [105], Cusson and Paultre [106], Liang et al. [58], Al-
Saloum [107], and Qazi et al. [108] are lying above the diagonal straight line which clarifies
that these models overestimate the confined CS of concrete. However, a highly concentrated
uniform distribution of the data points is observed in the model of Benzaid et al. [48]
indicating that the model has the maximum predictive accuracy.

Table 4. Statistical indicators of analytical models.

S. No. Reference R MAPE (%) MAE
(MPa)

RMSE
(MPa) a20-Index NS

1 Benzaid et al. [48] 0.8177 25.75 19.05 27.02 0.5065 0.6205
2 Kumutha et al. [95] 0.8342 24.61 20.15 27.70 0.4352 0.6356
3 Pham and Hadi [93] 0.7651 26.77 18.98 29.70 0.5942 0.5441
4 Samaan et al. [96] 0.8345 31.52 21.11 29.17 0.5560 0.6007
5 Wei and Wu [98] 0.8041 29.04 20.33 31.40 0.5873 0.5040
6 Spoelstra and Monti [102] 0.8446 30.91 22.05 31.45 0.5551 0.5343
7 Karbhari and Gao [104] 0.8297 30.70 21.76 32.30 0.5543 0.5064
8 Liang et al. [58] 0.7114 31.07 21.20 37.15 0.6378 0.3264
9 Saafi et al. [99] 0.8334 32.66 23.17 34.16 0.5473 0.4710
10 Wu and Wei [92] 0.7674 32.41 22.26 38.77 0.6370 0.2935
11 Cusson and Paultre [106] 0.8542 34.38 25.01 33.80 0.4622 0.4970
12 Al-Saloum [107] 0.7794 32.67 22.65 38.42 0.5994 0.3200
13 Mander et al. [101] 0.8523 48.54 36.26 46.70 0.2980 0.2573
14 Youssef et al. [94] 0.6572 34.01 23.68 47.96 0.5769 −0.1205
15 Qazi et al. [108] 0.7334 49.76 35.50 59.51 0.4787 −0.1403
16 Lam and Teng [105] 0.7289 52.18 37.40 62.07 0.4466 −0.1836
17 Toutanji [97] 0.7922 63.07 46.24 65.34 0.2710 −0.0603
18 Mark and Sofi [103] 0.7462 55.80 40.40 63.54 0.3918 −0.1503
19 Teng et al. [100] 0.7200 57.23 41.37 67.25 0.4014 −0.2633
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Figure 7. Scatter plot of analytical models; (a) Wu and Wei [92], (b) Pham and Hadi [93],
(c) Youssef et al. [94], (d) Kumutha et al. [95], (e) Samaan et al. [96], (f) Toutanji [97], (g) Wei
and Wu [98], (h) Saafi et al. [99], (i) Teng et al. [100], (j) Mander et al. [101], (k) Spoelstra and
Monti [102], (l) Mark and Sofi [103], (m) Karbhari and Gao [104], (n) Lam and Teng [105], (o) Cus-
son and Paultre [106], (p) Liang et al. [58], (q) Benzaid et al. [48], (r) Al-Salloum [107], and (s)
Qazi et al. [108].

4.2. Results of ML Models

Five ML models (ANN, GPR, SVM, optimized GPR, and optimized SVM) have been
established to predict the CS of the FRP-confined concrete cylinders. The model’s perfor-
mance has been assessed using six performance indices as mentioned in Section 3.1.4.

In ANN, a single hidden layer has been used with neurons from 3 to 34. The best
neuron has been selected with the trial-and-error method. Table 5 illustrates the perfor-
mance variables of the ANN model. For the training, testing, and validation datasets of
the established ANN model, the value of R is noted as 0.9945, 0.9887, and 0.9845, respec-
tively. Furthermore, the error values (MAE, MAPE, and RMSE) are found to be 3.22 MPa,
4.86%, and 4.99 MPa for the training set; 4.94 MPa, 7.08%, and 7.51 MPa for the testing set;
4.85 MPa, 7.02%, and 7.43 MPa for the validation set; and 3.72 MPa, 5.51%, and 5.55 MPa
for the whole dataset, respectively. It was also observed that the NS and a20-index values
for the training set attained maximum values and are close to their ideal values when
compared with other datasets. The measured and predicted values of the CS of the FRP-
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confined concrete cylinders for the training, testing, validation, and whole datasets of the
ANN model are depicted in Figure 8.

