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Abstract: The health monitoring system of a bridge is an important guarantee for the safe operation
of the bridge and has always been a research hotspot in the field of civil engineering. This paper
reviews the latest progressions in bridge health monitoring over the past five years. This paper
is organized according to the various links of the bridge health monitoring system. Firstly, the
literature on monitoring technology is divided into two categories, sensor technology and computer
vision technology, for review. Secondly, based on the obtained monitoring data, the data processing
methods including preprocessing, noise reduction, and reconstruction are summarized. Then, the
technical literature on abnormal data early warning systems is summarized. The recent advances in
vibration-based and non-destructive testing-based damage identification methods are reviewed in
the next section. Finally, the advantages and disadvantages of the existing research and the future
research directions are summarized. This review aims to provide a clear framework and some reliable
methods for future research.

Keywords: structural health monitoring; sensing technology; data denoising; data reconstruction;
early warning; finite element model updating; damage identification

1. Introduction

As the core pillar of economic development, the bridge transportation system has
been highly valued by countries around the world in recent decades. With the rise of
bridge engineering, bridge construction technology has been continuously upgraded, and
large-span bridges, such as Hong Kong’s Tsing Ma Bridge, the Hangzhou Bay Sea Crossing
Bridge, Italy’s Messina Strait Bridge, and Canada’s Golden Ears Bridge, have been put
into use successively. However, as the service lives of bridges increase, changes in external
environmental conditions, such as wind loads, geology [1], temperature, and humidity [2],
will gradually reduce the durability and safety of bridge structures. Therefore, in order
to understand the current health status of bridges in a timely manner, many large-span
bridges are equipped with health monitoring systems to assess and decrease the potential
bridge health risks, and extend the service life of bridges.

Unlike traditional manual visual inspection with carried devices, modern bridge
health monitoring (BHM) systems reduce a significant amount of manpower and material
costs used for inspections, and achieve the real-time monitoring of bridge strain, deflection,
vibration, and other characteristics by installing sensors in various parts of the bridge.
The monitoring system integrates functions such as data collection, health diagnosis,
and damage warning, making the entire bridge structural testing process dynamic and
convenient. The operation process of the traditional BHM system is shown in Figure 1.
Considering the complexity and importance of BHM, scholars from various countries
have paid extensive attention to it and have constantly proposed new improvement and
development schemes.
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Figure 1. Flow chart of bridge health monitoring system. 

Yokohama-Bay Bridge is one of the bridges in Japan with the most installed 
monitoring equipment. During the Great East Japan Earthquake (Mw 9.0) in 2011, the 
BHM system on this bridge collected comprehensive response data sets from the 
earthquake’s foreshocks, main shock, and aftershocks, providing important evidence for 
scientific research [3]. The significance of BHM lies in its ability to predict various events 
that may occur on bridges, apart from force majeure, to protect life and property safety. 
In 2007, due to design defects and neglect of stress conditions, the I-35W Mississippi River 
bridge in Minneapolis collapsed during rush hour, causing serious casualties [4]. In the 
same year, the Jiujiang Bridge in Guangdong, China, collapsed after being hit by a sand-
hauling ship [5], indicating that bridges should be continuously monitored for important 
waterways and warnings should be issued when danger approaches. Reviewing past 
bridge collapse accidents can explain the importance of BHM in bridge engineering from 
another perspective. 

In the early development of BHM, due to immature analysis techniques and the 
scarcity and inaccuracy of monitoring equipment, it often led to mismatched predictions 
and actual results, which posed serious safety hazards to bridges. Rizzo and Enshaeian 
[6] reviewed the research undertaken in the past 20 years on bridges with BHM installed 
in the United States. Among these bridges, the North Halawa Valley Viaduct had installed 
over 200 sensors at various locations on the bridge during the construction period for 
monitoring multiple parameters. A subsequent study [7] found that the long-term 
deformation results obtained using general prediction methods for the bridge differed 
significantly from the actual deformation. This difference was confirmed to be due to the 
neglect of concrete shrinkage and creep. Bazant et al. [8] studied creep and shrinkage 
prediction models such as those from the American Concrete Institute, Japan Society of 
Civil Engineers, and CEB-FIP Model Code. The results showed that these widely used 
models at the time generally underestimated bridge deflection. In addition, BHM faces 
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Yokohama-Bay Bridge is one of the bridges in Japan with the most installed monitoring
equipment. During the Great East Japan Earthquake (Mw 9.0) in 2011, the BHM system on
this bridge collected comprehensive response data sets from the earthquake’s foreshocks,
main shock, and aftershocks, providing important evidence for scientific research [3].
The significance of BHM lies in its ability to predict various events that may occur on
bridges, apart from force majeure, to protect life and property safety. In 2007, due to design
defects and neglect of stress conditions, the I-35W Mississippi River bridge in Minneapolis
collapsed during rush hour, causing serious casualties [4]. In the same year, the Jiujiang
Bridge in Guangdong, China, collapsed after being hit by a sand-hauling ship [5], indicating
that bridges should be continuously monitored for important waterways and warnings
should be issued when danger approaches. Reviewing past bridge collapse accidents can
explain the importance of BHM in bridge engineering from another perspective.

In the early development of BHM, due to immature analysis techniques and the
scarcity and inaccuracy of monitoring equipment, it often led to mismatched predictions
and actual results, which posed serious safety hazards to bridges. Rizzo and Enshaeian [6]
reviewed the research undertaken in the past 20 years on bridges with BHM installed in the
United States. Among these bridges, the North Halawa Valley Viaduct had installed over
200 sensors at various locations on the bridge during the construction period for monitoring
multiple parameters. A subsequent study [7] found that the long-term deformation results
obtained using general prediction methods for the bridge differed significantly from the
actual deformation. This difference was confirmed to be due to the neglect of concrete
shrinkage and creep. Bazant et al. [8] studied creep and shrinkage prediction models such
as those from the American Concrete Institute, Japan Society of Civil Engineers, and CEB-
FIP Model Code. The results showed that these widely used models at the time generally
underestimated bridge deflection. In addition, BHM faces many challenges, such as fatigue
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and corrosion evaluation, scour effects, etc. [9], requiring further research to propose
better solutions.

In this paper, we provide an overview of the research progress in BHM technology in
recent years and summarize the research on the damage identification of bridge structures.
The structure of the following content is as follows. In Section 2, sensor monitoring
technology and computer vision-based monitoring technology are reviewed separately,
with a focus on an overview of fiber optic sensing and wireless sensing methods. In
Section 3, data processing methods including data preprocessing, data denoising, and data
reconstruction for signal data collected by sensors are reviewed. In Section 4, a review of the
research conducted by various countries on early warning systems for BHM is presented. In
Section 5, the recent advances in vibration-based and non-destructive testing-based damage
identification methods are summarized. Finally, we summarize the research progress in the
different directions mentioned above. We introduce some representative literature on BHM
technology in this paper, aiming to provide a clear framework for future research.

2. Monitoring Technology

During the service life of bridges, unfavorable status changes often occur due to
internal structural characteristics and external environmental effects, which pose safety
hazards. Failure to detect these unfavorable changes in a timely manner may lead to
catastrophic consequences and result in a significant loss of life and property. BHM systems
use a large number of sensors installed at optimal positions on a bridge through reasonable
methods [10,11], to monitor and provide feedback on its structural response, structural
defects, and external environment in real-time. For cracks, peeling, deformation, rusting,
and other structural issues, image-based methods are used for detection [12–14]. In this
section, current research hotspots in sensor systems and computer vision-based monitoring
methods will be reviewed.

2.1. Sensor Monitoring Technology in BHM

During the service of bridges and other building structures, the important components
of the structure are prone to failure due to the impact of severe working conditions. Given
the problems of inaccurate measurement accuracy, poor stability, short service life, and
the high energy consumption of traditional sensors, researchers have been seeking im-
provement methods over the past two decades. Fiber optical sensors (FOS) have emerged
as an excellent sensing technology due to their inherent advantages such as small size,
light weight, strong anti-electromagnetic interference capability, corrosion resistance, and
embeddability [15–17].

