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Abstract: Despite multiple efforts to improve safety in construction, insufficient hazard identifica-
tion remains a significant concern. Failure to address these hazards can lead to severe safety inci-
dents that harm workers and a firm’s reputation. This problem is especially prevalent in construc-
tion small and medium enterprises (SMEs) due to their limited resources, reliance on manual labor, 
and lack of technical expertise regarding safety concerns. Thus, this study addresses the gap by 
offering a computational framework that provides a comprehensive evaluation of occupational haz-
ards, considering multiple factors, such as severity, frequency of occurrence, and the likelihood of 
detection, which are risk dimensions of failure mode effect analysis (FMEA). Notwithstanding the 
FMEA-based evaluation methods for safety evaluation in the construction sector, drawbacks at-
tributed to the interdependencies of the risk dimensions and the handling of judgment uncertainties 
are evident. In this work, an extension of the FMEA is developed that assigns an occupational haz-
ard to a risk category under a holistic framework that better addresses the current limitations of the 
FMEA. In particular, the study offers a two-fold contribution: (1) putting forward the proposed 
Choquet–FMEA–Sort methods under a 𝑞-rung orthopair fuzzy set (q-ROFS) environment and (2) 
demonstrating an actual case study in the Philippines that comprehensively evaluates occupational 
hazards in construction SMEs. Results of a demonstrative case of residential construction projects 
show that out of the 26 identified occupational hazards, 18 pose a high risk to workers, while the 
remaining eight pose a moderate risk. High-risk occupational hazards require more attention for 
mitigation efforts, especially in residential construction SMEs facing resource constraints. The com-
putational framework offered in this work aids decision-makers in identifying high-risk occupa-
tional hazards in a more systematic approach. The robustness and stability of the proposed methods 
were tested using layers of sensitivity and comparative analyses. 
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1. Introduction 
In the construction industry, infrastructures are built to support the activities of the 

various sectors of the economy [1]. The industry is considered one of the service sectors 
that significantly influence an economy, demonstrating its criticality to development [2]. 
In Australia, the construction industry is one of the largest industries contributing signif-
icantly to its Gross Domestic Product (GDP) and employing over 1.15 million workers. 
This contribution, however, was reduced by about 8% in 2020 due to the ongoing COVID-
19 pandemic [3]. However, amidst the pandemic in the Philippines, the industry contrib-
uted 16.6% of the country’s GDP, employing 9.6% of the 45.075 million work force in 2021 
[4]. The construction industry comprises about 90% small and medium enterprises 
(SMEs), has a broad scope, and is vastly diversified [2,5]. The various demands in the 
industry are primarily provided through individual specialization. For instance, specific 
contractors with specialized focus handle auxiliary services attached to a construction 
project. However, updates in regulations requiring more specialized skillsets, while nec-
essary in improving standards, may result in the further division of SMEs’ scope of work 
brought about by costly upgrading, training requirements, and accreditation [6]. In gen-
eral, the construction industry is conservative, less flexible, and less receptive to changes 
due to the uncertainty and complexity of construction projects [7]. Additionally, the 
productivity and output of SMEs are highly affected by the availability of limited skilled 
workers [8]. They are also known to have limited financial resources and market share 
with tight profit margins, resulting in inadequate investments in state-of-the-art infra-
structures and resources necessary for safety measures [5,9,10]. 

Construction work is loosely regulated and considered one of the most dangerous 
industries in developing economies [11], with labor-intensive methods and limited atten-
tion to health and safety issues [12]. Construction workers depend vastly only on their 
individual and peers’ experiences in identifying construction hazards [11]. In addition, 
they feel obliged to make quick decisions in dealing with hazards independently. Work-
ers’ response to these situations may not be ideally the safest course as they are influenced 
by construction production pressure, workflow, and coordination with coworkers, tech-
nical heads, and managers’ attitudes, among others [11]. The Occupational Safety and 
Health Administration (OSHA) has tracked injury patterns from different construction 
projects. Reports indicate that falls are the leading cause of fatalities in the industry, ac-
counting for one-third of all construction worker fatalities [13]. These fall incidences in-
clude falls from roofs, ladders, scaffoldings, and other surfaces, resulting in 20% of the 
absences of construction workers from work. Injuries resulting from struck-by incidents, 
caught-in/between, and electrical incidents are the major causes of fatal injuries [14]. These 
four hazards represent the fatal-four hazards widely known in the industry. In response, 
OSHA has produced and offered free training materials on the fatal-four hazards, cur-
rently administered by authorized trainers, trade unions, and employers [15]. 

Due to workers’ vulnerability in construction sites, workplace safety has become par-
ticularly interesting in existing literature, offering myriad approaches to dealing with it 
[16]. These studies, including those associated with (1) safety performance measurement 
[17,18]; (2) safety program and management [11,19]; (3) human factors [20,21]; (4) technol-
ogies [22–25], aimed at improving safety in the construction industry, covering various 
areas of interests. In China, Liu et al. [17] conducted a cloud model-based safety perfor-
mance evaluation on prefabricated building projects with multiple factors (e.g., human, 
material, management, and methods and technical). Similarly, Guo et al. [18] developed 
and tested a model to better understand construction workers’ safety behavior regarding 
climate and individual factors. Others paid more attention to safety programs and man-
agement in examining the multilevel safety culture and environment of new safety pro-
grams [19] and understanding the causal mechanisms of unsafe behaviors of construction 
workers [11]. Studies on human factors exploring workplace environment and climate to 
human error and behavior also become highlights [20,21]. There has recently been an in-
creased application of digital technologies, such as Building Information Modeling (BIM), 
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in the construction industry to improve overall planning and monitoring initiatives. Stud-
ies varied from integrating real-time construction safety monitoring systems for hazard-
ous gas, which integrate wireless sensor networks with BIM [22], sensing systems for con-
struction backover [23], to real-time vulnerability assessment using image processing and 
artificial intelligence [25], and unmanned aircraft systems application in construction 
safety inspection [24]. 

While different approaches were put forward to improve construction safety, poor 
hazard recognition remains widespread at all levels. Perlman et al. [26] investigated haz-
ard recognition of construction superintendents, and their findings suggest that despite 
the superintendents’ vast work experience and safety training, they could hardly identify 
all hazards presented via photographs and the virtual environment. Similarly, 280 con-
struction workers in the US performed a hazard recognition assessment in a study re-
ported by Albert et al. [27]. Results showed that workers could identify only 57% and 18% 
of fatal-four and non-fatal-four hazards, respectively. Jeelani et al. [28] investigated the 
improvement of hazard recognition of construction workers trained under personalized 
recognition training programs in response to the gaps in poor hazard recognition. Results 
highlighted a 35% increase in detection after an intervention. Meanwhile, Jeelani et al. [29] 
further investigated visual search patterns using eye-tracking technology of workers par-
ticipating in hazard recognition activity. Additionally, cognitive demands of construction 
hazard recognition were measured and investigated by Liao et al. [30]. Despite extensive 
works in the literature, poor hazard recognition remains prevalent. One dominant cause 
for alarming injury rates is poor hazard recognition resulting in unintentional exposure 
and injuries [31], accounting for as high as 50% of work-related safety hazards in a US 
study [29]. These numbers reveal the significance of hazard recognition concerning inci-
dent prevention, which unfortunately draws limited attention from the domain literature. 
Numerous practices, however, are currently in place and are adopted to encourage con-
struction hazard recognition. Training programs focused on safety knowledge transfer 
have become a norm for effective hazard management and recognition [32]. However, 
Namian et al. [33] argued the efficiency of designing these programs with adult learners, 
which comprise most, if not all, of workers in construction projects. 

Despite some interventions, poor hazard recognition skill is still largely concerning 
in the construction industry [34], where construction workers fail to recognize many 
safety hazards. These unrecognized safety hazards can lead to unintended exposure and 
tragic safety incidents [35]. They are also likely to remain unmanaged and can cascade 
into unexpected safety incidents [36]. Unfortunately, traditional hazard recognition inter-
ventions (e.g., job hazard analyses and safety training) have been unable to tackle the in-
dustry-wide problem of poor hazard recognition levels. Emerging evidence has demon-
strated that traditional hazard recognition interventions have been designed without un-
derstanding the challenges workers experience during hazard recognition efforts [35]. 
This dilemma is more pronounced in construction SMEs, given limited resources, high 
manual labor, and insufficient attention to safety issues brought about by inadequate tech-
nical workers (e.g., safety officers). Moreover, current approaches to hazard recognition 
in the literature fail to capture overarching information about the hazard under investiga-
tion. For example, excessive hand and arm vibration from vibrating power tools may not 
be detected as a hazard during exposure. However, prolonged exposure to such activity 
may result in muscle spasms, musculoskeletal disorders, and even hand-arm vibration 
syndrome [37]. Using the current binary detection approach (i.e., hazard, no hazard) that 
lacks the dynamic element of hazard exposure, such an activity may not be recognized as 
a hazard. Thus, obtaining thorough information about a potential hazard may augment 
current hazard detection approaches, contributing to better management and allocation 
of targeted safety initiatives. Such a resource-efficient approach is deemed more beneficial 
to construction SMEs. 

Thus, this work offers an approach that evaluates the degree of risk of a hazard rather 
than assessing it from a binary detection perspective, as current practices suggest. In our 
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proposed approach, a hazard is viewed in multiple dimensions, encompassing its sever-
ity, frequency of occurrence, and propensity for detection. This view may be more rele-
vant and comprehensive as it captures detailed information about the hazard’s breadth 
and depth of impact. For instance, the excessive hand and arm vibration from vibrating 
tools may be less severe; however, its occurrence is high, especially in construction SMEs, 
but detection is low, which may impact the design of necessary response mechanisms to 
address the hazard. This approach provides a complete overview of the hazard instead of 
focusing only on its severity. For this view, the inherent concepts offered by failure mode 
and effect analysis (FMEA), a tool popular in manufacturing industries [38], help manage 
such an approach. FMEA is a systematic and structured method of identifying and pre-
venting system, product, and process problems before they occur, assessing their impact 
and planning corrective actions. Generally, it concentrates on avoiding safety-related in-
cidents, enhancing safety, and increasing overall stakeholder satisfaction. In recent dec-
ades, the application of FMEA has extended to include risk management assessment, even 
in the construction industry [39,40]. 

Given the importance of identifying and assessing occupational hazards in the con-
struction industry [41], scholars advocate integrating several methods in statistical mod-
eling, multicriteria decision-making, and expert systems, among others, into the concep-
tual framework of the FMEA [41]. In the FMEA, failure modes (or hazards in our case) are 
assessed for severity, occurrence, and detection. A metric known as the “risk priority 
number” (RPN) is determined via aggregating these factors to obtain a holistic overview 
of the degree to which the failure modes impact a system (e.g., project). Following the 
criticality of that single-valued metric, several literature reviews have been reported to 
investigate, review, and evaluate the primary applications of FMEA and its various exten-
sions to handle as much information in the computational process, especially in detecting 
and assessing construction hazards. Some FMEA applications in the construction industry 
include evaluating the construction quality of apartments [42], occupational risks [41,43], 
factors affecting cost increases [44], delay factors [45], and construction method [46], 
among others, with the majority of works focusing on project risks [47–52]. Consequently, 
the recent extensions of FMEA applications intend to address the gaps in the degree of 
uncertainty and complexity relative to evaluating the factors (i.e., severity, occurrence, 
and detection) in various construction industry applications. These include the use of the 
fuzzy analytic hierarchy process (AHP) [47,48], big data [42], mathematical programming 
[50], Markov chains [53], Pythagorean fuzzy multi-objective optimization based on ratio 
analysis (MOORA) [43], fuzzy Stepwise Weight Assessment Ratio Analysis (SWARA) and 
Weighted Aggregated Sum Product Assessment (WASPAS) [52], and hesitant fuzzy sets 
[51], among others. 