In the GPR model, it can be observed that the precision of the model is 99.79% for
the training set, which was relatively more accurate than the testing phase. The accuracy
rates for the testing and whole datasets are 98.77% and 99.44%, respectively. Moreover,
the error predicted in the training phase is witnessed to be minimum in comparison with
other sets which ultimately displays that the training set results are best fitted and provide
a good correlation with the model. The MAE, MAPE, and RMSE values of the GPR model
are 1.78 MPa, 2.69%, and 2.79 MPa for the training set; these values are 3.96 MPa, 5.31%,
and 7.41 MPa for the testing set; and they are 2.43 MPa, 3.48%, and 4.68 MPa for the whole
dataset, sequentially. The NS value and a20-index for the training set are 0.9957 and 0.9975,
respectively. The scatter plot of the GPR model is reported in Figure 9, which demonstrates
that the major data points are closely concentrated on the regression line signifying that the
predicted and experimental confined CSs best fit the model and illustrating good agreement
in the case of the training set.

The SVM model achieves an accuracy rate of 94.94% for the training set, which is
superior to the accuracy rate of the testing and whole data phases. The MAE, MAPE, and
RMSE values for the training set are 8.23 MPa, 10.43%, and 14.18 MPa, respectively, which
are found to be greater than the testing and whole data phases. Figure 10 is the scatter plot
of the SVM model, showing the non-uniform distribution of the data points across the best
fitted line in all the three sets.

In the optimized GPR model, the R-values are observed to be 0.9982, 0.9916, and
0.9960 for the training, testing, and whole datasets, respectively, whereas the MAE, MAPE,
and RMSE values are found to be 1.57 MPa, 2.28%, and 2.48 MPa for the training set; 3.59
MPa, 5.04%, and 5.99 MPa for the testing set; and 2.18 MPa, 3.11%, and 3.88 MPa for the
whole dataset, sequentially. The NS and a20-index values of the SVM model are 0.9966
and 0.9962 for the training set, respectively. The scatter plot of the optimized GPR model
in Figure 11 indicates that all the data points are concentrated and uniformly distributed
across the diagonal line in the training set, which demonstrates that the model is best fitted
and acquired the best accuracy.

Table 5. Comparison of ML models based on statistical parameters.

Model R MAPE (%) MAE (MPa) RMSE (MPa) a20-Index NS

ANN

Training 0.9945 4.86 3.22 4.49 0.9826 0.9890
Testing 0.9887 7.08 4.94 7.51 0.9480 0.9771

Validation 0.9845 7.02 4.85 7.43 0.9306 0.9690
All 0.9919 5.51 3.72 5.55 0.9696 0.9840

GPR
Training 0.9979 2.69 1.78 2.79 0.9975 0.9957
Testing 0.9877 5.31 3.96 7.41 0.9681 0.9742

All 0.9944 3.48 2.43 4.68 0.9887 0.9886

SVM
Training 0.9494 10.43 8.23 14.18 0.8571 0.8904
Testing 0.9310 11.70 9.85 18.09 0.8231 0.8464

All 0.9430 10.81 8.70 15.46 0.8469 0.8758

Optimized
GPR

Training 0.9982 2.28 1.57 2.48 0.9962 0.9966
Testing 0.9916 5.04 3.59 5.99 0.9740 0.9831

All 0.9960 3.11 2.18 3.88 0.9895 0.9921

Optimized
SVM

Training 0.9756 8.69 6.12 9.46 0.9080 0.9512
Testing 0.9714 9.78 7.32 11.15 0.8580 0.9416

All 0.9741 9.01 6.48 10.00 0.8930 0.9480
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Figure 8. Scatter and absolute error plot of ANN model; (a) training, (b) validation, (c) testing, and
(d) whole datasets.
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Figure 9. Scatter and absolute error plot of GPR model; (a) training, (b) testing, and (c) whole datasets.



Buildings 2023, 13, 931 21 of 32Buildings 2023, 13, x FOR PEER REVIEW 21 of 32 
 

 
Figure 10. Scatter and absolute error plot of SVM model; (a) training, (b) testing, and (c) whole da-
tasets. 