2.1.1. Fiber Optic Sensors

In the early 1960s, fiber optics were studied and used in optical transmission sys-
tems [18]. With the wide application of information transmission technology based on
optical transmission, people begin to focus on the study of material properties that affect
optical transmission. In this case, optical measurement systems continue to make progress.
A typical example in BHM is that FOS can be installed on the surface of rebars or embedded
in pre-drilled holes to monitor the strain, temperature, and vibration of rebars. In 2019,
Abdel-Jaber et al. [19] proposed a method for monitoring prestress loss in prestressed
concrete structures using FOS to provide a formal method for on-site evaluation. In the case
of the Streicker Bridge strain sensor on Princeton University campus, they used the FOS
strain measurement to study strain change at the centroid of the composite section. They
reported that it has the advantage of being able to obtain accurate measurements when the
temperature changes, and that it shows a wide range of applicability. The numerical results
show the feasibility of FOS in the measurement of prestress damage.

FOS can be divided into two types, distributed and discrete, based on whether they can
monitor continuously with increasing distance. Distributed fiber optic sensors (DFOS) are
a major research focus for achieving sensing measurements for thousands of measurement



Buildings 2023, 13, 1360 4 of 34

points using a single fiber optic cable [20]. According to different principles of light
scattering, DFOS can be divided into the following three categories: DFOS based on
Brillouin scattering, DFOS based on Raman scattering, and DFOS based on Rayleigh
scattering [21–23]. The comparison of different types of DFOS is shown in Table 1. In
the field of BHM, the sensing technology based on Brillouin scattering has been applied
more widely.

Table 1. Classification and comparison of DFOS.

Classification Test Method *
Measurement

Distance and/or
Spatial Resolution

Disadvantage Application

Rayleigh scattering

OTDR Tens to hundreds
of kilometers

Low spatial
resolution Vibration sensing

OFDR Resolution at mm level Short measuring
distance

Distributed temperature
and strain sensor

Raman scattering
ROTDR

Ten kilometers
Low spatial
resolution

Distributed
temperature sensorROFDR

Brillouin scattering
BOTDR Dozens of kilometers,

0.4–0.5 m resolution
A complex system,

long test time
Distributed temperature

and strain sensor
BOTDA
BOFDA Resolution at cm level

* OTDR: optical time domain reflection; OFDR: optical frequency domain reflection; OTDA: optical time domain
analysis; OFDA: optical frequency domain analysis.

In 2017, Scarella et al. [24] proposed a structural health monitoring method for cable-
stayed bridges based on the dynamic distributed sensing of bridge deck strains. To detect
the location and size of the damaged cable, a formula was developed using the dynamic
distributed sensing capability of Brillouin scattering optical time domain analysis (BOTDA),
and the relationship between the strain redistribution on the deck of the cable-stayed bridge
and the tension loss of the single cable was established. The applicability of this method
was demonstrated in a scaled model test case of a cable-stayed bridge in the laboratory. In
2019, Oskoui et al. [25] used FOS based on Brillouin scattering to monitor and normalize
the distributed strain of trucks relative to the theoretical influence line of the bridge during
multiple locations. In addition, they introduced the damage index in a method to identify
microcracks. The author reports the test results on the concrete box girder bridge, which
proves the effectiveness of this method. In 2022, Bertulesi et al. [26] proposed a hybrid
structural health monitoring (SHM) system based on Brillouin DFOS. They introduced
vibrating wire (VW) extensometers and temperature probes into the monitoring system
and compared and corrected the data of the DFOS and extensometers according to the
temperature effect. In the case study of a water penstock bridge, it was confirmed that the
strain time series collected by the two methods have a good match. The results showed
that the application of Brillouin DFOS to the SHM system under complex conditions is a
cost-effective and good performance scheme.

2.1.2. Wireless Sensor Technology

The monitoring system of long-span bridge will produce a large number of monitoring
data sets every day. If all the sensors used to collect this data were traditional wired sensors,
the cost would undoubtedly be huge, which provides a demand for the research and
application of wireless sensors. A wireless sensor network (WSN) is a network form that
combines a large number of sensor nodes in the monitoring area into a network system
through wireless communication technology, as shown in Figure 2.

The WSNs deployed on bridges are characterized by a layered network communica-
tion protocol consisting of five layers, namely the physical layer, data link layer, network
layer, transport layer, and application layer. The physical layer facilitates signal monitor-
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ing, transmission, and reception, with the design goal of minimizing energy loss while
maximizing link capacity [27]. The data link layer primarily enhances the functionality
of transmitting raw bits from the physical layer [28]. The network layer is responsible for
packet routing and network interconnection [29], forming the foundation of data trans-
mission. The transport layer provides reliable and efficient means for data transmission.
Finally, the application layer transforms data into usable information for the physical world.
Rupani and Aseri [30] proposed an improved WSN transport layer protocol based on the
pump slowly, fetch quickly (PSFQ) protocol. They analyze the proposed protocol in terms
of average delay and average fault tolerance, and the results are better than the ordinary
PSFQ protocol.
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In SHM, a WSN is more convenient to deploy and maintain, and has a lower cost.
However, the wireless characteristics of the network also bring a series of new challenges
to researchers, including communication delay and security, effective routing, and network
scalability. Among numerous wireless protocols, WiFi (IEEE 802.11), Bluetooth (IEEE
802.15.1), and ZigBee (IEEE 802.15.4) are suitable examples for use in WSNs. Among
them, WiFi has a longer transmission distance and an extremely fast transmission rate, but
also consumes a considerable amount of energy. Therefore, without special modification
methods, WiFi technology is not suitable for WSNs that require long-term monitoring. Like
WiFi, Bluetooth also faces the dilemma of high power consumption, even though its perfor-
mance is good. In the existing research [32], ZigBee has been used to design low-power
low-rate wireless personal area networks (LR-WPAN) that meet the requirements of WSNs.
Wijetunge et al. [33] summarized the advantages of using ZigBee in the underlying wireless
communication technology of WSH, and also pointed out its drawbacks, such as the idle
listening mechanism with additional energy consumption. Krishnamoorthy et al. [34] de-
veloped a reservation-based protocol based on the existing IEEE 802.15.4 standard, which
provides a selectable solution for addressing the additional energy consumption of ZigBee.
In addition, a medium access control (MAC) protocol can reduce the energy consumption of
sensor nodes during idle time, but it has the disadvantage of communication delay, which is
solved well by a B-MAC protocol. Bdiri et al. [35] introduces an Energy Harvesting System
in wireless sensor nodes and reduces unnecessary energy consumption that may occur
through the B-MAC protocol. The combination of the two technologies greatly reduces the
energy consumption of sensor nodes.

Ayyildiz et al. [36] developed sensor mote hardware to trigger a piezoelectric sensor
with lead zirconate titanate material, which had excellent fracture detection performance.
They used the network interface of the system to remotely analyze the data collected after
triggering the piezoelectric sensor. The results showed that the newly developed system
can successfully detect cracks that threaten the safety of the structure. Huang et al. [37]
proposed a method based on WSNs to measure the micro-vibration of a bridge piers during
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extreme weather conditions and frequent natural disasters. They first used a WSN to collect
data signals at different locations on a pier. Then, the Fast Fourier Transform (FFT) and
Welch methods were used to process the signals to obtain the pier vibration frequency data.
At the same time, the measured natural frequency was used as a calibration parameter
to establish a finite element model to estimate the scouring depth. This method provides
a practical tool for dealing with the risk of bridge collapse caused by pier scouring. In a
study on the method of estimating bridge cable tension, Zhang et al. [38] proposed a fully
automated and robust identification method based on an Xnode wireless sensor system.
The method was validated by Jindo Bridge data. The numerical results showed that the
natural frequency and order of the bridge cable obtained by this method and the Matlab
method were basically consistent, and the predicted tension results matched the actual data
very well, which can effectively realize the automatic estimation of cable tension.

Wireless sensor networks are widely used in civil SHM because of their excellent
data collection capability, convenient installation, and low cost. To realize their long-term
operation, some scholars have studied the power reduction methods of WSNs. Figure 3
illustrates a simple WSN model in which sensor nodes are linearly arranged and each
sensor collects data within the distance between adjacent nodes.
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Assuming that the model considers transmission power as the only parameter, the
energy E required to transmit a data packet at a rate of R bits/s along the distance d can be
expressed as [39]

E = εampRdk (1)

where εamp is the energy dissipated in the transmitting radio-frequency (RF) amplifier
and k is the path loss exponent, which normally ranges from 2 to 6 [40]. It is apparent
from the formula that, under certain environmental conditions, we can control the energy
consumption of the WSN by altering the type of RF amplifier or changing the layout of the
sensor network, including modifying the position and spacing of the sensors.