Our proposed approach advances the previous FMEA applications in the construc-
tion sector in the following ways. First, conceptually, we advance the application of Mete 
[43] and Dahooie et al. [41] in breadth and width to comprehensively evaluate all relevant 
hazards, especially in construction SMEs. Secondly, we argue that the use of SWARA or 
AHP in assigning weights to the FMEA factors may be ill-founded due to the inherent 
interrelationships of the factors. For instance, excessive hand and arm vibration from vi-
brating tools may have low severity at the outset. However, such severity likely increases 
with multiple occurrences over a sustained period. Thus, from a holistic point of view, it 
is relevant to address the interdependencies of these factors to capture the overarching 
nature of the impact of such hazards. Along with this view, we adopted the Choquet in-
tegral as an effective tool to encompass the relative magnitude of the factors and the mag-
nitude of interactions and dependencies between them. Choquet integral’s non-linearity 
and aggregation strength encompass other ordinary aggregation operations, and it has 
now become a popular tool for aggregating information. Choquet integral applications 
include classification [54,55], multi-attribute decision-making (MADM) under a fuzzy en-
vironment [56,57], and data modeling [58,59]. 
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Third, the integration of Pythagorean fuzzy sets in Mete [43] and hesitant fuzzy sets 
in previous works [41,51] is highly motivated by the notion of better capturing the uncer-
tainties inherent in the judgment elicitation process. However, despite these extensions, 
decision-makers have limited space to elicit ambiguity and imprecision, which are highly 
relevant in most applications. Thus, in this work, the integration of 𝑞-rung orthopair 
fuzzy sets (𝑞-ROFS) within the computational framework of the FMEA to handle hazard 
evaluation in the construction sector is proposed. The notion of 𝑞-ROFS introduced by 
Yager [60] augments the limitation of previously adopted tools (e.g., fuzzy set theory, in-
tuitionistic fuzzy sets, Pythagorean fuzzy sets, Fermatean fuzzy sets) in handling judg-
ment uncertainties brought about by incomplete information, lack of understanding of the 
domain problem, and the idiosyncrasies at which decisions are made. Finally, due to the 
comprehensive list of occupational hazards this work attempts to assess, a multicriteria 
sorting (MCS) approach is deemed more relevant. An MCS problem assigns the hazards 
to pre-determined categories, a process more suitable for engaging in identifying a sub-
set of these hazards that requires more attention. Thus, this work offers two significant 
contributions to the literature: (1) a comprehensive evaluation of occupational hazards 
prominent in construction SMEs and (2) the proposed Choquet–FMEA–Sort under a 𝑞-
ROFS environment. An actual case study on residential construction projects is carried 
out to demonstrate our contributions. The insights of the case study and the proposed 
method provide inputs to designing targeted initiatives for effective safety management 
and improved hazard recognition. 

The remainder of the article is arranged as follows. Section 2 reviews the domain 
literature on construction hazards. Section 3 presents some relevant preliminary concepts 
of 𝑞-ROFS, 𝑞-ROF entropy, and the Choquet integral. Section 4 outlines the case environ-
ment and demonstrates the application of the proposed methodologies in sorting various 
occupational hazards in residential construction workplaces. Sensitivity and comparative 
analyses are offered in Section 5 to evaluate the variations of the findings given some 
changes in parameters and to compare how the proposed approach augments similar 
tools. The findings and their insights are discussed in Section 6. It ends with concluding 
remarks and identifying future works in Section 7. 

2. Literature Review 
Construction projects are implemented in a complex and dynamic environment, of-

ten exposed to vast uncertainties [61]. One of the effects of such complexity is the presence 
of construction hazards. Succinctly, construction hazards are situations in construction 
sites that may threaten life, health, property, and the environment. An extant study in the 
literature highlighted several methodologies for risk mitigation and prevention of such 
hazards. One of the most prominent methods with a robust framework for evaluating 
failure modes is the FMEA approach [49]. In its application in the construction industry, 
the “failure modes” are identified as construction hazards. Thus, identifying the “failure 
modes” with the highest priority offers crucial elimination in eliminating the hazard and 
its associated consequences (i.e., accidents). 

Working on a scaffold/stair and working at a height above two meters are activity-
based hazards that may result in falling incidents. According to OSHA, these fall inci-
dences constitute 20% of the absences of construction workers from work. In an empirical 
work by Kaskutas et al. [62], they found that fall prevention and safety communication 
training for supervisors will positively impact the safety of all workers on the construction 
site. Most prominent among construction SMEs, labor-intensive activities include han-
dling manual non-electric tools (e.g., hammer, saw, chisel, pliers, shovel), using hydraulic 
and power tools (e.g., cutter, drill, grinder), utilizing vibrating power tools (e.g., jackham-
mers, compactors, hand drills), and prolonged and repeated lifting and carrying of objects 
heavier than 20 kg. These tasks significantly expose workers to injury due to repetitive 
motion, applying significant physical effort, assuming uncomfortable body positions, con-
stant contact with vibrations, and encountering force [61]. Hence, several methods have 
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been utilized to investigate the severity of these activities and ergonomic solutions to mit-
igate the impact. Zhu et al. [63] mapped out existing exoskeletal technologies to aid man-
ual handling tasks in construction. Dale et al. [64] pointed out that the implementation of 
participatory ergonomic intervention in construction SMEs is hindered by their lack of 
resources or organizational structure to support such a program. They emphasized the 
importance of the inclusion of both the upper management and construction workers in 
the intervention program to produce significant results. 

On the other hand, electricity, machinery, and equipment are popular physical haz-
ards usually involved in construction works. Specifically, these hazards include carrying 
out electrical wiring installation and troubleshooting, conducting mechanical/electrical 
maintenance and driving vehicles on the construction site. Anderson et al. [65] identified 
2454 construction incidents related to electrical safety. They also categorized these inci-
dents wherein a large number documented as general physical injury involving lacera-
tion, abrasion, strain or stress, and collision by an object. Meanwhile, the second largest 
cause of incidents is attributed to near-miss electrical incidents, which are linked to the 
following causes: (a) documentation/procedure error, (b) lockout/tagout incidents, (c) ac-
cidentally cut conduit, and (d) voltage found after lockout/tagout. For a more comprehen-
sive discussion, the reader is advised to direct to Anderson et al. [65]. Meanwhile, Floyd 
[66] provided a guide on applying the hierarchy of electricity hazard control measures. 

Construction works are inherently involved with harmful dust, gases, and fumes 
[67]. They come from various activities, such as operating hydraulic and power tools (e.g., 
cutter, drill, grinder), applying lacquer/paint thinner, using airborne fibers and materials 
(e.g., asbestos, roofing insulation, fiberglass) in roof works, and handling cement, sand, 
gravel, and other concrete aggregates. Calvert et al. [67] reported that the construction 
industry has a relatively high prevalence rate of workers exposed to skin contact with 
chemicals, secondhand smoke and vapors, gas, dust, and fumes in comparison to other 
industries. On a large scale, dust pollution due to construction activities does not only 
adversely impact workers’ health but also the environment. Wu et al. [68] emphasized this 
environmental concern in their investigation of the current dust prevention strategies of 
construction firms in China. Aside from those hazardous working conditions, weld-
ing/hot work and manual excavation should receive special attention. The US fire depart-
ment responded to an estimated 4580 structure fires involving hot work per year from 
2014–2018 [69]. Following its prevalence and criticality, OSHA provides proactive safety 
guidelines for such activities [13]. 

Antwi-Afari et al. [70] examined the variability of a worker’s gait pattern in hazard-
ous and non-hazardous conditions. The study proposes a novel, non-intrusive hazard 
identification method involving a wearable insole pressure system to formulate proactive 
incident-prevention intervention programs. Hazardous workplace conditions involve 
working on uneven surfaces, working in the workplace with cables, dangling wires, cut 
wood, and scrap metals scattered around, working on ground/lower floors with possible 
flying and falling objects, working in a workplace with protruding objects (e.g., nails), 
exposure to the extreme noise level in the workplace, and working within a danger zone 
(e.g., a possible collision with equipment). Notably, workplace injury results from the in-
teraction between the workers and a set of elements in the workplace (e.g., uneven surface, 
material at height, wind) [71]. Hence, it is important to consider every workplace element 
in designing safety standards. BIM is a widely utilized efficient tool that accurately de-
signs a digital model of a project’s physical structure that captures every element in the 
setting. Thus, aside from digitizing the structure of a construction project, it has also been 
used to monitor and mitigate workplace hazards, where Hallowell et al. [72] integrated 
the attribute-based safety risk data into the BIM. 

Construction activities often occur in an unprotected environment, where the work-
ers are exposed to the sun’s extreme heat [73] or are vulnerable to animal and insect bites. 
Other hazards in an unprotected environment include clearing or cutting poisonous 
plants and working with structural lumber. Statistical data for fatal injuries from insect 
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bites and animal attacks in the construction and extraction industry were reported in 951 
cases in 2011–2021[74]. On the other hand, documented data identified 986 cases wherein 
workers were fatally injured due to exposure to environmental heat stress in 2011–2021 
[74]. Strategies to mitigate the physical and mental health impact of exposure to extreme 
weather conditions have been provided by the National Institute for Occupational Safety 
and Health [75]. The implementation of such strategies has been expanded by Karthick et 
al. [73]. 

3. Preliminaries 
This section details the preliminary concepts of 𝑞-ROFS, 𝑞-ROF entropy, and the 

Choquet integral. 

3.1. The 𝑞-Rung Orthopair Fuzzy Sets 
The 𝑞-ROFS was proposed by Yager [60] as a computational approach that handles 

uncertainty inherent in the decision-making process. Furthermore, Yager [60] emphasized 
that 𝑞-ROFS is more precise and flexible in handling vague judgments of decision-makers 
compared to prior tools. The definition, basic operations, score and accuracy function, and 
distance measure of 𝑞-ROFS are defined as follows. 

Definition 1 ([60]). Let 𝑋 be a non-empty universe of discourse. The 𝑞-ROFS 𝒬 is presented 
as 𝒬 = ൛〈𝑥, 𝜇𝒬(𝑥), 𝜈𝒬(𝑥)〉: 𝑥 ∈ Xൟ (1)

where the functions 𝜇𝒬(𝑥): 𝑋 ⟶ [0,1ሿ and 𝜈𝒬(𝑥): 𝑋 ⟶ [0,1ሿ refer to the degree of membership 
and degree of non-membership of 𝑥 ∈ 𝑋  in 𝒬 , respectively, such that 0 ≤  ቀ𝜇𝒬(𝑥)ቁ +ቀ𝜈𝒬(𝑥)ቁ ≤ 1 for some finite 𝑞 ≥ 1, ∀𝑥 ∈ 𝑋. The degree of indeterminacy 𝜋𝒬 is defined as fol-
lows: 𝜋𝒬(𝑥) = ቀ1 − ቀ𝜇𝒬(𝑥)ቁ − ቀ𝜈𝒬(𝑥)ቁቁଵ

 (2)

For convenience, 〈𝜇𝒬(𝑥), 𝜈𝒬(𝑥)〉 is referred to as a 𝑞-rung orthopair fuzzy number (𝑞-
ROFN) on ℝ, and is written as 𝒬 = ൫𝜇𝒬, 𝜈𝒬൯. 

Some interesting results were put forward by Yager [60]. For instance, 

Theorem 1 ([60]). If ൫𝜇𝒬, 𝜈𝒬൯ is a valid 𝑞ଵ-rung orthopair membership grade, then it is a valid 𝑞ଶ-rung orthopair membership grade for 𝑞ଶ > 𝑞ଵ. 

Proof. Since ൫𝜇𝒬൯1 + ൫𝜈𝒬൯1 ≤ 1, then ൫𝜇𝒬൯2 + ൫𝜈𝒬൯2 ≤ 1 for 𝑞2 > 𝑞1. Thus, ൫𝜇𝒬, 𝜈𝒬൯ is 
a 𝑞2-rung orthopair membership grade. □ 

Theorem 1 implies an important Corollary, as shown below. 