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

Pr
ed

ic
te

d 
f' c

c 
(M

Pa
)

Experimental f'cc (MPa)

+20%
-20%
+20%

R = 1

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

Pr
ed

ic
te

d 
f' c

c 
(M

Pa
)

Experimental f'cc (MPa)

+20%
-20%
+20%

R = 1

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

Pr
ed

ic
te

d 
f' c

c 
(M

Pa
)

Experimental f'cc (MPa)

+20%
-20%
+20%

R = 1

(a)

(b)

(c)

Figure 10. Scatter and absolute error plot of SVM model; (a) training, (b) testing, and (c)
whole datasets.
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Figure 11. Scatter and absolute error plot of optimized GPR model; (a) training, (b) testing, and
(c) whole datasets.

In the optimized SVM model, the R-values for the training, testing, and whole datasets
are found to be 0.9756, 0.9714, and 0.9741, respectively, whereas the MAE, MAPE, and
RMSE values are found to be 6.12 MPa, 8.69%, and 9.46 MPa for the training set; 7.32 MPa,
9.78%, and 11.15 MPa for the testing set; and 6.48 MPa, 9.01%, and 10 MPa for the whole
dataset, respectively. Figure 12 represents the scatter diagram which indicates a non-
uniform concentration of data values across the diagonal line in all the three sets with
reference to the optimized SVM model.
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Figure 12. Scatter and absolute error plot of optimized SVM model; (a) training, (b) testing, and
(c) whole datasets.

The absolute error distribution for all the ML models is also illustrated in Figures 8–12.
The best error distribution is depicted by the optimized GPR model. The absolute error
ranges of the optimized GPR model are lying under the 5 MPa sector, which is minimal
in comparison with the other ML models. For the GPR, ANN, optimized SVM, and SVM
models, the error distribution is lying under the 8 MPa, 10 MPa, 30 MPa, and 50 MPa
sectors, respectively. The SVM model displays the greatest error and is treated as the
worst model.

4.3. Discussion

In this section, the evaluation between the developed ML models and analytical
models is discussed to define the reliability of the proposed models. In addition, the
accuracy and reliability of the developed ML models has been verified by a recently
developed ML model, which was given by Jamali et al. [43]. Based on the results of the
performance metrics of all the analytical as well as ML models, it can be concluded that the
optimized GPR model has the highest precision, as indicated in Table 6.
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Table 6. Comparison of the best-predicted analytical model with ML models on the basis of statisti-
cal parameters.

Model R MAPE (%) MAE (MPa) RMSE (MPa) a20-Index NS

Benzaid et al. [48] 0.8177 25.75 19.06 27.02 0.5065 0.6205
Jamali et al. [43] 0.9850 3.909 — 8.388 — —

ANN 0.9919 5.51 3.72 5.55 0.9696 0.9840
GPR 0.9944 3.48 2.43 4.68 0.9887 0.9886
SVM 0.9430 10.81 8.70 15.46 0.8470 0.8758

Optimized GPR 0.9960 3.11 2.17 3.88 0.9895 0.9921
Optimized SVM 0.9741 9.01 6.48 10.00 0.8930 0.9480

The R-value, a20-index, and NS value of the optimized GPR model are 21.80%, 95.36%,
and 59.88% greater than those of the model of Benzaid et al. [48], respectively, whereas the
MAE, MAPE, and RMSE values of the model of Benzaid et al. [48] are 778.34%, 727.96%,
and 596.39% higher than those of the optimized GPR model, respectively. The GPR model
is demonstrated as the second best-performing model after the optimized GPR model. The
R-value, NS value, and a20-index of the GPR model are 21.60%, 59.32%, and 95.20% greater
than those of the model of Benzaid et al. [48], respectively, whereas the MAE, MAPE, and
RMSE values of the model of Benzaid et al. [48] are 684.36%, 639.94%, and 477.35% higher
than those of the GPR model, respectively. Furthermore, the MAE, MAPE, and RMSE
values of the model of Benzaid et al. [48] are 119.08%, 138.20%, and 74.77% higher than
those of the SVM model, whereas the R-value and NS value of the SVM model are 15.32%
and 41.14% greater than those of the model of Benzaid et al. [48]. Additionally, the R-value
of the optimized GPR model is 1.11% higher than that of the model of Jamali et al. [43],
while the MAPE and RMSE values of the model of Jamali et al. [43] are 25.69% and 116.18%
greater than those of the optimized GPR model, respectively.

The distribution of errors can be observed in the violin plot (Figure 13), which illus-
trates the error ranges of the proposed ML and analytical models. From this plot, it is clearly
visible that the error ranges in the optimized GPR model have been in the minimum range
compared with all the models. However, the SVM model indicates the worst performance,
implying the highest range of the errors according to the violin plot.
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Figure 13. Violin with box plot and frequency distribution of errors.