As more innovative sensing technologies, including WSNs, are continuously being
applied to SHM, it is worth noting how to provide an optimized solution for determining
the number and placement of sensors to maximize their information collection capability
and address energy consumption issues. Generally speaking, the sensor node localization
methods in WSNs can be classified into non-distance-based and distance-based meth-
ods. In non-distance-based methods, a validated and effective approach is to identify the
high-connectivity anchors for each sensor and use the centroid of the anchor points as its
location [41]. Additionally, reliable sensor localization can be achieved by measuring vari-
ous parameters such as the pairwise time-of-arrival (TOA), the time-difference-of-arrival
(TDOA), the received signal strength (RSS), and the angle-of-arrival using distance-based
algorithms [42]. In their research on sensor location optimization, Meo and Zumpano [43]
proposed two comparative standards using vibration displacement as the dataset. The first
standard is the mean square error between the FE model and the cubic spline-interpolated
mode shapes, and the second standard is the information content of the sensors, which
shows the signal strength obtained by different placement schemes and their noise resis-
tance ability.
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Hussein et al. [44] studied two optimization schemes of node layout. They compared
the life of WSNs under the two schemes with the results obtained by the common equidis-
tant layout method, and obtained the optimal node layout scheme of the sensor network,
which can reduce energy consumption by 20% and extend life by 140%. Sarwar et al. [45]
designed an event-based WSN to reduce the power consumption of sensor nodes that
capture random events. In addition, the system can be easily configured to existing wireless
sensor platforms. The current consumption before and after activating the system on a
commercial wireless platform verified the ultra-low power consumption of the system.
Considering WSNs with multi-type sensor clusters, Hao et al. [46] developed a cluster-
based network optimization algorithm to improve the energy utilization efficiency of the
network and extend the network lifetime. On this basis, they obtained the coefficient of
variation of the estimated parameters based on Bayesian inference, which can be used
as a global measure to evaluate the accuracy of the sensor network. In another study,
Hao et al. [47] added the genetic algorithm (GA) strategy based on the previous research to
improve the computational efficiency of this method. The performance of the proposed
method was verified in two WSNs. In a study on the application of WSNs, Deng [48]
studied the network layout of wireless sensors and applied a WSN to the dynamic response
test of bridges under train effects. They tested the layout effect and detection capability
of the WSN through a case study comparing wired sensors. The results showed that the
WSN had a reliable dynamic response detection performance and an effective network
layout. In practical applications, wireless measurement is often limited by transmission
distance. Hou et al. [49] introduced a low-power Internet of Things method to detect bridge
displacement in wireless sensor systems. This system can greatly reduce the limit of the
transmission distance, accurately collect displacement data, and send it to the server for
remote analysis and visual operation via a web interface. Based on the experimental and
field test results, the effectiveness of the system was verified.

In most cases, monitoring data in BHM systems are sensitive and confidential. There-
fore, more secure routing protocols are needed for data transmission. AnandaKrishna
et al. [50] proposed an improved encryption algorithm, called the R-XOR algorithm, to
address data security issues in WSNs. The security performance of the proposed algorithm
was validated using Brute Force attacks, and it has a higher throughput and lower overhead.
To address the issue of WSN node failures, Krishnan and Thangavelu [51] proposed an
early prevention method (EPM). They studied various aggregation functions and models
in a WSN and found that weighted bucketing has a higher working level, significantly
filtering out irrelevant information collected by sensors, and effectively solving the problem
of node data loss.

The main challenge in applying WSNs to BHM is the high energy consumption during
the wireless long-distance transmission of sensor data. On the one hand, the limited battery
capacity of wireless sensor nodes restricts their transmission power, and on the other hand,
the transmission coverage area is related to the transmission power. Therefore, in order to
avoid wasting resources and time on repeated battery replacement for wireless sensors in
the future, research on reducing WSN energy consumption and maximizing its lifespan
needs to be further developed.

2.2. Computer Vision-Based Methods

For decades, computer vision-based methods and image-processing technology have
been widely applied and studied in many fields [52–60]. Due to its advantages of non-
contact, long distance, low cost, and high resolution, this new measurement technology
has been applied to the study of SHM by many scholars. In 2017, Khuc and Catbas [61,62]
reported a new framework for SHM systems. They proposed a method for measuring
displacement and vibration based on non-target computer vision, and then developed a
camera calibration method to address the unavailability of traditional calibration standards.
The effectiveness of the proposed method was verified by comparing the measurement
results with the traditional sensors in a four-span bridge model and stadium structure. In
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2019, Bao et al. [63] combined computer vision with deep learning (DL) to detect anomalies
in monitoring data. When the data was visualized, the signal was converted into an image
vector to input the deep neural network. In 2022, Ma et al. [64] studied displacement
estimation techniques at different sampling frequencies. They combined a hybrid computer
vision algorithm with a Kalman filter and used a new calibration algorithm to estimate the
high-sampling displacement. The error of the estimated displacement in the experimental
verification was less than 1.5mm. This technique has practical application potential in
long-term structural displacement monitoring. In 2023, Cardellicchio et al. [65] proposed
an automated method for identifying defects in RC bridges using computer vision. They
first trained a neural network using images of defective areas from existing RC bridges.
Additionally, they introduced the Class Activation Maps (CAMs) method in Explainable Ar-
tificial Intelligence (XAI) technology to explain the recognition results of the deep learning
method and achieve the highlighting of specific defect types.

Recently, some researchers have begun to integrate vehicle load measurements into
SHM systems using computer vision technology. Khuc and Catbas [66] developed an identi-
fication framework with a new damage indicator using computer vision-based vehicle load
modeling and image-based structural identification. The damage recognition capability of
the framework was verified on a laboratory model. Jian et al. [67] combined the influence
line theory with computer vision technology in their study. They proposed a traffic sensing
method to collect traffic load information. The effectiveness and accuracy of this method
were verified in the system analysis of a continuous box-girder bridge. This method is ex-
pected to be widely used in bridge weigh-in-motion (WIM) systems. Hou et al. [68] studied
the method for accurately associating traffic load with bridge response. In their proposed
framework, a computer vision approach based on DL was used to accurately identify
trucks from field images. The framework was applied to a 20-mile highway corridor to
verify the correlation between bridge response peak and measured truck weight, based on
one year’s measured data. In practice, the existing identification methods usually require
prior information of the road to locate the traffic load, which is tricky in some cases. Chen
et al. [69] studied the position relationship between the camera and passing vehicles. They
proposed a recognition method that computes the spatiotemporal information of vehicles
by mathematically processing camera locations. The reliability of this method was verified
by laboratory tests and field measurements. Ge et al. [70] improved the existing traffic load
monitoring (TLM) technology for the entire bridge deck. They developed a dual-target
detection model based on DL to identify vehicle features captured by cameras. In addition,
they proposed an optical geometry model to accurately estimate vehicle position. The
results from on-site data validation showed that the proposed method has excellent real-
time capability, accuracy, and lighting robustness. Figure 4 illustrates the on-site hardware
system for monitoring bridge traffic load, which mainly consists of the pavement-based
weigh-in-motion (WIM) and the video surveillance system.

Buildings 2023, 13, x FOR PEER REVIEW 9 of 35 
 

 
Figure 4. On-site hardware layout of the traffic load monitoring (TLM) system [70]. 

Jana and Nagarajaiah [71] developed a video-based technique for measuring stay-
cable tension. They used a mobile handheld camera to record cable vibrations at a distance 
and incorporated a series of image-processing techniques to eliminate interference from 
the camera’s motion. Then, the real-time frequency was estimated according to the time 
history of cable vibration, and finally, the real-time tension was determined. Based on this 
study, Jana et al. [72] proposed a framework based on video measurement to reduce the 
estimation error of cable tension. The effectiveness and reliability of the proposed method 
were verified by comparing it with the actual tension of the Fred Hartman bridge in Texas. 

WSNs provide a convenient and reliable data monitoring tool for BHM systems, 
which can solve the layout and installation problems of traditional wired sensors. 
However, in order to avoid the loss of monitoring data during wireless transmission, 
research on wireless communication technology should continue. As a non-contact 
monitoring scheme, computer vision-based technology has been applied to the 
monitoring of structural vibration and displacement as well as traffic load, and has shown 
outstanding performance.  

3. Data Processing Methods 
In the previous section, we summarized the current popular sensor monitoring 

techniques and computer vision-based monitoring techniques for BHM data collection 
and their applications. In this section, we will review and discuss recent research in 
monitoring data processing. 