Corollary 1. For 𝑞ଶ > 𝑞ଵ, all 𝑞ଵ-rung orthopair fuzzy sets are 𝑞ଶ-rung orthopair fuzzy sets. 

To illustrate, suppose 𝜇𝒬 = 0.85 and 𝜈𝒬 = 0.25. For 𝑞 = 2, the condition 0.85ଶ +0.25ଶ ≤ 1 is satisfied; therefore, (0.85,0.25) is a valid orthopair membership grade. The 
same is valid for 𝑞 = 3, since 0.85ଷ + 0.25ଷ ≤ 1. Thus, (0.85,0.25) is also a 3-rung or-
thopair membership grade. 

The following presents certain operations of 𝑞-ROFS. 

Definition 2 ([76,77]). Let 𝑞ሷଵ = (𝜇ଵ, 𝑣ଵ) and 𝑞ሷଶ = (𝜇ଶ, 𝑣ଶ) be two 𝑞-ROFNs and 𝜆 > 0, then 
corresponding operations are defined as follows: 
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𝑞ሷଵ = (𝑣ଵ, 𝜇ଵ) (3)𝑞ሷଵ ∪ 𝑞ሷଶ = (𝜇ଵ ∨ 𝜇ଶ, 𝑣ଵ ∧ 𝑣ଶ) (4)𝑞ሷଵ ∩ 𝑞ሷଶ = (𝜇ଵ ∧ 𝜇ଶ, 𝑣ଵ ∧ 𝑣ଶ) (5)𝑞ሷଵ⨁𝑞ሷଶ = ቆ ට𝜇ଵ + 𝜇ଶ − 𝜇ଵ𝜇ଶ , 𝑣ଵ𝑣ଶቇ (6)

𝑞ሷଵ ⊗ 𝑞ሷଶ = ቆ𝜇ଵ𝜇ଶ, ට𝑣ଵ + 𝑣ଶ − 𝑣ଵ𝑣ଶ ቇ (7)

𝜆𝑞ሷଵ = ቆ ට1 − ൫1 − 𝜇ଵ൯ఒ , 𝑣ଵఒቇ (8)

𝑞ሷଵఒ = ቆ𝜇ଵఒ, ට1 − ൫1 − 𝜇ଵ൯ఒ ቇ (9)

𝑞ሷଵ ⊖ 𝑞ሷଶ = ቆ𝜇ଵ𝑣ଶ, ට𝑣ଵ + 𝜇ଶ − 𝑣ଵ𝜇ଶ ቇ (10)

𝑞ሷଵ ⊘ 𝑞ሷଶ = ቆ ට𝜇ଵ + 𝑣ଶ − 𝜇ଵ𝑣ଶ , 𝑣ଵ𝜇ଶቇ (11)

where 𝑞ሷଵ is the complement of 𝑞ሷଵ. 

Definition 3 ([76]). Suppose that 𝑞ሷ = (𝜇, 𝜈) is a 𝑞-ROFN, then a score function 𝕊(𝑞ሷ ) is de-
fined as 𝕊(𝑞ሷ ) = 𝜇 − 𝜈 (12)

Definition 4 ([76]). Suppose that 𝑞ሷ = (𝜇, 𝜈) is a 𝑞-ROFN, then an accuracy function ℍ(𝑞ሷ ) is 
defined as ℍ(𝑞ሷ ) = 𝜇 + 𝜈 (13)

Theorem 2 ([76]). For any two 𝑞 -ROFNs 𝑞ሷଵ = (𝜇ଵ, 𝑣ଵ) , and 𝑞ሷଶ = (𝜇ଶ, 𝑣ଶ), a comparison 
method using the score function 𝕊 and ℍ is defined as follows: 
(1) If 𝕊(𝑞ሷଵ) > 𝕊(𝑞ሷଶ), then 𝑞ଵሷ > 𝑞ଶሷ ; 
(2) If 𝕊(𝑞ሷଵ) < 𝕊(𝑞ሷଶ), then 𝑞ଵሷ < 𝑞ଶሷ ; 
(3) If 𝕊(𝑞ሷଵ) = 𝕊(𝑞ሷଶ), then 

If ℍ(𝑞ሷଵ) > ℍ(𝑞ሷଶ), then 𝑞ଵሷ > 𝑞ଶሷ ; 
If ℍ(𝑞ሷଵ) = ℍ(𝑞ሷଶ), then 𝑞ଵሷ = 𝑞ଶሷ . 
Theorem 2 allows for the ordering of 𝑞-ROFNs, which has a vital role in various ar-

eas of applications, especially in MADM. However, some limitations exist for the score 
and accuracy functions of Liu and Wang [76], prompting others in the literature to offer 
another formulation. Listed in Table 1 are the existing score function formulations. Note 
that the list is not comprehensive. 
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Table 1. Selected existing score functions. 

Proponents Score Functions 

Peng et al. [78] 𝕊(𝑞ሷ ) = 12 ቀ𝜇ଶ + ൫ √1 − 𝑣 ൯ଶቁ 

Jana et al. [79] and Wei et al. [80] 𝕊ௐ(𝑞ሷ ) = 𝜇 − 𝑣 + 12  

Banerjee et al. [81] 𝕊(𝑞ሷ ) = 1 − 𝑣2 − 𝜇 − 𝑣 

Farhadinia and Liao [82]  𝕊(𝑞ሷ ) = 𝜇 + 𝜆𝜋 
Rani and Mishra [83] 𝕊(𝑞ሷ ) = 𝜇(1 + 𝜋)  

In addition to the basic operations of the 𝑞-ROFNs introduced by Liu and Wang [76], 
they also proposed the aggregation operator, namely 𝑞-rung orthopair fuzzy weighted 
averaging operator (𝑞-ROFWA), which is defined as follows. 

Theorem 3. Suppose that 𝑞ሷ = ൫𝜇ሷ ೖ, 𝜈ሷ ೖ൯(𝑘 = 1,2, … , 𝑛) is a collection of 𝑞-ROFNs, then the 𝑞-ROFWA is obtained by 𝑞-ROFWA(𝑞ሷଵ, 𝑞ሷଶ, … , 𝑞ሷ) = ቆ ටቀ1 − ∏ ቀ1 − 𝜇ሷ ೖ ቁఠೖୀଵ ቁ , ∏ 𝜈ሷ ೖఠೖ ୀଵ ቇ (14)

where 𝜔 > 0 (∀𝑘) and ∑ 𝜔ୀଵ = 1. Here, 𝜔 denotes the weight assigned to 𝑞ሷ. 

Aside from the basic operations and aggregation operator for 𝑞 -ROF, distance 
measures that handle 𝑞-ROFS have also been introduced in the literature. One of these 
measures is the Euclidean distance. The Euclidean distance measure is based on the idea 
that every instance in the dataset can be represented as a point in a dimensional space 
known as a ‘Euclidean space.’ It measures the actual straight-line distance between two 
points in a Euclidean space. 

The Euclidean distance measure 𝑑ோைி(𝛼ଵ, 𝛼ଶ) between any two 𝑞-ROFS α1 and α2 
can be defined as follows. 

Definition 5 ([84]). Let 𝛼 = ൫𝜇ఈ, 𝜈ఈ൯ and 𝛽 = ൫𝜇ఉ, 𝜈ఉ൯ be two sets of q-ROFS in 𝑋 where 𝑖 = 1, … , 𝑛. Then, the Euclidean distance measure 𝑑ோைி(𝛼, 𝛽) is defined as 

𝑑ோைி(𝛼, 𝛽) =  ൬ ଵଶ ∑ ൬ቚ𝜇ఈ − 𝜇ఉ ቚଶ + ቚ𝜈ఈ − 𝜈ఉ ቚଶ൰∈ ൰భమ
  (15)

Suppose that 𝜔 is the weight of 𝑖 ∈ X and ∑ 𝜔 = 1 (0 ≤ 𝜔 ≤ 1),ୀଵ  we can define 
the weighted Euclidean distance measure 𝑑௪ோைி(𝛼, 𝛽) between two q-ROFS 𝛼 and 𝛽 
as follows: 𝑑௪ோைி(𝛼, 𝛽) = ቀଵଶ ∑ 𝜔 ቀห𝜇ఈ − 𝜇ఉหଶ + ห𝜈ఈ  − 𝜈ఉ หଶቁ∈ଡ଼ ቁభమ  (16)

Theorem 4. Suppose that 𝛼 and 𝛽 (𝑖 = 1, … , 𝑛) are two sets of q-ROFS in 𝑋, such that 𝛼 =൫𝜇ఈ, 𝜈ఈ൯ and 𝛽 = ൫𝜇ఉ, 𝜈ఉ൯. Then, the weighted Euclidean distance measure 𝑑௪ோைி(𝛼, 𝛽) 
satisfies the following properties: 
(1) 0 ≤ 𝑑௪ோைி(𝛼, 𝛽) ≤ 1, 
(2) 𝑑௪ோைி(𝛼, 𝛽) = 𝑑௪ோைி(𝛽, 𝛼), 
(3) 𝑑௪ோைி(𝛼, 𝛽) = 0, if an only if 𝛼 = 𝛽, i.e., 𝜇ఈ = 𝜇ఉ and 𝜈ఈ = 𝜈ఉ. 
3.2. q-ROF Entropy and Cross-Entropy 

The entropy method, derived from the concept of Shannon entropy, assesses the con-
tent of the information of a given evaluation [85]. In a MADM problem, entropy can be 
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utilized to evaluate the criterion [86] by measuring the diversity of information. Infor-
mation entropy associated with a given criterion 𝑗 denotes the degree of discriminability 
of the alternatives on that criterion. Hence, more considerable weight is assigned to the 
criterion with higher criterion data [87]. Liang et al. [88] introduced the entropy and cross-
entropy measure for 𝑞-ROFS. 

Definition 6 ([88]). Let 𝑞ሷ = ൫𝜇ሷ , 𝜈ሷ ൯ be a 𝑞-ROFS, then the entropy of 𝑞ሷ , denoted as 𝐸(𝑞ሷ ) is 
defined as, 𝐸(𝑞ሷ ) = ଵ√ଶିଵ ቀsin ൬గସ ൫1 + 𝜇ሷ − 𝜈ሷ൯൰ + sin ൬గସ ൫1 − 𝜇ሷ + 𝜈ሷ൯൰ − 1ቁ  (17)

where 𝐸: 𝑞ሷ ⟶ [0,1ሿ. 
Definition 7 ([88]). Suppose that 𝑞ሷଵ = ൫𝜇ሷభ, 𝑣ሷభ൯, and 𝑞ሷଶ = ൫𝜇ሷమ, 𝑣ሷమ൯ are two 𝑞-ROFS. Then, 
the cross entropy of 𝑞ሷଵ and 𝑞ሷଶ denoted as 𝐶𝐸(𝑞ሷଵ, 𝑞ሷଶ) where 1 < 𝑝 ≤ 2 is, 

𝐶𝐸(𝑞ሷଵ, 𝑞ሷଶ) = 11 − 2ଵି ൭𝜇ሷభ + 𝜇ሷమ2 − ቆ𝜇ሷభ + 𝜇ሷమ2 ቇ + 𝜈ሷభ + 𝜈ሷమ2 − ቆ𝜈ሷభ + 𝜈ሷమ2 ቇ + 𝜋ሷభ + 𝜋ሷమ2 − ቆ𝜋ሷభ + 𝜋ሷమ2 ቇ൱ (18)

In MADM, the criterion that provides more information is considered more im-
portant. Hence, the average combination entropy of a criterion is defined as follows. 