The Taylor’s diagram depicted in Figure 14 represents the performance of the best-
fitted model (analytical models and ML models). The diagram provides the graphical
representation of the standard deviation, R-value, and RMSE value. The standard deviation
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of the whole dataset is displayed by the green colored line. Figure 14a depicts that the value
of the standard deviation and R-value for the reference point is close to 1. Toutanji [97],
Teng et al. [100], Mark and Sofi [103], Lam and Teng [105], and Qazi et al. [108] crossed the
green line of the collected dataset, as can be observed in Figure 14b. This clarifies that they
have given inferior results in terms of the accuracy and error values. It can be witnessed
from the Taylor diagram that the existing analytical model exhibits higher error values than
the proposed ML models. Moreover, according to Figure 14c,d, the optimized GPR, GPR,
and ANN models are lying on the green colored dotted line, while the model of Benzaid
et al. [48] is located away from the green dotted line. The diagram also shows that in all the
ML models except the SVM and optimized SVM models, all the other proposed models
have relatively performed better with good accuracy.
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Figure 14. Taylor plot; (a) analytical models 1 to 10 (Benzaid et al. [48], Kumutha et al. [95], Pham and
Hadi [93], Samaan et al. [96], Wei and Wu [98], Spoelstra and Monti [102], Karbhari and Gao [104],
Liang et al. [58], Saafi et al. [99], Wu and Wei [92]), (b) analytical models 11 to 19 (Cusson and Paultre
[106], Al-Salloum [107], Mander et al. [101], Youssef et al. [94], Qazi et al. [108], Lam and Teng [105],
Toutanji [97], Mark and Sofi [103], Teng et al. [100]), (c) proposed ML models (ANN, GPR, SVM,
optimized GPR, and optimized SVM models), and (d) comparison between best analytical models
and best fitted ML models (Benzaid et al. [48]).
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4.4. Confined CS Formulation Using ANN

The mathematical expression to calculate the CS of the FRP-confined concrete cylinders
is expressed in Equation (19). The values of the coefficients P1 to P30 can be obtained from
Table 7.

f ′cc = f(H−O)

(
N

∑
i=1

Wi(H−O)Ni + B(H−O)

)
(19)

where Wi(H−O) is the weight in the output layer, B(H−O) is the output bias as shown in
Equation (20), and Ni can be calculated from Equation (21).

f ′cc = 0.4086P1 + 0.3372P2 − 1.1627P3 − 0.1835P4 − 0.1596P5 − 0.5800P6
− 0.2306P7 + 0.4063P8 − 0.1481P9 + 0.1611P10 + 0.3628P11
− 0.1325P12 + 0.3011P13 + 0.3729P14 − 0.3275P15
− 1.1007P16 + 0.5826P17 − 0.9259P18 + 0.5586P19
+ 0.2735P20 + 0.3539P21 − 0.4611P22 − 0.1370P23
− 0.1672P24 + 0.3188P25 − 0.2348P26 + 0.1163P27
+ 0.6244P28 + 0.1289P29 − 0.4290P30 + 0.1512

(20)

Ni = f(I−H)

(
N

∑
i=1

Wi(I−H)Xi + B(I−H)

)
(21)

where Wi(I−H) is the weight in hidden layer and B(I−H) is the hidden layer bias.

Table 7. Weight and biases of hidden layer.

Neuron Wi(I—H) B(I—H)

1 0.4890 −0.0426 0.7991 0.8043 −0.2543 1.4040 −0.8662 −0.5338 0.2425 −1.0910 −0.8423 2.4664
2 0.3147 −0.9940 −0.1763 −0.3185 0.6958 −2.0116 0.3959 2.3624 −2.2556 −3.0314 0.6254 1.5066
3 0.6892 −0.8751 0.3472 0.0917 −0.8381 1.7325 0.6821 −2.0279 1.4394 1.3860 0.5977 −1.9634
4 1.9633 0.1088 −0.4232 1.1527 −0.4726 −0.0668 0.5465 0.8290 0.9297 0.3154 −1.0595 1.0969
5 −1.1834 0.2597 −1.0005 −1.9171 0.5790 0.6256 0.4608 −0.4068 −0.4369 1.3680 0.2822 −1.5592
6 0.4046 −0.7379 0.1857 −0.5454 −0.1630 −0.3392 2.0297 −0.4811 −0.6139 −0.6073 −1.3327 1.3040
7 −0.5646 −0.6054 0.6037 −2.2622 0.0565 −1.9472 −0.1125 1.2858 −0.3791 −0.3788 −0.5173 0.8962
8 0.1469 0.8395 −0.1774 0.5823 −0.5912 −1.2727 0.3431 −2.7576 −0.6781 −0.1366 0.1056 0.5559
9 2.3052 −1.3832 −0.5811 0.8648 −0.5481 −0.1246 −1.4150 1.2182 −0.9212 0.9857 −0.7972 −0.1886