3.1. Data Preprocessing 
Under the influence of the uncertainty of the BHM monitoring environment, 

sometimes the data collected on site are unbalanced and inadequate, which leads to large 
errors in the bridge health assessment results, resulting in huge losses [73,74]. Therefore, 
to make the subsequent evaluation more accurate, it is necessary to preprocess the data 
collected by sensors. In 2019, Zhao et al. [75] proposed a framework based on a multi-
source fusion positioning system. In this framework, a big sensor data preprocessing 
(BSDP) scheme, including extraction, acquisition, and transmission, is proposed to solve 
the problem of large amounts of data. Multi-source sensor data sources include WiFi, 
fingerprint, accelerometer, gyroscope, magnetometer, etc. To improve the efficiency of 
data transmission, they used compression sensing technology to compress the data. 
Experimental and simulation results demonstrated the effectiveness of this BSDP scheme. 
In 2021, Wan et al. [76] proposed a data enhancement model based on the generative 
adversarial nets to expand the existing monitoring data of bridges. They reported that the 

Figure 4. On-site hardware layout of the traffic load monitoring (TLM) system [70].



Buildings 2023, 13, 1360 9 of 34

Jana and Nagarajaiah [71] developed a video-based technique for measuring stay-
cable tension. They used a mobile handheld camera to record cable vibrations at a distance
and incorporated a series of image-processing techniques to eliminate interference from
the camera’s motion. Then, the real-time frequency was estimated according to the time
history of cable vibration, and finally, the real-time tension was determined. Based on this
study, Jana et al. [72] proposed a framework based on video measurement to reduce the
estimation error of cable tension. The effectiveness and reliability of the proposed method
were verified by comparing it with the actual tension of the Fred Hartman bridge in Texas.

WSNs provide a convenient and reliable data monitoring tool for BHM systems, which
can solve the layout and installation problems of traditional wired sensors. However, in or-
der to avoid the loss of monitoring data during wireless transmission, research on wireless
communication technology should continue. As a non-contact monitoring scheme, com-
puter vision-based technology has been applied to the monitoring of structural vibration
and displacement as well as traffic load, and has shown outstanding performance.

3. Data Processing Methods

In the previous section, we summarized the current popular sensor monitoring tech-
niques and computer vision-based monitoring techniques for BHM data collection and
their applications. In this section, we will review and discuss recent research in monitoring
data processing.

3.1. Data Preprocessing

Under the influence of the uncertainty of the BHM monitoring environment, some-
times the data collected on site are unbalanced and inadequate, which leads to large errors
in the bridge health assessment results, resulting in huge losses [73,74]. Therefore, to make
the subsequent evaluation more accurate, it is necessary to preprocess the data collected
by sensors. In 2019, Zhao et al. [75] proposed a framework based on a multi-source fusion
positioning system. In this framework, a big sensor data preprocessing (BSDP) scheme, in-
cluding extraction, acquisition, and transmission, is proposed to solve the problem of large
amounts of data. Multi-source sensor data sources include WiFi, fingerprint, accelerometer,
gyroscope, magnetometer, etc. To improve the efficiency of data transmission, they used
compression sensing technology to compress the data. Experimental and simulation results
demonstrated the effectiveness of this BSDP scheme. In 2021, Wan et al. [76] proposed a
data enhancement model based on the generative adversarial nets to expand the existing
monitoring data of bridges. They reported that the model generated new monitoring
data through learning coupling among bridge monitoring factors. The simulation results
showed that the bridge monitoring data generated by the model was real and effective,
through which the performance of the bridge health assessment was improved. In a study
on the compression and smoothing of data streams, Debski et al. [77] introduced an algo-
rithm with an adaptive search space and a special space reduction technique, aiming to
provide an efficient method for processing sensor data in Internet of Things devices, health
monitoring systems, autonomous vehicles, and robots. The numerical results showed
that the proposed algorithm had lower errors and higher compression ratios than the
reference algorithm.

When cracks or even fractures appear in materials, local energy quickly concentrates,
and when it reaches a threshold, acoustic emission (AE) signals can be generated. By analyz-
ing the characteristic parameters of AE signals, the state of the material can be determined.
Xin et al. [78] successfully used deep neural networks to construct the relationship between
the scalograms of AE signals and the state of bridge cables. In addition, the experimental
results demonstrate that, as two kinds of sensors with different resonant frequencies, the
R6I-AST type of sensors are more suitable for detecting the break inside the cable than the
R3I-AST type of sensors. Li et al. [79], in a study of the acoustic emission signals of three
bridges, proposed an acoustic emission signal segmentation algorithm to solve the problem
that BHM data occupied a large amount of data storage space. The analysis results showed
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that the algorithm can not only effectively save the data storage space, but also accurately
extract the noise signal to determine the filtering threshold.

Regarding the preprocessing methods for monitoring data, three points can be summa-
rized: (i) we can compress the raw data to improve the transmission efficiency; (ii) we can
also expand the monitoring dataset through data generation models to provide more evi-
dence for bridge health assessment; (iii) establishing the relationship between monitoring
data and structural status is always beneficial for the next step of assessment.

3.2. Data Noise Reduction

Removing the adverse effect of noise on the signal is extremely crucial to the whole
signal-processing process. In recent years, many scholars have studied new methods to
deal with noise in BHM. Embedded rail systems (ERS) in rail transit can significantly reduce
the impact of noise generated during traffic operation [80], and some scholars consider
applying it to bridges. To popularize the application of ERS, Stancik et al. [81] studied
the interaction behavior between ERS and its substructure. They proposed a numerical
model to simulate this interaction behavior and optimize the evaluation results of the
ERS–bridge interaction using a negative feedback approach. Koh et al. [82] introduced
the characteristics of ERS to the study. They highlight the contribution of ERS in solving
vibration and noise problems that can improve the performance of existing plate girder
bridges. By comparing the measured data of two plate girder bridges, it has been proved
that ERS can reduce the vibration and average noise of the bridge.

Cheng et al. [83] proposed a blind source separation technique based on a second-
order blind recognition algorithm to reduce the impact of noise signals on bridge damage
identification. They verified the accuracy of the proposed algorithm in damage frequency
identification by comparing the FFT method in the numerical experiment. Liu et al. [84]
studied the denoising method of the dynamic deflection signal of the bridge. They first
decomposed the dynamic deflection of the bridge obtained by the monitoring system into
a series of intrinsic modal functions (IMF), and then removed the noisier part according
to the algorithm. The remaining IMF were reconstructed as new signals, and the residual
noise was further eliminated by a morphological filter method. Simulation and field ex-
periment results show that this method has remarkable denoising ability. Wang et al. [85]
proposed a denoising method combining wavelet threshold denoising and Hilbert–Huang
transform (HHT) to overcome the serious influence of noise on first-order natural frequency.
Jiang et al. [86] studied the Hong Kong–Zhuhai–Macao Bridge’s immersed tunnel and de-
veloped an improved wavelet threshold denoising (WTD) method to eliminate the noise in
the concrete strain data. They used the sparse index and coefficient of variation to select the
best wavelet basis and optimize the threshold, and finally obtained a satisfactory denoising
effect. Ravizza et al. [87] discussed the advantages and disadvantages of two denoising
technologies based on discrete wavelet transform (DWT) and singular value decomposition
(SVD). In both the time and frequency domains, two kinds of response signals were synthe-
sized for testing. The results showed that both of the two denoising methods can effectively
purify seismic response signals, while, for the processing of environmental vibration sig-
nals, the denoising method based on DWT exposed defects. Shang et al. [88] developed a
deep convolutional denoising autoencoder to reconstruct relational functions from data
corrupted by noise to extract the desired features for damage recognition. Park et al. [89]
introduced a generalized sidelobe canceller into the dual-sensor noise reduction method.
This method realized two-stage noise reduction through a filter and determinant-based
controller. Compared with other mainstream methods, the experimental results showed
that the proposed method was superior.

The wavelet threshold method is a popular and efficient signal denoising method.
Figure 5 illustrates the denoising results of the monitoring data on the Hong Kong–Zhuhai–
Macao Bridge’s immersed tunnel using the WTD method. As shown in Figure 6, this
method mainly consists of three components: signal decomposition, threshold processing,
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and signal reconstruction. By selecting the most suitable wavelet base, decomposition level,
threshold value, and threshold function, the noise reduction effect can be improved.
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3.3. Data Reconstruction

In a typical BHM system, data are often missing due to sensor failures, or data are
incomplete due to sensor signal loss during transmission. When the data loss rate is too
high, the health assessment of the structure cannot be carried out properly, which may lead
to serious consequences. To ensure the reliability of the monitoring data used for analysis,
many studies have been carried out.