Definition 8 ([88]). Suppose 𝐴 = ሼ𝑎ଵ, 𝑎ଶ, … , 𝑎ሽ  be the set of alternatives and 𝐶 =ሼ𝑐ଵ, 𝑐ଶ, … , 𝑐ሽ be the set of criteria. The evaluation of alternative 𝑎 with respect to the criterion 𝑐 
is represented by a 𝑞-ROSF 𝑞ሷ = ቀ𝜇ሷ ೕ , 𝜈ሷ ೕቁ. Then, the average combination entropy of a crite-
rion denoted as 𝐼൫𝑐൯ can be calculated as, 𝐼൫𝑐൯ = ଵଶ ∑ ൬ቀ1 − 𝐸൫𝑞ሷ൯ቁ + ଵିଵ ∑ 𝐶𝐸൫𝑞ሷ, 𝑞ሷఏ൯ఏୀଵ,ఏஷଵ ൰ୀଵ   (19)

3.3. Fuzzy Measures and 𝑞-ROF Choquet Integral 
The Choquet integral operator of Murofushi and Sugeno [89] is widely considered 

an aggregation operator that captures the inherent interdependencies and interactions 
among the elements through fuzzy measures [90,91]. For brevity, only the overview of 
fuzzy measures and Choquet integral concepts are described in this section. 

Definition 9. A fuzzy measure 𝜇 on a set 𝑋 is a set function 𝜇: 𝒫(𝑋) ⟶ [0,1ሿ and satisfies 
the following: 
(i) Boundary conditions: 𝜇(∅) = 0 and 𝜇(𝑋) = 1, 
(ii) Monotonicity: If 𝐴,𝐵 ∈ 𝒫(𝑋) and 𝐴 ⊆ 𝐵, then 𝜇(𝐴) ≤  𝜇(𝐵). 

To calculate the fuzzy measure among the set of elements, 𝜆-fuzzy measure was introduced 
by Sugeno (1974), wherein 𝜇(𝐴 ∪ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵) + 𝜆𝜇(𝐴)𝜇(𝐵), 𝜆 ∈ [−1, ∞), ∀𝐴, 𝐵 ∈ 𝒫(𝑋), 𝐴 ∩ 𝐵 = ∅  (20)

Parameter 𝜆 determines the interaction between the elements. If 𝑋 = ሼ𝑥ଵ, 𝑥ଶ, … , 𝑥ሽ, then 𝜆 satisfies Equation (21). 𝜇(𝑋) = ଵఒ (∏ [1 + 𝜆𝜇(𝑥)ሿୀଵ − 1), 𝜆 ≠ 0  (21)

The fuzzy density of the subset containing a single element 𝑥 is denoted by 𝜇(𝑥). For every 
subset 𝐶 ∈ 𝒫(𝑋), we have 
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𝜇(𝐶) = ൝ ଵఒ ൫∏ [1 + 𝜆𝜇(𝑥)ሿ𝓍∈ − 1൯  if 𝜆 ≠ 0,∑ 𝜇(𝑥)𝓍∈                                  if 𝜆 = 0.  (22)

Thus, 𝜆 can be determined from the condition 𝜇(𝑋) = 1, that is, 𝜆 + 1 = ∏ ൫1 + 𝜆𝜇(𝑥)൯ୀଵ   (23)

Definition 10 ([92]). Let 𝑓 be a real-valued function and 𝜇 be a fuzzy measure on a set 𝑋 =ሼ𝑥ଵ, 𝑥ଶ, … , 𝑥ሽ, then the discrete Choquet integral of 𝑓 with respect to 𝜇 is defined as follows, 𝐶𝜇(𝑓) = ∑ ൣ𝜇൫𝐴()൯ − 𝜇൫ 𝐴(ିଵ)൯൧ୀଵ 𝑓൫𝑥()൯  (24)

where (𝑖) represents a permutation on 𝑋 such that 𝑓൫𝑥()൯ ≥ 𝑓൫𝑥(ା1)൯, 𝑖 = 1,2, … , 𝑛 − 1 and 𝐴() = ൛𝑥(1), 𝑥(2), … , 𝑥()ൟ, 𝐴(0) = ∅. 

To capture the uncertainty and vagueness of eliciting judgment in a decision-making 
problem, various extensions of the Choquet integral with the different generalizations of 
fuzzy sets have also been explored in the literature, including intuitionistic fuzzy Choquet 
integral [93], Pythagorean fuzzy Choquet integral [57], interval-valued intuitionistic hesi-
tant Choquet integral [94], and the fuzzy grey Choquet integral [95]. Among the consid-
ered fuzzy sets, 𝑞-ROFS offers a broader range of decision space for uncertainty. Hence, 
to utilize this strength of 𝑞-ROFS, Liang et al. [88] introduced the Choquet integral for 𝑞-
ROFS. The Choquet integral operation is discussed as follows: 

Definition 11. Let 𝛼 be a 𝑞-ROF evaluation on 𝑋, and 𝜇 be a fuzzy measure on 𝑋. Then, the 𝑞-ROF Choquet integral (𝑞-ROFCI) of 𝛼 with respect to 𝜇 is defined as 𝑞-ROFCI𝜇(𝛼) = ൭ ට1 − ∏ ൫1 − 𝑢൫𝑥()൯൯ఓ൫()൯ିఓ൫(శభ)൯ୀଵ , ∏ 𝜈൫𝑥()൯ఓ൫()൯ିఓ൫(శభ)൯ୀଵ ൱ (25)

where 𝛼൫𝑥()൯ = ቀ𝑢൫𝑥()൯, 𝜈൫𝑥()൯ቁ. Furthermore, (𝑖) represents a permutation on 𝑋 according 
to a monotonous order that 𝛼൫𝑥()൯ ≤ 𝛼൫𝑥()൯, 𝑖 = 1,2, … , 𝑛 − 1 and 𝐴() = ൛𝑥(ଵ), 𝑥(ଶ), … , 𝑥()ൟ, 𝐴(ାଵ) = ∅. 

4. Methodology 
This section presents the proposed methodologies and their application in sorting 

various occupational hazards in residential construction projects. Figure 1 shows the the-
matic framework of the study. The construction hazards were assessed and examined 
with reference to the three risk dimensions: severity, detection, and occurrence. The ag-
gregate scores for each risk dimension would determine its classification, whether a cer-
tain construction hazard is of high, medium, or low risk. 
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Figure 1. The thematic framework. 

4.1. The Proposed Methodologies 
In this section, the proposed methodologies are presented, wherein the RPN of the 

FMEA method was obtained using the 𝑞-ROFCI to capture uncertainty in the decision-
making process and the interdependencies of the risk dimensions of FMEA. Moreover, 
two methods of sorting alternatives based on the resulting 𝑞-ROF RPN are introduced. 
As shown in Figure 2, three phases are involved in the proposed methodologies. Phase I 
calculates the coefficient of each risk dimension of FMEA using q-ROF entropy and cross-
entropy, while Phase II obtains the q-ROF RPN. On the other hand, Phase III sorts the 
alternatives according to their corresponding 𝑞-ROF RPN. The steps involved in the pro-
posed methodologies are detailed as follows. 
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Figure 2. The proposed methodologies. 

4.1.1. Phase I—Calculate the Risk Dimension Coefficients Using 𝑞-ROF Entropy and 
Cross-Entropy 

Step 1. In FMEA, the set of failure modes is evaluated under the set of risk dimen-
sions (i.e., severity, detection, occurrence). These failure modes (contextually, occupa-
tional hazards) are determined through a focus group discussion, literature survey, or a 
standardized list. An evaluation matrix 𝑋 = ൫𝑥൯× is then constructed, wherein 𝑥 is 
the evaluation of 𝑖th failure mode to 𝑗th risk dimension. 

Step 2. Construct the 𝑞-ROF decision matrix. Using a pre-defined linguistic scale, the 
evaluation matrix 𝑋 is then transformed into 𝑞-ROF 𝑄 = ൫𝑞൯×, where 𝑞 = ൫𝑢, 𝑣൯ 

and 𝜋 = ൫1 − 𝑢 − 𝑣 ൯భ. 
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Step 3. Calculate the entropy of the 𝑞-ROF evaluation 𝑞, denoted as 𝐸൫𝑞൯ and 
the cross-entropy among failure modes denoted as 𝐶𝐸൫𝑎, 𝑎ఏ൯, where 𝜃 ∈ 𝑖, 𝜃 ≠ 𝑖. The 𝐸൫𝑞൯ and 𝐶𝐸൫𝑎, 𝑎ఏ൯ are obtained using Equation (17) and Equation (18), respectively. 

Step 4. Compute the risk dimension coefficient. The average combination entropy, 
denoted as the coefficient or fuzzy density of 𝑗th risk dimension, is calculated using Equa-
tion (19). 

4.1.2. Phase II—Obtain the RPN of Each Failure Mode Using the 𝑞-ROF Choquet Inte-
gral 

Step 5. Determine the fuzzy measures. The fuzzy measure of each failure mode is 
obtained using the parameter 𝜆, which is calculated using Equation (23). Then, the fuzzy 
density of 𝑗th risk dimension is determined using Equation (22). 

Step 6. Define the central profiles of each risk dimension. 
The set of 𝐴 = ሼ𝑎ଵ, … , 𝑎, … , 𝑎ሽ failure modes are to be sorted with respect to the set 𝐶 = ൛𝑐ଵ, … , 𝑐, … , 𝑐ൟ of risk dimensions, into ordered 𝒦 = ൛𝓀ଵ, … , 𝓀, … , 𝓀ிൟ categories, 

where 𝓀ଵ ⊳ ⋯ ⊳ 𝓀 ⊳ ⋯ ⊳  𝓀ி . The categories are characterized by a set of 𝑃 =൛𝑝: 𝑓 = 1, … , 𝐹ൟ central profiles. The central profiles are used to construct the augmented 
evaluation matrix 𝑄෨ = ൫𝑞൯ ×, wherein 𝑚 = 𝑚 + 𝑓. 

Step 7. Calculate the 𝑞-ROF RPN of each failure mode. The RPN of each failure mode 
is obtained using the 𝑞-ROFCI as defined in Equation (25). 

4.1.3. Phase III—Sort the Failure Modes Using the Proposed Methodologies 
Method 1—Sorting Using the Euclidean Distance 

Step 8. Compute the Euclidean distance between the failure modes and the central 
profiles. The Euclidean distance denoted is 𝐷൫𝑎, 𝑝൯, as illustrated in Equation (15). 

Step 9. Compare the Euclidean distance of each failure mode to the central profiles. 
Assign failure modes to predetermined categories using the resulting Euclidean distance. 
The following Algorithm 1 assigns 𝑖th alternative to 𝑓th category. 

Algorithm 1: Sorting failure modes via Euclidean distance 
Start 
for 𝑖 = 1, … , 𝑚 

for 𝑓 = 1, … , 𝐾 
  if 𝐷൫𝑎, 𝑝൯ ≤ 𝐷൫𝑎, 𝑝ାଵ൯ < ⋯ < 𝐷(𝑎, 𝑝) 
   then 𝑎 ∈ 𝓀 
 end for 
end for 
End 

Method 2—Sorting via Score Function 
Step 11. Compute the score function between the failure modes and the central pro-

files. The score function is denoted as 𝑆(𝑎), defined by Jana et al. [79]. 
Step 12. Calculate the absolute difference between the score function of the failure 

modes and the central profiles, denoted as 𝑇൫𝑎, 𝑝൯ = ห𝑆(𝑎) − 𝑆൫𝑝൯ห. Then Algorithm 2 
assigns 𝑖th alternative to 𝑓th category. 