10 0.7775 −2.1458 −0.6900 −1.2360 −1.0703 −0.7983 −0.1019 1.0264 −0.4462 0.9316 −1.5862 −0.7309
11 −1.3758 0.2885 −0.1574 −0.3185 −0.5195 1.4632 −1.4404 1.4724 −2.0358 1.8967 1.4808 0.0879
12 0.4167 1.1231 −0.3507 1.3185 −1.1173 1.4175 1.0726 0.9048 0.2225 −1.8280 −0.8253 −0.4359
13 1.7231 0.7284 0.4366 −0.6762 −1.6890 −0.6619 −0.6714 0.7691 0.6635 1.8059 −1.8986 −0.3767
14 1.3590 0.2079 −0.4545 −2.8441 −0.5101 1.7451 −1.0740 0.9111 0.6223 0.3673 0.2465 0.4237
15 0.6644 −0.5836 0.3536 −0.0864 −1.1389 0.9472 0.8244 −1.0808 −1.7435 1.4781 1.7289 0.8480
16 −1.8260 0.6426 1.1734 1.7608 −0.1300 0.0114 0.3381 −1.4550 −1.2129 −1.7368 1.1568 1.1399
17 −1.3106 −0.1813 −0.9929 −0.1053 −1.3403 0.0551 1.6340 −1.5167 −0.5771 −1.9736 −0.5192 −0.2839
18 0.3569 2.1897 −1.4162 −0.8260 −0.2708 −1.4098 −0.0346 −0.5525 −1.1112 −0.8331 −2.1154 0.7931
19 −0.1513 −1.3625 −0.8049 1.2354 −0.0976 0.8162 2.0695 −1.2838 −0.6405 −0.8792 0.7740 0.1292
20 0.4788 −0.3947 2.0197 0.1632 −0.4640 −3.6198 −0.9234 2.2758 −0.6305 −0.2096 −0.7755 −0.3739
21 1.3400 −0.6498 0.8341 −0.5221 0.3899 −1.3350 −1.8893 −0.6759 0.0242 1.0824 0.9962 0.4297
22 0.8218 0.2154 0.2902 −1.1508 −2.3498 −2.0093 −1.2739 2.4396 −0.4819 −1.3710 −0.0760 −1.8869
23 −0.5996 1.1820 1.5276 0.0869 −0.6709 −2.0720 1.6654 −1.1800 0.0614 −0.2382 3.3103 0.3315
24 −0.2590 −2.5197 −1.1914 0.3217 0.0908 2.1740 −2.4669 0.4435 0.1522 0.1825 1.6287 1.3594
25 −0.1467 −0.6175 0.9839 0.1413 0.2974 1.0784 0.7411 1.8661 0.0364 −0.6620 −0.2940 −1.5176
26 −0.4294 −1.5546 1.5770 −0.2099 1.3779 0.8255 0.6206 −1.8399 −0.3451 0.3825 −1.2959 −1.5230
27 0.9118 0.4704 1.1762 −0.5429 0.7116 0.8158 1.4502 0.8648 −0.8382 1.7015 −0.1090 1.6661
28 −0.9282 0.8193 −0.0857 0.7115 0.1644 −0.6808 0.4528 0.7792 −0.5483 −0.2140 0.0932 −1.3317
29 0.5797 1.9693 −0.1414 −0.8540 0.0167 −1.2740 −0.5481 −0.0796 −0.2724 1.9183 0.1999 −1.9027
30 −0.6942 −0.3818 0.7695 −1.7612 0.4512 −0.4785 0.8002 0.2275 0.6121 1.5343 −0.0429 1.9731
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5. Conclusions and Future Scope of Research Work

In this study, a database of 1151 concrete cylindrical specimens was collected from
the literature to predict the CS of the FRP-confined concrete cylinders. Five ML-based
algorithms were used, and the accuracy of the established ML models was also compared
with nineteen analytical models. The prediction model was based on eleven input variables
(D, h, f ′c , Fty, O f , f ′co, b f , t f , E f , f f , and n), and statistical measures (R, MAE, MAPE, RMSE,
a20-index, and NS) were utilized to evaluate the performance of the existing and developed
models. The main conclusions from the study are pointed out below:

• The accuracy of the optimized GPR model was the highest among all the ML models
as well as the existing ML model (Jamali et al. [43]) with the R-values of 0.9982 and
0.9916 for the training and testing datasets, respectively.