Due to its excellent ability in processing large amounts of data and extracting features,
DL has been applied in various fields such as medical treatment, computer vision, finance,
and transportation [90–93]. Wang et al. [94] proposed a data recovery framework based on a
deep neural network to recover long-term missing wind data from bridges. The framework
divides data recovery into two tasks and takes advantage of a free access database in Europe
to obtain wind data for learning. In addition, they used a time–frequency cross-domain
loss function for training to enhance the reconstruction performance of the wind speed
signals. In the case study of Sutong Bridge in China, the feasibility and effectiveness of the
proposed framework were verified.

The convolutional neural network (CNN), as a representative algorithm in DL, has
become a research hotspot in the field of SHM recently. Fan et al. [95] developed a new
CNN structure to recover lost vibration data in SHM. They introduced the bottleneck
architecture and skip connection in a CNN to construct the nonlinear relationship between
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the damaged data signal and the intact signal. The effectiveness and robustness of the
proposed method were verified by comparing the measured data of the pedestrian bridge.
Furthermore, they studied the case of a high data loss rate, and the proposed method still
showed excellent data recovery ability. Oh et al. [96] studied a training method for CNN.
They first used healthy monitoring data to build a CNN model. They then deliberately
excluded responses from specific sensors and used the response data from the remaining
sensors as input to the neural network. Through numerical and experimental studies, it
was verified that the trained CNN can effectively recover the excluded sensor data. Jiang
et al. [97] reported a neural semantic recovery framework that transformed data recovery
into a conditional probability modeling problem. They used the semantic features of the
vibration data as conditions and the CNN as a feature capture tool. In addition, they
proposed a new perceptual damage function to improve the efficiency of the network. The
results of the case study showed that the framework had splendid data recovery accuracy
even when the loss rate was high.

In 2014, inspired by game theory, generative adversarial networks (GAN) were de-
veloped to generate high-resolution images [98]. As one of the most successful generative
models in DL, GAN has developed many variants over the years and has been used in the
field of SHM. Yoon et al. [99] proposed a missing data interpolation method based on the
non-supervision GAN framework to recover the missing deflection data of BHM systems.
They used a thin neural network and a generator–discriminator structure to form the data
recovery framework. By analyzing the measured data of a highway and railway bridge, the
advantages of the proposed method over the traditional GAN model in execution speed
and reconstruction accuracy were verified. Zhang et al. [100] introduced the Bayesian
dynamic regression method to improve the GAN model. They reported that the method
can achieve the ability to model the collected data set and make missing predictions. The
validity of the model was verified by using the engineering data of Jiangdong Bridge in
Hangzhou. Wang et al. [101] proposed a new conditional generative adversarial network
(CGAN) to improve the generative adversarial interpolation network (GAIN) [99]. They ex-
tracted the implicit category information contained in the data set and used it to generate a
classifier to evaluate and optimize the interpolated data. The experimental results showed
that this method was superior to the GAIN algorithm, even in the case of a high data
miss rate.

GAN contains a generative model G and a discriminant model D, and the two models
constantly update each other’s parameters until they reach the optimum in training. In fact,
the operation of the GAN model is a minimax iterative process about G and D. CGAN is a
common extension of GAN. It adds certain conditional information y before the generative
model and discriminant model in GAN. Figure 7 shows the structure of a simple conditional
adversarial network. In the study by Wang et al. [101], y is set as a category label. Under
such conditions, the objective function of the optimization problem is as follows:

min
G

max
D

V(D, G) = EX∼Pdata(x)
[logD(x|y)] + EX∼Pz(z)

[
log
(

1− D
(
G(x|y)

))]
(2)

where V(D, G) is the objective function of the CGAN; x and y represent the training data
and the input condition data, respectively; and Pz(z) is the prior noise variable. G

(
z; θg

)
is

used to learn the distribution pg of training data x, ranging from Pz(z) to data space. The
output of discriminator D(x; θd) is used to represent the probability that x came from the
training data, from which we can judge whether x can be identified as pg.
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In 2019, Jeong et al. [103] studied temporal correlations among the sensor data. Before
this, most sensor data recovery methods only focused on the spatial correlation among data.
They proposed a data-driven bidirectional recursive neural network for data reconstruction.
Sensor data from the Telegraph Road Bridge in Michigan were used to verify the accuracy
of the proposed method in data reconstruction. Du et al. [104] developed a response
recovery method for heterogeneous structures. They reported that this approach took
into account not only the temporal and spatial dependencies of the data but also the
dependencies between heterogeneous structural responses. Furthermore, they proposed a
parallel optimization method to optimize the parameters of the network. Three months
of monitoring data on a bridge were collected to train and test the proposed method. The
results showed that this method can interpolate the missing data accurately, especially
when the data loss rate was high. Ju et al. [105] introduced a recursive neural network
when studying the temporal correlation of data, and built a framework for abnormal data
recovery. The monitoring data of the Bund Bridge in Ningbo, China were used to verify
the accuracy of their framework.

Niu et al. [106] developed a spatiotemporal graph attention network for restoring
missing data. The network uses the inherent temporal and spatial dependencies of sensor
networks for modeling to obtain temporal and spatial features to reconstruct missing signals.
They also discussed the recovery accuracy of multi-source and single-source data fusion.
In the application of the cable force data recovery of long-span cable-stayed bridges, the
model showed satisfactory accuracy. Zhang et al. [107] proposed two matrix decomposition
(MF) methods based on autoregression (AR) for data interpolation and structural response
prediction. In the first approach, the authors developed a time regularizer and combined
it with the standard MF formula. In the second approach, they introduced an additional
AR-based matrix. The accuracy and reliability of the proposed method were verified by the
SHM data set collected in the field.

4. Early Warning Systems

In the previous section, we summarized the research on the data processing methods
of BHM in recent years from three aspects: data preprocessing, noise reduction, and loss
reconstruction. In this section, we will review the recent research progress in early warning
systems in BHM.
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Aiming to save on the cost of system operation, a command from the BHM sys-
tem is usually required before implementing SDI. Therefore, in BHM, the study of early
warning systems is also crucial. It needs to be emphasized that, in the actual monitoring
process, issuing warnings and identifying anomalous structural states are closely related
but are not necessarily at the same level of operation. The warning system may not
need to precisely locate and quantify damage like the damage identification system does.
Instead, it often provides warnings of different levels by setting one or more warning
thresholds. Zhao et al. [108] studied the vortex-induced vibration (VIV) phenomenon of
long-span bridges in a special wind environment. A method based on multisource load
response data was proposed for the early warning of VIV. Chen et al. [109] conducted a
numerical and case study on the early warning method of the Hong Kong–Zhuhai–Macao
Bridge’s immersed tunnel. Based on monitoring data with wavelet threshold denoising,
an autoregressive integrated moving average (ARIMA) was used for future data predic-
tion. They developed a hierarchical early warning system that proved to be effective at
grading the detected anomalies. Deng et al. [110] developed a platform based on Revit to
realize visual warnings and the integrated management of monitoring information. They
associated monitoring data with a BIM model through a virtual sensor system and then
imported it into Revit. Based on monitoring data during typhoon Haikui, Ye et al. [111]
developed a machine learning model, called the integrated girder vibration indicator. The
indicator takes wind data as the input and girder and tower vibrations as the output. When
the prediction results exceed the normal threshold, it will give an early warning.

Other scholars have considered temperature conditions. Zhao et al. [112] studied
the early warning method of deflection change in railway bridges caused by temperature
and train load. They used the monitoring data and the mutual update of the train–bridge
dynamic model to monitor the bridge deflection behavior and, at the same time, deter-
mined the early warning threshold of it under the combined action of the two factors.
Huang et al. [113] introduced the temperature-displacement relationship (TDR) model to
predict the performance degradation of bridge bearings for the first time. They used SBL for
model parameter identification to solve the problem of sparse model parameters caused by
the insensitivity of bearing displacement response to temperature. Ren et al. [114] applied
TDR to the abnormal boundary condition warning of the bridge. The high anomaly detec-
tion rate and low false detection rate of the proposed method were verified by using the
actual girder end displacements from a large-span suspension bridge in China. Li et al. [115]
studied the early warning method of cable force anomalies in cable-stayed bridges, consid-
ering the change in structural temperature. A baseline model of the frequency–temperature
relationship (FTR) was established to give early warning when the predicted cable force
error occurred. Wang et al. [116] studied anomaly warning methods under the influence of
various environmental factors and proposed an environment–frequency relation model
based on local linear regression. The effectiveness of the proposed method was verified on
a cable-stayed bridge.