Algorithm 2. Sort alternatives via the score function 
Start 
for 𝑖 = 1, … , 𝑚 

for 𝑓 = 1, … , 𝐾 
  if 𝑇൫𝑎, 𝑝൯ ≤ 𝑇൫𝑎, 𝑝ାଵ൯ < ⋯ < 𝑇(𝑎, 𝑝) 
   then 𝑎 ∈ 𝓀 
 end for 
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end for 
End 

4.2. Application of the Proposed Approach in Evaluating the Risk of Occupational Hazards in 
Residential Construction Projects 

In the Philippines, the Philippine Contractors Accreditation Board (PCAB) endorses 
and issues PCAB licenses to contractors. PCAB licenses signify the company’s capability 
and accountability in implementing projects. The license is mandatory in all government 
projects but is optional for privately-owned projects subject to the owner’s preference. 
Furthermore, the Department of Labor and Employment (DOLE), the Philippine govern-
ment arm overseeing labor matters in the private sector, requires construction projects to 
implement a construction safety and health program in place to ensure the protection and 
welfare of workers and the general public within and around the vicinity of the construc-
tion sites and promote harmonious employer–employee relationships [96]. The construc-
tion safety and health program is managed by a committee involved in orienting, instruct-
ing, and training workers at the site in view of construction safety and health protocols. 
In a construction project, the general contractor must have a full-time accredited safety 
officer and an additional safety officer for every ten-heavy equipment on site. Moreover, 
one first-aider or safety officer is required for every 50 workers, and a full-time registered 
nurse for projects with over 50 but not more than 200 workers. Furthermore, while brief-
ings (i.e., toolbox meetings) have shown to be effective at preventing fatalities and re-
sulted in favorable impacts on workers; however, the initiative is not popular in practice 
[97]. As stipulated in a local department directive, toolbox and gang meetings are required 
to be a part of a Construction Safety and Health Program [98] of a construction project. In 
2017, the DOLE conducted a roadshow with toolbox talks to increase awareness of occu-
pational safety and health practices among young workers. The targeted roadshow, how-
ever, was only made available to the country’s top five largest construction firms, which 
are believed to have safety management mechanisms already in place. Similar activities 
arranged for smaller-sized construction firms have not been reported. Despite this 
agenda, most construction safety and health programs have ill-designed mechanisms to 
determine the risk degree of occupational hazards in construction sites. Thus, a rigorous 
evaluation approach becomes imperative to inform the design of programs targeted at 
addressing these hazards. 

In carrying out the proposed approach, a focus group discussion identifies some oc-
cupational hazards from previous studies relevant to residential construction projects 
mostly implemented by SMEs. As discussed in the literature, construction SMEs are more 
exposed to these hazards, amplified by resource constraints and the inability to leverage 
economies of scale. Additionally, as construction SMEs comprise 90% of the industry, 
highlighting the occupational hazards of their workers is a critical agenda, both for theory 
and practice. The focus group consists of fifteen (15) experts with more residential project 
experience of more than a year. This small number of experts comprising a group tasked 
to elicit judgments is consistent with similar studies in the literature [41,43,52,99]. The 
group comprises four contractors, five foremen, two supervisors, and four practicing civil 
engineers with extensive academic backgrounds and practical knowledge of occupational 
hazards in construction sites. All members have been working in the construction indus-
try for at least ten years; thus, they are capable of eliciting reliable judgments. Consistent 
with other studies, the results of this kind of analysis draw motivation from the concept 
of “analytic generalization” by Yin [100]. Unlike statistical generalization, which draws 
insights from the sample and generalizes the population, analytic generalization intends 
to support, contest, refine, extend, or elaborate theoretical propositions [100]—in this 
case—the assignment of occupational hazards to appropriate risk categories. In addition, 
a small group of experts mimics the scenario of a Delphi group, where an increase in the 
number of respondents may result in “knowledge redundancy”—any additional member 
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who has the same level of knowledge and expertise as the rest will have a minimal mar-
ginal contribution to the group decision. 

On the other hand, as residential projects constitute a vast scope of work, not to men-
tion other auxiliary services, the focus group decided only to emphasize those hazards 
that are inherently present in residential construction sites. Since members of the focus 
group are operating in the Philippines, the final list that they generate contains idiosyn-
crasies and is dependent on specific conditions prevalent in the Philippine construction 
industry, such as predominant manual labor, a small number of skilled works, limited 
resources to finance appropriate tools and equipment (including personal protective 
equipment), among others. The group consensus results in the generation of a list of 26 
occupational construction hazards found in Table 2. A survey questionnaire was designed 
to evaluate these hazards in view of the three risk dimensions of the FMEA, which include 
the degree of severity, frequency of occurrence, and probability of detection using the 7-
point scale described in Table 3. The questionnaire was then distributed to the same group 
of experts, who were given two weeks to return the completed questionnaire. Clarifica-
tions regarding any aspect of the questionnaire were dealt with promptly. 

Table 2. Occupational hazards in a residential construction workplace. 

Codes Occupational Hazards Some Accompanying Risks 
FM1 Working on a scaffold/stair Fall, scaffold collapse, struck by scaffold 
FM2 Working at a height above two meters Fall 

FM3 Handling manual non-electric tools (e.g., hammer, saw, chisel, 
pliers, shovel) 

Cuts, bruises, struck by, foreign materials 
into the eyes 

FM4 Using hydraulic and power tools (e.g., cutter, drill, grinder) Cuts, bruises, struck by, foreign materials 
into the eyes, electrocution, spasm 

FM5 Fumes from using hydraulic and power tools (e.g., cutter, drill, 
grinder) 

Nausea, eye irritation, upper respiratory ir-
ritation 

FM6 Manual excavation works Soil collapse, fall, struck by 
FM7 Uneven surfaces on the site Trip, fall, slip 

FM8 
Cables, dangling wires, cut wood, and scrap metals scattered 

around the workplace Trip, fall, slip 

FM9 Electrical wiring installation and troubleshooting Electrocution 

FM10 
Working on ground/lower floors with possible flying and falling 

objects Struck by 

FM11 Workers stepping on protruding objects (e.g., nails) Trip, fall, slip 
FM12 Vehicular traffic on construction sites Struck by 

FM13 Working within a ‘danger zone’ (e.g., a possible collision with 
equipment) 

Struck by 

FM14 Mechanical/electrical malfunction Electrocution, burns, cuts 
FM15 Exposure to the extreme noise level in the workplace Hearing disorder, nausea 

FM16 Exposure to hazardous substances (e.g., lacquer/paint thinner) 
Nausea, eye irritation, upper respiratory ir-
ritation, skin irritation, headaches, respira-

tory problems 

FM17 
Excessive hand and arm vibrations from vibrating power tools 

(e.g., jackhammers, compactors, hand drills) Spasm, blister 

FM18 Welding/hot work 
Burns, nausea, eye irritation, upper respira-

tory irritation 

FM19 
Airborne fibers and materials (e.g., asbestos, roofing insulation, fi-

berglass) 
Nausea, eye irritation, upper respiratory ir-

ritation 

FM20 
Inhalation of fine dust from cement, sand, gravel, and other con-

crete aggregates 
Nausea, eye irritation, upper respiratory ir-

ritation 
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FM21 Sun/extreme weather exposure Skin burns, dehydration, heat stroke 

FM22 
Prolonged and repeated lifting and carrying of heavy objects 

heavier than 20 kg 
Muscle pains, back pains, back injury, 

sprain and strain,  

FM23 Snake bites and animal attacks 
Poison, fever, cuts and bruises, swelling and 

inflammation, fatality 
FM24 Contact with poisonous plants Skin irritation, headache 

FM25 Insect bites Skin irritation, headache, swelling and in-
flammation, fatality 

FM26 Molds from structural lumber Upper respiratory irritation, eye irritation, 
Skin irritation  

Table 3. Linguistic evaluation scale. 

Linguistic Terms Scores Corresponding 𝒒-ROFN 
Strongly disagree 1 (0.15,0.9) 

Disagree 2 (0.3,0.85) 
Somewhat disagree 3 (0.45,0.65) 

Neutral 4 (0.5,0.5) 
Somewhat agree 5 (0.75,0.4) 

Agree 6 (0.8,0.25) 
Strongly agree 7 (0.95,0.1) 

4.2.1. Phase I—Calculate the Coefficient of Risk Dimensions of FMEA Using 𝑞-ROF  
Entropy and Cross-Entropy 

In this study, a set 𝐶 of risk dimensions of FMEA (i.e., severity, detection, occur-
rence), while a set 𝐴 = ሼ𝑎ଵ, … , 𝑎, … , 𝑎ሽ of occupational hazards in a residential construc-
tion workplace are determined through a focus group discussion. The focus group dis-
cussion generated a list of 26 occupational hazards in Table 2. A group of 𝐸 decision-
makers was asked to elicit judgment on the severity, detection, and occurrence of the oc-
cupational hazards. The individual evaluation matrix 𝑋 = ൫𝑥 ൯× is then constructed, 
wherein 𝑥  represents the 𝑒 th (𝑒 = 1,2, … , 𝐸) decision-maker evaluation of 𝑖 th (𝑖 =1,2, … , 𝑚 ) occupational hazard to 𝑗th (𝑗 = 1,2, … , 𝑛 ) risk dimension. A sample of matrix 𝑋 is presented in Appendix A. The 𝑋 matrices are then transformed into 𝑞-ROF eval-
uation matrices 𝑄 = ൫𝑞 ൯× , where 𝑞 = ൫𝑢 , 𝑣 ൯ following the linguistic scale fea-
tured in Table 3. The value of 𝑞 = 5 is defined by the decision-makers. A sample of the 
resulting matrix is shown in Appendix B. The aggregate 𝑞-ROF decision matrix denoted 
as 𝑄ሷ = ൫𝑞ሷ൯× , where 𝑞ሷ = ൫𝑢ሷ , 𝑣ሷ൯× , is obtained using the 𝑞-ROFWA defined in 
Equation (14), wherein 𝜔  (∑ 𝜔ாୀଵ = 1) denotes the weight assigned to 𝑒th decision-
maker. The weights assigned to the decision-makers are based on the completeness of 
their responses. The resulting matrix is presented in Table 4. Following Step 3 to Step 5 of 
Section 4.1, where 𝑝 = 1.5, the entropy of each evaluation 𝑞ሷ (see Appendix C) presents 
the fuzzy densities of severity, detection, and occurrence are 0.3199, 0.1260, and 0.2504, 
respectively. 

Table 4. Aggregate 𝑞-ROF decision matrix. 

Occupational Hazards Severity Detection Occurrence 
FM1 (0.8479,0.3374) (0.4310,0.7700) (0.7946,0.3670) 
FM2 (0.8383,0.2459) (0.4001,0.8382) (0.8066,0.3320) 
FM3 (0.6993,0.4554) (0.3819,0.8385) (0.7346,0.3881) 
FM4 (0.8072,0.2737) (0.5010,0.8230) (0.7758,0.3560) 
FM5 (0.8312,0.2903) (0.5098,0.7813) (0.8214,0.3157) 
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FM6 (0.7079,0.3998) (0.4186,0.8021) (0.7155,0.4137) 
FM7 (0.8121,0.3195) (0.4210,0.7948) (0.8172,0.3007) 
FM8 (0.8798,0.2060) (0.3971,0.8459) (0.8992,0.1872) 
FM9 (0.7706,0.3341) (0.4001,0.8382) (0.8115,0.3320) 
FM10 (0.8744,0.2125) (0.4029,0.8306) (0.7495,0.3758) 
FM11 (0.8837,0.1902) (0.3940,0.8537) (0.8738,0.2168) 
FM12 (0.7194,0.4017) (0.4713,0.6647) (0.7015,0.4250) 
FM13 (0.9071,0.1722) (0.4001,0.8382) (0.7668,0.3626) 
FM14 (0.8844,0.1866) (0.4001,0.8382) (0.8606,0.2600) 
FM15 (0.8772,0.2328) (0.4468,0.7309) (0.8111,0.3415) 
FM16 (0.7489,0.3901) (0.4001,0.8382) (0.8677,0.2509) 
FM17 (0.8458,0.2431) (0.4332,0.7630) (0.8006,0.3523) 
FM18 (0.8438,0.2427) (0.4029,0.8306) (0.8203,0.3010) 
FM19 (0.9066,0.1730) (0.4001,0.8382) (0.8252,0.3132) 
FM20 (0.8801,0.2180) (0.4029,0.8306) (0.8239,0.3146) 
FM21 (0.8835,0.2014) (0.4001,0.8382) (0.8132,0.3260) 
FM22 (0.8791,0.2069) (0.4004,0.8373) (0.8172,0.3234) 
FM23 (0.8768,0.2272) (0.3971,0.8459) (0.7257,0.4080) 
FM24 (0.8763,0.2314) (0.4162,0.8090) (0.7229,0.4441) 
FM25 (0.7137,0.4699) (0.4359,0.7623) (0.7907,0.4099) 
FM26 (0.6888,0.4939) (0.4470,0.7301) (0.7899,0.4116) 

4.2.2. Phase II—Obtain the RPN of Each Occupational Hazard Using the 𝑞-ROF Choquet 
Integral 

In this study, three pre-defined categories (i.e., “high risk”, “moderate risk”, and 
“low risk”) and the central profiles are introduced by the decision-makers. The pre-de-
fined categories and their corresponding central profiles are featured in Table 5. Using 
Equation (23), 𝜆 = 1.7868, and following Step 5 to Step 7, the fuzzy measures of the risk 
dimensions and the 𝑞-ROF RPN are presented in Tables 6 and 7, respectively. 