• The performance of the model of Benzaid et al. [48] was good in comparison with all
other empirical models. The R and RMSE values of the model of Benzaid et al. [48]
were 0.8177 and 27.02 MPa, respectively.

• According to the assessment criteria, the accuracy of the developed ML models de-
creased subsequently for the optimized GPR, GPR, ANN, optimized SVM, and SVM.

• The error values depicted by the optimized GPR model was minimum in all the
cases. The MAPE, MAE, and RMSE values of the optimized GPR model were 3.11%,
2.17 MPa, and 3.88 MPa, respectively.

• By comparing the ML models and the analytical models, it was observed that the
optimized GPR model reduced the error rate of MAPE, MAE, and RMSE by 727.97%,
778.34%, and 596.39%, respectively, and more accurately predicted the CS of the
FRP-confined concrete cylinders than the existing mathematical models.

• The SVM model demonstrated a poor performance among all the ML-based models
according to the performance indices, violin plot, and Taylor diagrams.

• Among all the analytical models selected in this study, the model of Teng et al. [100]
illustrated poorer results with the R-value and RMSE value of 0.7200 and 67.25 MPa,
respectively.

The values of input parameters should be in the range of the developed model,
i.e., mentioned in Table 2. If the input parameters values are beyond the minimum and
maximum range of the parameters, then the reliability of the model can be compromised,
and this is the main limitation of the study. The proposed work will help the researchers,
scientists, and professionals predict the CS of the FRP-confined concrete cylinders. In future
works, the CS and axial capacity of the corroded FRP-confined concrete cylinders can be
predicted using the ML algorithms. In addition, nature-inspired algorithms can be used to
improve the precision and reliability of the predicted models.
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Nomenclature

CS Compressive strength ACI American Concrete Institute
f ′c CS of concrete AFRP Aramid FRP
D/d Cylinder’s diameter AI Artificial intelligence
H/h Cylinder’s height ANFIS Adaptive neuro-fuzzy inference system
L Cylinder’s length ANFIS-SC ANFIS with subtractive clustering
f ′co Unconfined CS of cylindrical specimen ANFIS-FCM ANFIS with fuzzy c-means clustering
Fty FRP type ANN Artificial neural network
n Number of FRP layers BFRP Basalt FRP
b f FRP width CEF Confinement effectiveness factor
t f /t/nt/tj/t f rp Thickness of FRP jacket CFRP Carbon FRP
O f Fiber orientation CR Confinement ratio
E f /EFRP/E f rp/Ej Elastic modulus of FRP materials ECC Engineered cementitious composite
Ff / f f / f f rp Tensile strength of FRP EL Ensemble learning
f ′cc CS of confined cylinder FFBPNN Feed-forward back propagation NN
t f rp FRP thickness FFNN Feed-forward neural network
f ju Ultimate tensile strength of FRP jacket FRP Fiber-reinforced polymer
f f rp,u Ultimate tensile strength of FRP in hoop direction FRCM Fiber-reinforced cementitious matrix
εrup Ultimate circumferential strain in CFRP jacket GFRP Glass FRP
εh,rup Actual strain of FRP rupture GP Genetic programming
fl/Pu Lateral confining pressure GPR Gaussian process regression
d′ Agreement index IAE Absolute error
NN Neural network LGP Linear genetic programming
NS Nash–Sutcliffe efficiency LR Linear regression
NSVM Non-linear SVM LWC Light weight concrete
PSO Particle swarm algorithm LSVM Linear SVM
R Correlation coefficient MAE Mean absolute error
RBNN Radial basis neural network MAPE Mean absolute percentage error
RC Reinforced concrete ML Machine learning
RMSE Root mean square error MLP Multi-layer perceptron
RSM Response surface model MR Multiple regression
SR Stepwise regression SVR support vector regression
SV Support vector SVMR Support vector machine regression
SVM Support vector machine UHPC Ultra-high-performance concrete
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