Cusson et al. [117] investigated the application of an interferometric synthetic aperture
radar (InSAR) for visualizing and alerting unexpected bridge displacement. The validation
was conducted on Jacques Cartier Bridge and Victoria Bridge, located in Canada. The
proposed tool from this study is expected to be used as a future platform for bridge
displacement assessment and warning. Selvakumaran et al. [118] used an improved InSAR
method to analyze satellite observation scenes before the collapse of Tadcaster Bridge
in the UK, demonstrating that the method can serve as an effective warning system for
monitoring bridges at risk of erosion. Lim et al. [119] proposed a measurement system for
the vibration characteristics of suspension bridges based on low-frequency cantilever-based
fiber Bragg grating accelerometers (CFAs) and verified the accuracy of the system on a
suspension bridge in Malaysia. Additionally, the system can trigger early damage warnings
when detecting changes in vibration characteristics. Among the US bridges with BHM
systems installed [6], multiple types of sensors were installed on the Sunshine Skyway
Bridge, and data other than the vibration of the cable-stayed bridge were used to predict the
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bridge’s motion as caused by temperature and wind direction changes, while determining
the threshold for triggering alerts. After discovering cracks on the Carroll Lee Cropper
Bridge in the US, micro-crack gauges were installed in the direction of the cracks. The
researchers determined the threshold for crack expansion and developed a warning system
to alert when the crack exceeds the threshold.

Different warning systems set warning thresholds based on different parameters, such
as wind-induced vibration, beam deflection and displacement, cable tension, etc. The
significance of the warning system is that when the monitoring data reaches or exceeds the
threshold value, the regulator can be alerted very soon after the occurrence of an anomaly,
so that subsequent inspections can be carried out. In addition, the temperature effect of
the structure should always be taken into account, as it may cause unnecessary warning.
Table 2 summarizes all the literature reviewed in this section, listing the specific bridges
examined in each study and the methods applied in the early warning system.

Table 2. Cases of early warning systems for bridges.

Bridges Authors Feature and/or Application

Yingwuzhou Yangtze River Bridge, China Zhao et al. [108] Vortex-induced vibration warning

Hong Kong–Zhuhai–Macao
Bridge, China Chen et al. [109] ARIMA and hierarchical warning system

Ge Xian Bridge, China Deng et al. [110] Visualization warning based on Revit

Sutong Bridge, China Ye et al. [111] Integrated girder vibration indicator

Nanjing Dashengguan Yangtze River
Bridge, China Zhao et al. [112] Early warning of beam deflection under

temperature and train coupling

Nanjing Dashengguan Yangtze River
Bridge, China Huang et al. [113] TDR model for early warning of performance

degradation of bridge bearing

A large-span suspension bridge, China Ren et al. [114] TDR model for early warning of abnormal
boundary conditions of bridges

A single pylon cable-stayed bridge, China Li et al. [115] FTR for early warning of abnormal cable force

A cable-stayed bridge, China Wang et al. [116] Local correlation model between frequency and
multiple environmental factors

Jacques Cartier Bridge and Victoria
Bridge, Canada Cusson et al. [117] InSAR for visualization warning

Tadcaster Bridge, England Selvakumaran et al. [118] Improved InSAR for bridge erosion warning

A suspension bridge, Malaysia Lim et al. [119] A system for measuring vibration based on CFAs

Sunshine Skyway Bridge, America Rizzo and Enshaeian [6] Early warning when temperature and wind
direction changes abnormally

Carroll Lee Cropper Bridge, America Rizzo and Enshaeian [6] Early warning of crack propagation

5. Damage Identification Methods

The SDI of bridges is one of the most important parts of the whole health monitoring
system. The accuracy of damage identification has a direct impact on the safety of bridge
structures, which has been of great concern to scholars all over the world in the past
decades. Four levels of SDI were proposed by Rytter [120] in 1993. Levels 1 to 4 are as
follows: judging the existence of damage, locating the damage, quantifying the severity of
damage, and predicting the service life of the damaged structure. In this section, we will
review some recent studies focusing on SDI in BHM.

5.1. Modal Parameter-Based Methods

Once the structure is damaged, the change in stiffness will inevitably lead to changes
in the structural modal parameters. Therefore, according to the used modal parameters,
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SDI methods can be divided into four categories: natural frequency-based, mode shapes-
based, curvature mode shapes-based (CMS), and methods using both frequency and mode
shapes [121]. However, due to the unqualified sensitivity of natural frequency to local
damage, the method using only natural frequency as an index can generally only achieve
Level 1 SDI, which has been phased out in recent years. Among the other three methods,
the mode shape-based and CMS-based methods are the focus of recent research.

5.1.1. Mode Shape-Based Methods

Chaudhary et al. [122] applied the concept of the spectral element method to the
derivation of the mode shape expression to establish the mathematical correlation between
the mode shapes of damaged and healthy structures. The numerical results of a fourteen-
storey shear building and a six-storey laboratory building model showed that the proposed
method was effective in quantifying damage. Duvnjak et al. [123] proposed a new method
to identify damage in plate-like structures. They established a damage index, namely the
mode shape damage index (MSDI), based on the difference between the modal displace-
ments before and after the structure was damaged. Experimental and numerical studies on
reinforced concrete slabs showed that the MSDI was reliable in locating damage. However,
the proposed method did not perform well in identifying the severity of the injury, and
further research was needed. Abdulkareem et al. [124] developed a simple and rapid SDI
technique. Using the method of interval analysis, they deduced the interval conditions of
each section of the beam according to the mode shape of the beam structure in a damaged
and a healthy state. The possibility of damage was defined in each beam segment, and the
product of it and the mode shape increment was taken as the damage measurement index.
The numerical simulation results showed that the proposed method can identify the given
damage rapidly and accurately.

Passing vehicles will elicit responses from the bridge structure, so sensors can be
installed on vehicles to monitor the response data. The modal parameters with a high
spatial resolution can be extracted from the vehicle response. Recently, some scholars
have paid attention to this. He et al. [125] developed a two-stage bridge damage detection
method based on the mode shape estimated by moving vehicles. They first identified the
damage location using the damage location index defined in the regional mode shape
curvature (RMSC). Then, the relationship between damage degree and RMSC was estab-
lished in a finite element simulation. Numerical and experimental examples demonstrated
the effectiveness of the proposed method. Under the condition of meeting the accuracy
requirement, the method can locate and quantify the damage by using only one sensor re-
sponse, which proves that the indirect recognition method has a good application prospect.
Yang et al. [126] improved the indirect SDI method utilizing vehicles. In their study, the
filter in the traditional vehicle scanning method (VSM) was replaced by a self-made filter.
Compared with the previous VSM, the mode shape extracted by this method was more
obvious. Therefore, this improved VSM did not need to establish an additional damage
index, which greatly reduced the post-processing workload.

5.1.2. Curvature Mode Shape-Based Methods

Ahmad et al. [127] studied the application of the CMS method to multiple damage de-
tection. They introduced a gapped smoothing method to minimize noise. The effectiveness
of the proposed method in damage location was proved by a comparison with previous
studies. Bagherkhani et al. [128] improved the CMS approach using the distributed genetic
algorithm. The results of several laboratory tests showed that the proposed method can
complete tasks of Level 3 SDI under various noise levels. Pooya et al. [129] introduced a
difference indicator, which came from the difference between a CMS and a CMS estimation
of the damaged structure, to detect the location of the damage. This method provides a
new way to detect damage in structures that lack health monitoring data because it does
not require complete structural data. However, only the first mode was studied. For higher
modes, the computational cost and time of this method will increase.
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5.1.3. Mode Parameter Combined Methods

To overcome the difficulty of SDI based solely on mode shape or frequency, some
scholars have studied methods of combining multiple modal parameters. From a statistical
perspective, Doehler et al. [130] proposed two subspace-based methods that utilize natural
frequencies and mode shapes to consider uncertainty factors such as noise, limited data,
and non-stationary excitations. The proposed methods were validated to achieve Level
3 SDI in the damage test of the S101 Bridge in Austria. Dahak et al. [131] proposed a
method combining natural frequency variation and CMS for damage detection. They used
two vectors, the measured frequency change value and the curvature mode of the intact
structure, to plot the damage position and damage coefficient function. The practicability of
the proposed method was verified by a numerical simulation and a laboratory model of a
cantilever beam. From the perspective of the neural network, Zhong et al. [132] took mode
shape and mode curvature differences, respectively, as the input of CNN training samples to
study their damage location accuracy. The results showed that the damage location accuracy
was higher when the mode shape was used as the input. Chinka et al. [133] conducted
theoretical and experimental modal tests for crack identification in cantilever beams by using
CMS and natural frequency. Firstly, the governing equation of the transverse motion of
the beam was established, and the frequency and mode shape of the damaged beam were
calculated. Then, the first four CMS were drawn using these modal parameters. Similarly,
the crack location and damage coefficient were obtained from the intersection of the curves.
This method had received ideal recognition results in the test.