Table 5. The central profiles. 

Central Profiles Severity Detection Occurrence 𝑝ଵ (0.8000,0.2500) (0.8000,0.2500) (0.8000,0.2500) 𝑝ଶ (0.5000,0.5000) (0.5000,0.5000) (0.5000,0.5000) 𝑝ଷ (0.3000,0.8500) (0.3000,0.8500) (0.3000,0.8500) 

Table 6. Fuzzy measures of the risk dimensions. 

Risk Dimensions Fuzzy Measures Risk Dimensions Fuzzy Measure 
Severity 0.3199 Severity, Occurrence 0.7135 

Detection 0.1260 Detection, Occurrence 0.4327 
Occurrence 0.2504 Severity, Detection, Occurrence 1.0000 

Severity, Detection 0.5179   

Table 7. 𝑞-ROF RPN values. 

Occupational 
Hazards 

𝒒-ROF RPN Occupational 
Hazards 

𝒒-ROF RPN Occupational 
Hazards 

𝒒-ROF RPN 

FM1 (0.7282,0.5191) FM11 (0.7947,0.4129) FM21 (0.7517,0.4837) 
FM2 (0.7320,0.4996) FM12 (0.6375,0.5235) FM22 (0.7526,0.4836) 
FM3 (0.6720,0.5211) FM13 (0.7373,0.4945) FM23 (0.7005,0.5386) 
FM4 (0.7091,0.5159) FM14 (0.7848,0.4385) FM24 (0.6999,0.5463) 
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FM5 (0.7467,0.4835) FM15 (0.7498,0.4696) FM25 (0.7054,0.5216) 
FM6 (0.6711,0.4923) FM16 (0.7619,0.4349) FM26 (0.6937,0.5278) 
FM7 (0.7714,0.4086) FM17 (0.7316,0.4880) p1 (0.8000,0.2500) 
FM8 (0.8468,0.3014) FM18 (0.7433,0.4779) p2 (0.5000,0.5000) 
FM9 (0.7439,0.4342) FM19 (0.7691,0.4672) p3 (0.3000,0.8500) 

FM10 (0.7113,0.5127) FM20 (0.7575,0.4797)   

4.2.3. Phase III—Sort the Occupational Hazards Using the Proposed Methodologies 
Following Method 1 of Section 4.1.3, the assignment of occupational hazards is fea-

tured in Figure 3. On the other hand, another assignment of the same hazards based on 
Method 2 is illustrated in Figure 4. 

 
Figure 3. Sorting assignment based on Method 1. 

 
Figure 4. Sorting assignments based on Method 2. 

The complete computational process involved in this section is provided in the Sup-
plementary Material. 

5. Sensitivity and Comparative Analyses 
Sensitivity and comparative analyses are implemented to determine the robustness 

and efficiency of the proposed methodologies. 

5.1. Sensitivity Analysis 
In this section, a sensitivity analysis was conducted to assess the robustness of the 

proposed methods. First, the 𝑞 parameter was allowed to change, where 𝑞 = 2, … ,50. 
The percentage that 𝑖th occupational hazard is assigned to the 𝑓th category is defined as 𝜌, = ∑ ,ఱబసమସଽ , ℎ, ∈ ሼ0,1ሽ, where ℎ, = 1 representing that 𝑎 is assigned to 𝑓 at a pa-
rameter value 𝑞; otherwise, ℎ, = 0. Table 8 presents the percentage of frequency of the 
assignment of all occupational hazards. It can be observed that for Method 1, 19 occupa-
tional hazards (i.e., FM1, FM2, FM4, FM5, FM7, FM8, FM9, FM11, FM14, FM15, FM16, 
FM17, FM18, FM19, FM20, FM21, FM22, FM25, FM26) are categorized as “high risk” at 
least 70% of the time and seven hazards (FM3, FM6, FM10, FM12, FM13, FM23, FM24) are 
categorized as “moderate risk”. At the same time, Method 2, 19 and seven hazards are 

High risk

•FM1, FM2, FM5, FM7, 
FM8, FM9, FM10, 
FM11, FM13, FM14, 
FM15, FM16, FM17, 
FM18, FM19, FM20, 
FM21, FM22

Moderate risk

•FM3, FM4, FM6, 
FM12, FM23, FM24, 
FM25, FM26

Low risk

•(none)

High risk

•FM1, FM2, FM5, FM7, 
FM8, FM9, FM11, 
FM13, FM14, FM15, 
FM16, FM17, FM18, 
FM19, FM20, FM21, 
FM22

Moderate risk

•FM3, FM4, FM6, 
FM10, FM12, FM23, 
FM24, FM25, FM26 

Low risk

•(none)
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classified as “high risk” and “moderate risk”, respectively, as illustrated in Table 9. Ac-
cordingly, a higher value of 𝑞 translates to a higher hesitancy degree. Hence, the occupa-
tional hazards are likely to be categorized as “high risk” as the value of 𝑞 increases. At 𝑞 = 2, … ,50, the proposed methods remain stable. 

On the other hand, five score functions (see Table 1) and additional distance 
measures proposed by Peng and Liu [101], as described in Equations (26)–(30), were uti-
lized to evaluate the stability of the proposed methodologies. 𝐷ଵ(𝑀, 𝑁) = ଵଶ|| ∑ ൫ห𝑢ெ (𝑥) − 𝑢ே (𝑥)ห + ห𝑣ெ (𝑥) − 𝑣ே(𝑥)ห + ห𝜋ெ (𝑥) − 𝜋ே (𝑥)ห൯ ௫∈  (26)𝐷ଶ(𝑀, 𝑁) = ଵଶ|| ∑ ห𝑢ெ (𝑥) − 𝑢ே (𝑥) − 𝑣ெ (𝑥) − 𝑣ே(𝑥)ห௫∈   (27)𝐷ଷ(𝑀, 𝑁) = ଵସ|| ൫∑ ൫ห𝑢ெ (𝑥) − 𝑢ே (𝑥)ห + ห𝑣ெ (𝑥) − 𝑣ே(𝑥)ห + ห𝜋ெ (𝑥) −௫∈𝜋ே (𝑥)ห൯ + ∑ ห𝑢ெ (𝑥) − 𝑢ே (𝑥) − 𝑣ெ (𝑥) − 𝑣ே(𝑥)ห௫∈ ൯   

(28)

𝐷ସ(𝑀, 𝑁) = ଵ|| ∑ ൫ห𝑢ெ (𝑥) − 𝑢ே (𝑥)ห ∨ ห𝑣ெ (𝑥) − 𝑣ே(𝑥)ห൯௫∈   (29)𝐷ସ(𝑀, 𝑁) = ଵ|| ∑ ห௨ಾ (௫)ି௨ಿ (௫)ห∨ห௩ಾ (௫)ି௩ಿ (௫)หଵାห௨ಾ (௫)ି௨ಿ (௫)ห∨ห௩ಾ (௫)ି௩ಿ (௫)ห௫∈   (30)

After obtaining the assignment of the occupational hazards, the similarity ratio met-
ric 𝑆 proposed by Keshavarz-Ghorabaee et al. [102] is used to compare the results as 
illustrated as follows: 𝑆 = ∑ ௪(௫,௬)సభ  , 𝑥, 𝑦 ∈ ሼhigh risk, moderate risk, low riskሽ (31)

where 𝑤(𝑥, 𝑦) = ൜1 𝑖𝑓 𝑥 = 𝑦0 𝑖𝑓 𝑥 ≠ 𝑦 and 𝑚 is the number of occupational hazards, 𝑥 is the 

category of 𝑖th occupational hazard using a particular method, while 𝑦 is the category 
of 𝑖th occupational hazard using the other method. When 𝑆 = 1, then the two methods 
fully agree on all assignments. Table 10 illustrates the values of 𝑆 among the score func-
tions, while Table 11 features the 𝑆 among the distance measures. As observed, the 𝑆 
values among the employed score function are greater than 60%, while the 𝑆  values 
among the employed distance measure are greater than 96%. This indicates that the pro-
posed sorting methods are stable and feasible when applied to other domain problems. 

Table 8. Method 1 relative frequency of the assignment of all occupational hazards at different val-
ues of 𝑞. 

Occupational 
Hazard 

High Risk Moderate Risk Low Risk Occupational 
Hazard 

High Risk Moderate 
Risk 

Low Risk 

FM1 1.00 0.00 0.00 FM14 1.00 0.00 0.00 
FM2 1.00 0.00 0.00 FM15 1.00 0.00 0.00 
FM3 0.00 1.00 0.00 FM16 1.00 0.00 0.00 
FM4 0.78 0.22 0.00 FM17 1.00 0.00 0.00 
FM5 1.00 0.00 0.00 FM18 1.00 0.00 0.00 
FM6 0.00 1.00 0.00 FM19 1.00 0.00 0.00 
FM7 1.00 0.00 0.00 FM20 1.00 0.00 0.00 
FM8 1.00 0.00 0.00 FM21 1.00 0.00 0.00 
FM9 1.00 0.00 0.00 FM22 1.00 0.00 0.00 
FM10 0.37 0.63 0.00 FM23 0.37 0.63 0.00 
FM11 1.00 0.00 0.00 FM24 0.37 0.63 0.00 
FM12 0.29 0.71 0.00 FM25 0.76 0.24 0.00 
FM13 0.41 0.59 0.00 FM26 0.73 0.27 0.00 
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Table 9. Method 2 relative frequency of the assignment of all occupational hazards at different val-
ues of 𝑞. 

Occupational 
Hazard High Risk Moderate 

Risk Low Risk Occupational 
Hazard High Risk Moderate 

Risk Low Risk 

FM1 0.88 0.12 0.00 FM14 1.00 0.00 0.00 
FM2 0.63 0.37 0.00 FM15 1.00 0.00 0.00 
FM3 0.00 1.00 0.00 FM16 1.00 0.00 0.00 
FM4 0.69 0.31 0.00 FM17 0.88 0.12 0.00 
FM5 1.00 0.00 0.00 FM18 0.92 0.08 0.00 
FM6 0.00 1.00 0.00 FM19 1.00 0.00 0.00 
FM7 1.00 0.00 0.00 FM20 0.98 0.02 0.00 
FM8 1.00 0.00 0.00 FM21 0.82 0.18 0.00 
FM9 1.00 0.00 0.00 FM22 0.73 0.27 0.00 
FM10 0.04 0.96 0.00 FM23 0.02 0.98 0.00 
FM11 1.00 0.00 0.00 FM24 0.12 0.88 0.00 
FM12 0.29 0.71 0.00 FM25 0.76 0.24 0.00 
FM13 0.06 0.94 0.00 FM26 0.73 0.27 0.00 

Table 10. Similarity ratio among various score functions in sorting occupational hazards. 

Score Function Jana Banerjee Farhadinia Rani Peng 
Jana 1.00 0.96 0.96 0.88 0.73 

Banerjee - 1.00 0.92 0.85 0.69 
Farhadinia - - 1.00 0.92 0.77 

Rani - - - 1.00 0.85 
Peng - - - - 1.00 

Table 11. Similarity ratio among various distance methods in sorting occupational hazards. 