In most cases, the modal parameters of the structure are the basis for SDI. To maximize
the effect of SDI, modal parameters must be extracted with greater precision and utilized
in a more complete manner. The aforementioned SDI methods based on modal parameters
are summarized in Table 3.

Table 3. Modal parameter-based SDI methods.

Mode Parameter Authors Feature and/or Advantage SDI Level Application

Mode shape

Chaudhary et al. [122] Spectral element method 1–3
Fourteen-story shear

building and experimental
six-story building model

Duvnjak et al. [123] MSDI 1, 2 Experimental RC plate

Abdulkareem et al. [124] Interval analysis 1 and 2 Numerical beam

He et al. [125] Moving vehicle estimation 1–3 Experimental modal

Yang et al. [126] Improved VSM 1 and 2 Experimental modal

Curvature mode shape

Ahmad et al. [127] Gapped smoothing method 1 and 2 Numerical plate

Bagherkhani et al. [128] Distributed genetic algorithm 1–3 Numerical beam and
frame structure

Pooya et al. [129] No need for complete data 1 and 2 Numerical and
experimental modals

Multiple modal parameters

Doehler et al. [130] Frequency and mode shape 1–3 S101 Bridge in Austria

Dahak et al. [131] Frequency and CMS 1–3 Numerical and
experimental beam

Zhong et al. [132] Mode shape and mode
curvature difference 1 and 2 Numerical steel truss

Chinka et al. [133] Frequency and CMS 1–3 Numerical and
experimental beam

5.2. Finite Element Model Updating Methods

Another method of damage identification is to establish the finite element model (FEM)
of the complete structure and obtain the normal structural parameters. Then, compare
it with the measured data from the damaged structure to find the difference among the
structural parameters, which is finally used to detect the damage. However, most of
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the time, the FEM cannot completely replace the actual structure. There are differences
between the structural features obtained by analysis and the actual features, which will
lead to inaccurate damage detection. To narrow the gap between the model and the actual
structure, a series of finite element model updating (FEMU) methods are proposed.

5.2.1. Gaussian Process-Based FEMU

The Gaussian process (GP) is a random process in statistics. The conceptual basis of GP
begins with a reference to a simple multivariate Gaussian distribution, and marginalization
and conditioning are its two fundamental operations. GP is a powerful model that can
directly model functions to generate non-parametric models [134]. Therefore, it has the
unique advantage of efficiently quantifying a variety of uncertainties.

Moravej et al. [135] proposed a new probabilistic framework for structural performance
evaluation, using the first-order reliability method (FORM) and GP to consider various
sources of uncertainty. In this framework, the GP surrogate model was replaced by a finite
element model with an associated discrepancy function. They also proposed a modular
Bayesian approach (MBA) for placing such GP models. The feasibility of the proposed
frame was verified on a laboratory box girder bridge, and the results showed that the
proposed method can accurately detect the decrease in structural performance and the
increase in failure probability. Xia et al. [136] used a GP metamodel to replace the 3D finite
element model of the bridge for updating. They first studied the thermal effect mechanism
of the bridge deck and established the relationship between the longitudinal boundary
stiffness (LBS) and the structural temperature. The GP metamodel was then used to map
the relationship between LBS and longitudinal displacement. The analytical value of the
longitudinal displacement of the proposed method was compared with the measured
results of the Jiangyin Suspension Bridge. The results showed that the identified LBS had
sufficient accuracy, and the analytical value of the longitudinal displacement was in good
agreement with the actual value. Lin et al. [137] also used a GP model to replace FEM in a
study of model updating methods based on influence lines. In a case study of a long-span
suspension bridge, this substitution improved the efficiency of the iterative optimization of
boundary condition estimates.

5.2.2. Bayesian Methods-Based FEMU

Zhou et al. [138] studied the vibration-based model updating method for the damage
detection of a steel truss bridge. Field tests were carried out under five operating condi-
tions, and they used the fast Bayesian FFT method to identify the modal characteristics.
In the three bridge models established, the modal characteristics updated by this method
are consistent with the actual data. With more prior information, the damage detection
capability of this method was verified. Zhang [139] introduced a transfer learning (TL)
technique into the Bayesian model updating (BMU) method, which can bridge the gap be-
tween the numerical model and the real structure. In addition, numerical and experimental
studies showed that TL enables BMU to recognize injury severity despite modeling errors.
Chen et al. [140] proposed a two-stage method for bridge FEMU. The proposed method
combined a radial basis function (RBF) neural network and Bayesian theory. The feasibility
of this method was verified by a series of numerical and laboratory experiments.

5.2.3. Nonlinear Model Updating Methods

In a study to evaluate the damage and residual performance of piers after earthquakes,
He et al. [141] established a nonlinear section element model and proposed a two-stage
model updating technique. In this method, the maximum and minimum strain of the
section are used as updating parameters to update the damage parameters of nonlinear
material models. Zheng et al. [142] developed a new nonlinear FEMU method. This
method can be used to evaluate the degradation of structural strength and stiffness in the
time domain. In the shaking table test of a cable-stayed bridge, the proposed method can
accurately identify the damage and predict the seismic response. Based on a nonlinear
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FEMU method, Liu et al. [143] identified the bond-slip and core concrete parameters of a
full-scale RC bridge column and achieved the identification of damage on the bridge column
by utilizing the variation of these parameters. Lin et al. [144] proposed a nonlinear FEMU
method based on a time history analysis. The feasibility and accuracy of the proposed
method were verified on the scaled structure of Sutong Bridge in China.

5.2.4. Other FEMU Methods

Figueiredo et al. [145] proposed a hybrid technique that combines model-based and
data-based SDI methods. In the proposed method, real monitoring data under normal
conditions are fused with data obtained from FEM under extreme environmental condi-
tions and input into machine learning algorithms for SDI. The reliability of this method
was verified using monitoring data from the Z-24 Bridge. Vahidi et al. [146] proposed a
FEMU method that combined multiple meta-heuristic optimization algorithms for damage
detection. They first used a genetic algorithm (GA), particle swarm optimization (PSO),
and artificial bee colony (ABC) algorithms, respectively, for FEMU in numerical simula-
tions. Then, the damage detection performance of each algorithm was compared, and the
PSO and ABC methods were selected as a combination in this method due to their better
performance. Perera et al. [147] proposed a roaming damage method (RDM) in FEMU to
identify local damage in large bridges. The reliability of the proposed method was verified
in the case study of the I-40 bridge in New Mexico. Alpaslan et al. [148] introduced a
mathematical statistical method, namely the response surface (RS) method. They reported
that the optimal identification results between experimental and numerical analyses can be
obtained by using this method in the updated FEM.

It can be seen that the FEMU-based SDI methods have made new research progress in
different directions in recent years, showing a bright application prospect. However, as
mentioned above, these studies are limited in some ways. The FEMU method depends on
the modified parameters of the model. Although some scholars have taken into account
the uncertainty of these parameters [135,137,139,149] and the nonlinearity of the struc-
ture [141,142,144], in the FEM analysis of complex structures, faced with a large number of
correction parameters, a repeated calculation process will lead to a slow updating process
or deviation. The substructure method can decompose the whole model correction process
into several independent blocks to avoid the double calculation of local damage. It may
serve as an auxiliary method to solve these problems. The FEMU methods mentioned in
this section are summarized in Table 4.

Table 4. Finite element model updating methods.