Distance Method Euclidean D1 D2 D3 D4 D5 
Euclidean 1.00 0.96 0.96 0.96 1.00 1.00 

D1 - 1.00 0.92 0.92 0.96 0.96 
D2 - - 1.00 1.00 0.96 0.96 
D3 - - - 1.00 0.96 0.96 
D4 - - - - 1.00 1.00 
D5 - - - - - 1.00 

5.2. Comparative Analysis 
A proposed methodological approach to categorize occupational hazards is intro-

duced in this study. Layers of comparative analysis are implemented to assess the ap-
proach’s effectiveness in practical application compared to prior methods. The first com-
parable method is the canonical FMEA. An 𝑚 (𝑖 = 1, . . , 𝑚) number of failure modes of a 
specific process or product is evaluated using the three dimensions of FMEA, referred to 
as risk dimensions. The risk dimensions are denoted as 𝑗 = 1, … , 𝑛. The evaluation 𝑟 de-
notes the assessment of the 𝑖th failure mode with respect to each 𝑗the dimension. These 
evaluations are utilized to determine the risk priority number 𝑅 of each failure mode, 
wherein 𝑅 = ∏ 𝑟ୀଵ . This FMEA process is applied to the domain problem discussed in 
Section 4. Here, the failure modes are an occupational hazard in the construction industry. 
The resulting 𝑅 values are presented in Table 12. 
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Table 12. Risk priority numbers using the canonical FMEA. 

Occupational Hazards Severity Detection Occurrence 𝑹𝒊 
FM1 4.2400 1.9200 4.5200 36.7964 
FM2 5.7400 1.6000 5.1200 47.0221 
FM3 4.0800 1.7400 4.9400 35.0700 
FM4 5.7400 1.6200 5.1800 48.1678 
FM5 5.3400 1.9400 5.2000 53.8699 
FM6 4.7000 1.7800 4.6600 38.9856 
FM7 5.1400 1.9400 5.2600 52.4506 
FM8 6.0600 1.4400 6.1000 53.2310 
FM9 5.2400 1.6000 5.0400 42.2554 

FM10 5.9200 1.7600 5.0000 52.0960 
FM11 6.2400 1.2800 5.9400 47.4440 
FM12 4.5400 2.7200 4.4800 55.3226 
FM13 6.2800 1.6000 5.1600 51.8477 
FM14 6.2800 1.6000 5.4800 55.0630 
FM15 5.7800 2.2400 4.9600 64.2181 
FM16 4.4200 1.6000 5.6400 39.8861 
FM17 5.8400 2.0800 4.8200 58.5495 
FM18 5.7600 1.7600 5.3200 53.9320 
FM19 6.2600 1.6000 5.3200 53.2851 
FM20 5.9200 1.7600 5.3000 55.2218 
FM21 6.0800 1.6000 5.1400 50.0019 
FM22 6.0400 1.6200 5.2600 51.4680 
FM23 5.6000 1.4400 4.6600 37.5782 
FM24 5.4200 1.7200 4.3400 40.4592 
FM25 4.2200 2.0800 4.3000 37.7437 
FM26 3.9000 2.2600 4.3000 37.9002 

When 𝑅 ≥ 𝜏, then 𝑖th occupational hazard is considered “high risk.” The parameter 𝜏 is the 80th percentile of all 𝑅. Here, 𝜏 = 53.9320. This parameter is anchored on the 
Pareto principle or the 80/20 rule. Consequently, only six occupational hazards are cate-
gorized as “high risk”, namely, FM12, FM14, FM15, FM17, FM18, and FM20. 

The second comparable method is the categorization of occupational hazards 
through FlowSort. The integration of FMEA in FlowSort is introduced by Lolli et al. [103]. 
This approach follows the canonical FlowSort method, wherein the three risk dimensions 
of FMEA are considered the evaluation criteria in the decision matrix. Note that the failure 
modes (i.e., occupational hazard) are considered alternatives in the matrix. The applica-
tion of the comparable method is demonstrated using the same problem discussed in Sec-
tion 4. The ordered category 𝓀  where 𝓀ଵ ⊳ ⋯ ⊳ 𝓀 ⊳ ⋯ ⊳ 𝓀ி  is set by the decision-
makers. Here, three categories are defined as 𝓀ଵ = high risk, 𝓀ଷ = moderate risk, and 𝓀ଷ = low risk. These three ordered categories are characterized by the set central profiles 
where 𝑃 = ሼ2,4,6ሽ . Meanwhile, the preference function 𝐹(𝑑)  is determined using the 
Type 3 criterion wherein, 

𝐹(𝑑) = ቐ 1 −𝑑 ≤ −𝑝∗ିௗ∗ −𝑝∗ ≤ −𝑑 < 00 −𝑑 ≥ 0   (32)

where 𝑝∗ ∈ ൛𝑝௦௩௧௬, 𝑝௨, 𝑝ௗ௧௧ൟ is determined by the decision-makers. Here, 𝑝௦௩௧௬ = 0.7, 𝑝௨ = 0.3, and 𝑝ௗ௧௧ = 0.3. Following the methodological steps 
of the FlowSort, Table 13 shows the categorization of the failure modes. 
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Table 13. Assignment results using FlowSort. 

Occupational 
Hazards Category 

Occupational 
Hazards Category 

Occupational 
Hazards Category 

FM1 moderate risk FM10 moderate risk FM19 moderate risk 
FM2 moderate risk FM11 moderate risk FM20 moderate risk 
FM3 low risk FM12 moderate risk FM21 moderate risk 
FM4 moderate risk FM13 moderate risk FM22 moderate risk 
FM5 moderate risk FM14 moderate risk FM23 moderate risk 
FM6 moderate risk FM15 moderate risk FM24 moderate risk 
FM7 moderate risk FM16 low risk FM25 moderate risk 
FM8 moderate risk FM17 moderate risk FM26 moderate risk 
FM9 moderate risk FM18 moderate risk   

To illustrate the comparison of the results from the proposed method and two com-
parable methods, Table 14 summarizes the category assignments of the occupational haz-
ards. It is apparent in the results that there is a wide disparity in the categorization of 
occupational hazards. However, it should be emphasized that five out of six “high risk” 
occupational hazards from FMEA are also categorized as “high risk” using the proposed 
method. Meanwhile, the six “high risk” occupational hazards by the canonical FMEA are 
categorized as “moderate risk” through FlowSort. Hence, it can be noted that the disparity 
of the FMEA results to FlowSort is more nuanced than the proposed method. This dispar-
ity in the results may be due to the different inherent properties of the computational 
framework of FlowSort and FMEA. Additionally, the high similarity of results of FMEA 
and the proposed method can be attributed to the retention of the multiplicative property 
of FMEA in the proposed method, which satisfies some theoretical underpinnings. 

Table 14. Assignment results from comparable methods. 

Occupational Hazards 
Categories via Different Methods 

Proposed Method FlowSort FMEA 
FM1 high risk moderate risk - 
FM2 high risk moderate risk - 
FM3 moderate risk low risk - 
FM4 moderate risk moderate risk - 
FM5 high risk moderate risk - 
FM6 moderate risk moderate risk - 
FM7 high risk moderate risk - 
FM8 high risk moderate risk - 
FM9 high risk moderate risk - 

FM10 high risk moderate risk - 
FM11 high risk moderate risk - 
FM12 moderate risk moderate risk high risk 
FM13 high risk moderate risk - 
FM14 high risk moderate risk high risk 
FM15 high risk moderate risk high risk 
FM16 high risk low risk - 
FM17 high risk moderate risk high risk 
FM18 high risk moderate risk high risk 
FM19 high risk moderate risk - 
FM20 high risk moderate risk high risk 
FM21 high risk moderate risk - 
FM22 high risk moderate risk - 
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Occupational Hazards 
Categories via Different Methods 

Proposed Method FlowSort FMEA 
FM23 mod moderate risk - 
FM24 mod moderate risk - 
FM25 mod moderate risk - 
FM26 mod moderate risk - 

6. Results and Discussion 
Despite being a crucial contributor to national economies, the construction industry 

is considered one of the most hazardous industries, particularly in developing economies, 
where SMEs comprise a significant portion of the industry. To assist financially con-
strained construction SMEs in managing and allocating resources for worksite safety ini-
tiatives, this work adopts the notion of the FMEA by considering assessing occupational 
hazards in terms of their severity, detection probability, and occurrence frequency, rather 
than simply in a binary detection perspective, as current literature suggests. Furthermore, 
it enriches previous methodological approaches based on FMEA by offering a computa-
tional mechanism that determines risk categories for a set of occupational hazards. With 
an actual demonstration in residential construction projects, this study helps project man-
agers make informed decisions about the nature of occupational hazards and aids in the 
design of targeted initiatives that address those hazards. By evaluating hazards based on 
their severity, detection, and frequency of occurrence, managers could prioritize which 
hazards demand more attention and critical information to allocate resources effectively. 
In this section, we analyzed our findings in the previous sections in more detail. 

Based on Section 4, crisp scores ranging from 0 to 1 were used to evaluate and rank 
all the identified occupational hazards according to individual risk dimensions (i.e., se-
verity, detection, and frequency) and presented as heatmaps (Table 15). The presented 
heatmaps are defined in such a way that the highest value in the dimension is shown in 
red and signifies a higher degree of risk. Red-Orange represents a high degree of severity 
(HS), high probability of detection (HD), and high possibility of occurrence (HF) in the 
heat maps. Furthermore, the integration of the crisp scores of the three dimensions for 
each hazard was used to sort the hazards according to three categories, namely low (LR), 
moderate (MR), and high (HR) risk. Of the twenty-six (26) identified hazards, eighteen 
(18) are categorized as high risk, eight (8) as moderate risk, and zero (0) as low risk. 

Table 15. Heat map of the aggregate crisp scores of the risk dimensions. 

Occupational Hazards Severity Detection Occurrence 
FM1    
FM2    
FM3    
FM4    
FM5    
FM6    
FM7    
FM8    
FM9    

FM10    
FM11    
FM12    
FM13    
FM14    
FM15    
FM16    
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FM17    
FM18    
FM19    
FM20    
FM21    
FM22    
FM23    
FM24    
FM25    
FM26    

Low risk index: ; Moderate risk index: ; High risk index: . 

Results are clustered according to a high level of risk per dimension (1) (HS-HD-MF); 
(HS-LD-HF); (HS-LD-MF); (HS-LD-LF); (2) (LS-LD-LF); (3) (LS-LD-HF). First, exposure to 
extreme noise levels in the workplace (FM15) showed HS-HD-MF. This result is consistent 
with Yang et al. [104], highlighting how noise pollution is a pervasive stressor and a major 
compromise to the health and well-being of construction workers and off-site residents 
near the construction site. The negative effect of construction noise lies primarily within 
the dimensions of safety behavior. It was found in the work of Ning et al. [105] that the 
degree of severity is high as noise associated with residential construction buildings is 
related to activities such as electric drills (102 dB noise level), cutting of tiles (90 dB), rebar 
work (94–96 dB), grinder (97 dB), handheld power tools (94 dB), use of jackhammer (105 
dB), hammering nails into timber (131 dB), actuated tools into masonry (147 dB), among 
others, while permissible noise exposure for an eight hour-work shift is the 80 dB noise 
level. Long exposure to noise can cause serious health problems (e.g., hearing loss, tinni-
tus, stress-related disorders) that can be irreversible and permanent. Moreover, hazard 
FM15 has high detection as noise in the construction site is foreseen not only to cause noise 
within the vicinity of the worksite but to cause noise disturbance to adjacent structures, 
which most likely are residential units. Construction noise during extended work shifts 
often causes disputes between adjacent unit owners and construction site heads. In this 
case, decision-makers in residential construction SMEs must implement measures and 
mitigation strategies to minimize noise levels. Such strategies may include installing 
sound barriers, providing hearing protection for workers, and layout optimization as 
preparation before the start of construction activities. Meanwhile FM8, FM11, FM13, 
FM14, and FM22 resulted to HS-LD-HF. Common among these high-severity hazards is 
the need for immediate medical attention when incidents occur. Moreover, these are as-
sociated with HF due to the prolonged presence of these hazards spanning the entire du-
ration of the construction projects. Due to the limited space in most residential construc-
tion sites, workers tend to pass the danger zone (FM13). 

Similarly, space limitations expose workers to unkept conditions with dangling 
wires, scrap metals, cut wood (FM8), and protruding objects (FM11). Trip hazards, falling 
objects, and cuts from sharp objects are common results of poor housekeeping practices 
[106]. Moreover, it is important to note that the identified hazards have a low probability 
of detection (LD) brought about by workers’ long exposure to these hazards and thus are 
perceived as a normal site condition, making it critical mitigating them a priority. Thus, 
construction employers or managers need to allocate resources for housekeeping and con-
sistent equipment maintenance during the whole duration of the project. Employing mod-
eling tools that design and layout a digital, physical structure of a project to monitor and 
mitigate workplace hazards can be explored as a possible mitigating option. Moreover, 
strategies such as putting up clear and comprehensive warning signs, regularly reviewing 
work processes, and providing appropriate footwear can prevent or mitigate the negative 
impacts of trip hazards. 
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Moreover, due to limited resources, construction workers in SMEs may not have 
proper training and orientation and thus resulting in the lack of knowledge of workers of 
hazards in the worksite, consequently showing low detection of some common worksite 
hazards. Furthermore, this is intensified by high labor turnover in the construction indus-
try [107], which negatively affects the performance of the construction business. FM19, 
FM20, and FM21, respectively, are identified as HS-LD-MF. Similar to the above HS haz-
ards, FM19 and FM20 have possible immediate effects that need first aid or medical atten-
tion, including skin irritation and respiratory problems, among others. Meanwhile, the 
excessive heat from sun exposure in tropical countries, such as the Philippines, resulted 
in FM21 being categorized as HS. Sun exposure is overly present during the start of the 
construction project because of limited shaded locations. These three hazards are identi-
fied as MF because workers’ exposure to these hazards does not happen during the project 
duration. FM21, FM20, and FM19 occur only at the start of construction, during masonry 
and concrete works, and finishing work, respectively. Lastly, for HS, FM23 and FM24 are 
identified as HS-LD-LF. Immediate attention to incidents resulting from these hazards 
becomes imperative. However, they are identified as LD and LF because these hazards 
most often occur during site clearing at the onset of the project. Most construction workers 
cannot detect poisonous plants and habitat situations of snakes or other animals, espe-
cially those endemic to the locality. Moreover, hiring specialized personalities to deal with 
these conditions is not a common practice, especially for SMEs with limited capacities. 

Secondly, vehicular traffic on construction sites (FM12) resulted in the highest prob-
ability of detection. This may be due to, among the listed hazards, vehicular traffic avoid-
ance is normally practiced regardless of the conditions. It may be observed that crisp 
scores for the probability of detection are relatively lower (highest is 0.45) compared to 
the degree of severity and frequency of occurrence (highest at 0.81 and 0.79, respectively). 
This indicates that the level of detection of hazards or hazard recognition remains low, as 
supported by others in the literature [36]. Lastly, exposure to hazardous substances (e.g., 
lacquer/paint thinner) (FM16) is categorized as LS-LD-HF. Lengthy day-long exposure to 
these substances is common, thus resulting in being recognized as HF. However, due to a 
lack of knowledge of unforeseen health effects that typically occur much later, FM16 is 
identified as LS and LD. Eighteen (18) of the twenty-six (26) identified hazards are cate-
gorized as high risk. The heatmaps show that integrating the three domains with pro-
nounced severity and frequency scores resulted in numerous high-risk hazards. This im-
plies that workers perceive a hazard more based on the frequency of occurrence and de-
gree of severity of the risk associated with the hazard and that detection of hazards re-
mains low. 

7. Conclusions and Future Directions 
Despite various attempts to enhance construction safety, inadequate identification of 

hazards remains a significant and prevalent concern in a construction setting. Failure to 
recognize and mitigate these hazards can result in tragic safety incidents that harm the 
workers and the construction firm’s reputation. The dilemma is more prevalent in con-
struction SMEs, given their limited resources, high dependence on manual labor, and in-
sufficient attention to safety concerns due to the lack of technical workers. To address this 
concern, this study presents a novel method for assessing the risk level of an occupational 
hazard, which differs from the traditional binary detection approach commonly used in 
current methods. Our proposed approach considers multiple dimensions of a hazard, in-
cluding its severity, frequency of occurrence, and the likelihood of detection—character-
istics embedded in FMEA. However, current FMEA extensions and applications in con-
struction safety have some computational shortcomings that form the main departure of 
this work, particularly in capturing the interdependencies of the risk dimensions and the 
uncertainty of judgment elicitations of experts. In particular, this study offers a two-fold 
contribution to the literature: (1) a comprehensive evaluation of occupational hazards 
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prominent in construction SMEs, and (2) the proposed Choquet–FMEA–Sort methods un-
der a 𝑞-ROFS environment. 

Results reveal that working on a scaffold/stair, working at a height above two meters, 
fumes from using hydraulic and power tools, uneven surfaces, cables, dangling wires, cut 
woods, and scrap metals scattered around workplace, electrical wiring installation and 
troubleshooting, working on ground/lower floors with possible flying and falling objects, 
workers stepping on protruding objects (e.g., nails), working within a ‘danger zone’ (e.g., 
a possible collision with equipment), mechanical/electrical malfunction, exposure to the 
extreme noise level in the workplace, exposure to hazardous substances (e.g., lac-
quer/paint thinner), excessive hand and arm vibrations from vibrating power tools, weld-
ing/hot work, airborne fibers and materials, inhalation of fine dust from cement, sand, 
gravel, and other concrete aggregates, sun/extreme weather exposure, and prolonged and 
repeated lifting and carrying of heavy objects heavier than 20 kg are categorized as “high 
risk” while the remaining eight occupational hazards are categorized as “moderate risk”. 
With the limited resources that residential construction SMEs have, decision-makers in 
the industry should focus their efforts and resources on mitigating the occupational haz-
ards categorized as “high risk” since these hazards are more likely to cause severe injuries, 
difficult to detect, and have a high frequency of occurrence. By mitigating these hazards, 
construction SMEs can enhance the well-being of their workers, reduce the risk of prop-
erty damage and financial losses, improve company reputation, increase worker morale 
and productivity, and foster a workplace safety culture. 

However, despite the contributions to the literature, this study has some limitations, 
like any other work. First, the results of the analysis may be confined to the idiosyncrasies 
of the case environment. The existing preventive measures, document control protocols, 
and some cultural orientations present in managing Philippine residential construction 
projects were considered a priori when expert decision-makers evaluated the occupa-
tional hazards. Thus, the resulting categories of occupational hazards may yield differ-
ently in other cases, especially those countries with more rigorous workplace safety regu-
lations. For future work, the proposed methods may also be applied to more complex 
construction projects, such as bridges, buildings, and ports. Second, it may be necessary 
to conduct a prospective study to obtain more comprehensive insights by analyzing the 
findings with more decision-makers. Third, an in-depth post-analysis that would result in 
carefully designed preventive measures grounded on the study results is an interesting 
future work for practitioners. Moreover, the novel sorting methods introduced in this 
study can be applied in sorting other FMEA-based problems across various domains (e.g., 
manufacturing, healthcare, and education). Lastly, an additional comparative analysis 
may be employed between the proposed methodologies and various sorting methodolo-
gies in the literature. 
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Appendix A. Raw Evaluation Score of 𝒆th Decision-Maker 

Occupational Hazard Severity Detection Occurrence 
FM1 7 1 6 
FM2 6 1 5 
FM3 4 1 4 
FM4 5 1 5 
FM5 4 3 4 
FM6 4 1 3 
FM7 3 3 3 
FM8 7 1 7 
FM9 4 2 4 
FM10 4 2 4 
FM11 7 1 7 
FM12 3 3 4 
FM13 6 1 5 
FM14 7 1 7 
FM15 5 1 5 
FM16 4 1 7 
FM17 6 2 5 
FM18 4 2 4 
FM19 7 1 5 
FM20 5 2 5 
FM21 5 1 4 
FM22 5 2 5 
FM23 2 1 3 
FM24 1 1 3 
FM25 2 2 2 
FM26 3 2 2 

Appendix B. 𝒒-ROF Evaluation Matrix of 𝒆th Decision-Maker 

Occupational Hazard Severity Detection Occurrence 
FM1 (0.95,0.10) (0.15,0.90) (0.80,0.25) 
FM2 (0.80,0.25) (0.15,0.90) (0.75,0.40) 
FM3 (0.50,0.50) (0.15,0.90) (0.50,0.50) 
FM4 (0.75,0.40) (0.15,0.90) (0.75,0.40) 
FM5 (0.50,0.50) (0.45,0.65) (0.50,0.50) 
FM6 (0.50,0.50) (0.15,0.90) (0.45,0.65) 
FM7 (0.45,0.65) (0.45,0.65) (0.45,0.65) 
FM8 (0.95,0.10) (0.15,0.90) (0.95,0.10) 
FM9 (0.50,0.50) (0.30,0.85) (0.50,0.50) 
FM10 (0.50,0.50) (0.30,0.85) (0.50,0.50) 
FM11 (0.95,0.10) (0.15,0.90) (0.95,0.10) 
FM12 (0.45,0.65) (0.45,0.65) (0.50,0.50) 
FM13 (0.80,0.25) (0.15,0.90) (0.75,0.40) 
FM14 (0.95,0.10) (0.15,0.90) (0.95,0.10) 
FM15 (0.75,0.40) (0.15,0.90) (0.75,0.40) 
FM16 (0.50,0.50) (0.15,0.90) (0.95,0.10) 
FM17 (0.80,0.25) (0.30,0.85) (0.75,0.40) 
FM18 (0.50,0.50) (0.30,0.85) (0.50,0.50) 
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FM19 (0.95,0.10) (0.15,0.90) (0.75,0.40) 
FM20 (0.75,0.40) (0.30,0.85) (0.75,0.40) 
FM21 (0.75,0.40) (0.15,0.90) (0.50,0.50) 
FM22 (0.75,0.40) (0.30,0.85) (0.75,0.40) 
FM23 (0.30,0.85) (0.15,0.90) (0.45,0.65) 
FM24 (0.15,0.90) (0.15,0.90) (0.45,0.65) 
FM25 (0.30,0.85) (0.30,0.85) (0.30,0.85) 
FM26 (0.45,0.65) (0.30,0.85) (0.30,0.85) 

Appendix C. The Entropy Values 

Occupational Hazard Severity Detection Occurrence Occupational Hazard Severity Detection Occurrence 
FM1 0.8037 0.9313 0.8992 FM14 0.6965 0.8299 0.7693 
FM2 0.8220 0.8299 0.8809 FM15 0.7204 0.9617 0.8744 
FM3 0.9771 0.8277 0.9558 FM16 0.9461 0.8299 0.7495 
FM4 0.8781 0.8747 0.9205 FM17 0.8053 0.9378 0.8904 
FM5 0.8373 0.9309 0.8562 FM18 0.8098 0.8453 0.8577 
FM6 0.9705 0.8933 0.9677 FM19 0.6129 0.8299 0.8493 
FM7 0.8718 0.9032 0.8629 FM20 0.7112 0.8453 0.8517 
FM8 0.7119 0.8130 0.6427 FM21 0.6996 0.8299 0.8705 
FM9 0.9249 0.8299 0.8733 FM22 0.7143 0.8319 0.8638 
FM10 0.7291 0.8453 0.9449 FM23 0.7218 0.8130 0.9621 
FM11 0.6991 0.7945 0.7307 FM24 0.7233 0.8831 0.9659 
FM12 0.9651 0.9881 0.9744 FM25 0.9723 0.9387 0.9073 
FM13 0.6106 0.8299 0.9297 FM26 0.9834 0.9622 0.9084 
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