Method Feature and/or Advantage Application

Gaussian Process

First-order reliability method and modular Bayesian approach Experimental box girder bridge [135]

Temperature consideration and longitudinal boundary stiffness Jiangyin Suspension Bridge [136]

Boundary conditions consideration and influence lines Large-span suspension bridge [137]

Bayesian Inference

Transitional Markov chain Monte Carlo sampling and fast Bayesian FFT Steel truss bridge [138]

Transfer learning is used to bridge the bias Numerical and experimental models [139]

Radial basis function Numerical and experimental models [140]

Nonlinear Model

Transform to solve constrained optimization problems Numerical model [141]

Evaluate strength and stiffness degradation in the time domain Experimental RC bridge [142]

Considering bond-slip A full-scale RC bridge column [143]

Time history analysis- and cluster computing-aided PSO algorithm Numerical model [144]

Others

Fusion of real data and simulation data Z-24 Bridge [145]

Particle Swarm and Artificial Bee Colony Algorithms Numerical model and a high-rise building [146]

Roaming damage method and perceptron regression neural network I-40 bridge in New Mexico

Response surface Numerical and experimental models [148]
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5.3. Optimization Algorithm-Based Methods

Due to the complexities of bridge structures and the rise of long-span bridges, ordinary
algorithms have been unable to handle the task of increasing bridge monitoring data. There-
fore, many optimization algorithms have been applied to bridge damage identification.
This section mainly reviews meta-heuristic algorithms and artificial neural network (ANN)
algorithms in optimization algorithms. The Bayesian method will be detailed in Section 5.4.

5.3.1. Meta-Heuristic Optimization Algorithm

The meta-heuristic optimization algorithm is a kind of method to solve the optimal
solution by simulating nature. Starting from the genetic algorithm (GA) [150], the de-
veloped meta-heuristic algorithms have been widely used in the optimization of various
practical problems. Yang et al. [151] improved the three basic operators in the classical
GA and introduced an objective function based on the dynamic response of the bridge
under train load to solve the problem of damage identification when the model element
division is different from the actual damage location. Huang et al. [152] proposed a hy-
brid optimization algorithm based on PSO and cuckoo search (CS). The temperature was
parameterized in the study. The numerical model and real bridge test results showed
that the hybrid algorithm can distinguish the deviation caused by the temperature effect
from the actual damage and achieve Level 3 SDI. Tran-Ngoc et al. [153] studied the local
minimum problem of ANN and used CS to improve the training parameters to solve this
problem. Huang et al. [154] proposed a double jump strategy in bare bones particle swarm
optimization (BBPSO) algorithm, and the results showed that this method can effectively
improve the efficiency and robustness of BBPSO in SDI. Ding et al. [155] introduced a
clustering strategy into the original Jaya algorithm and optimized the update equation for
the best solution. The objective function of the proposed I-Jaya algorithm was obtained by
sparse regularization and Bayesian inference. Considering significant noise and modeling
errors, the reliability of the algorithm was proved by numerical and laboratory studies.

Huang and Lei [156] developed a hybrid moth–flame optimization algorithm based
on a variety of optimization methods. In numerical and experimental tests, the hybrid
algorithm showed a better global search ability and was feasible in practice. Su et al. [157]
introduced a strategy for eliminating low-adaptive individuals in the directional bat al-
gorithm (DBA). When elimination is complete, a new random individual will be created,
which induces an increase in population diversity. The experimental examples showed that
this improved DBA algorithm can accurately identify damage and has good robustness.
Huang et al. [158] used a modal flexibility curvature overlay to accurately locate the dam-
age, and then determined the damage degree by an enhanced whale optimization algorithm
(WOA). The experimental results showed that the proposed method was effective without
noise, but it was slightly sensitive to noise when quantifying the damage degree. Later,
Huang et al. [159] proposed a new objective function based on fractal dimension (FD) for
WOA. In the simulation test, WOA could effectively identify the damage degree under
noise conditions. Table 5 shows the optimization algorithms reviewed in this section.

Table 5. Optimization Algorithms.

Authors Method Feature and/or Advantage SDI Level

Yang et al. [151] Improved GA Enhanced local optimization capability 1–3

Huang et al. [152] PSO–CS Consider temperature variations and better
optimization performance 1–3

Tran-Ngoc et al. [153] ANN–CS Avoid local minimum 1–3

Huang et al. [154] Improved BBPSO Avoid local minimum 1–3

Ding et al. [155] Improved Jaya algorithm Improved objective function based on sparse
regularization and Bayesian inference 1–3
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Table 5. Cont.

Authors Method Feature and/or Advantage SDI Level

Huang and Lei [156] Chaotic moth–flame–invasive
weed optimization

Strong global search ability and high
convergence efficiency 1–3

Su et al. [157] Modified DBA Elimination strategy to increase the diversity of
the population 1–3

Huang et al. [158] Enhanced WOA Objective function based on flexible matrix 1–3 *

Huang et al. [159] FD–WOA Good anti-noise ability 1–3

* Quantization effect is affected by noise.

5.3.2. Artificial Neural Network

As a powerful intelligent computing tool, an ANN has unique advantages in solving
large complexity problems. ANNs can be effectively applied to SDI after training. Azam
et al. [160] studied the damage caused by load changes and proposed a neural network
training method based on proper orthogonal decomposition (POM). A supervised learning
method was used to distinguish POM changes caused by injury. In the experiment, the
authors successfully identified the damage caused by the train load on the railway truss
bridge. Malekjafarian et al. [161] used vehicle response to train ANN. They obtained the
predicted error value based on the actual response compared with the predicted vehicle
response. Then, the error distribution variation obtained by GP was used to identify the
possible damage. Nguyen et al. [162] used transmissibility functions as the input data
of ANN in the research on damage identification in Ca-Non Bridge in Vietnam. They
used simulated vehicle response data from the bridge to verify the effectiveness of the
method. Zhang et al. [163] developed a simple one-dimensional CNN and established
three independent acceleration databases for training. It is worth noting that the proposed
CNN can still accurately identify structural state changes without any processing of the
training data. As one of the representative algorithms of deep learning, CNN’s general
architecture is given in Figure 8.
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In vibration-based SDI, the change of structural modal characteristics is an important
damage index. Nick et al. [164] proposed a two-stage method for damage identification
in steel beam bridges. Firstly, the damage was located based on modal strain energy
(MSE) and the damage index was obtained simultaneously, which was then used as an
input parameter to train the ANN. Jayasundara et al. [165] improved the damage index
of the input ANN. They first trained two ANNs using damage indexes based on modal
flexibility and MSE, respectively, and then fused the training results of the two networks.
The damage identification capability of the proposed method was verified in an experiment
of a long-span arch bridge. Tan et al. [166] proposed a new damage detection method for
steel–concrete composite bridges. For steel beam units, they used damage indices based on
MSE in ANNs, and for bridge decks, they used a loss index based on modal flexibility in
ANNs. Nick et al. [167] studied the anti-noise performance of three SDI methods based
on MSE, modal flexibility, and modal curvature. They then trained an ANN on the modal



Buildings 2023, 13, 1360 22 of 34

flexibility-based approach that performed best in anti-noise tests. A network with good
noise resistance and damage quantification ability was obtained. Jayasundara et al. [168]
used principal component analysis (PCA) to compress the frequency response data and
feed it back to the ANN for damage prediction. Padil et al. [169] proposed to apply the
non-probabilistic method to PCA to reduce errors caused by various uncertainties and
improve the efficiency of the frequency response data.

Aiming to better avoid the limitations of using solely ANNs in SDI, some scholars
combine the meta-heuristic algorithm with an ANN in their research. Tran-Ngoc et al. [153]
introduced the CS algorithm in the study of improving the ANN’s training parameters.
Before the network was generated, the appropriate weight of the training parameters was
found through CS to narrow the deviation between the real output and the expected output.
Khatir et al. [170] introduced the butterfly optimization algorithm (BOA) into an ANN
and developed a BOA–ANN hybrid model for crack detection. In addition, they have
improved ANN’s training process. Xiang et al. [171] combined the improved hunter–prey
optimization algorithm with a CNN to solve the optimization problem of the objective
function in CNN.

5.4. Bayesian Methods

Damage identification in civil structures is confronted with the challenges of measure-
ment noise and modeling errors, which may lead to inaccurate identification results. For
example, the presence of measurement noise may mask small structural changes caused
by damage. Therefore, deterministic methods may fail in practical applications. To over-
come these challenges, many researchers have proposed probabilistic damage recognition
methods. Among these methods, Bayesian inference has received much attention and has
developed many practical methods in SDI today. Ni et al. [172] proposed a probabilistic
method to assess the state of bridge expansion joints and issue damage alarms. In their
established Bayesian TDR model, model parameters are treated as random variables, which
can eliminate uncertainty factors. They also reported that the method can quantify pre-
dicted uncertainty. The effectiveness of the method was validated by utilizing monitoring
data from the Ting Kau Bridge in Hong Kong.

Rogers et al. [173] developed a Dirichlet process (DP) Gaussian mixture model for
training algorithms in the absence of SHM data. In laboratory and field tests, this DP
hybrid model showed a strong Bayesian nonparametric clustering ability. Kullaa et al. [174]
introduced Bayes’ rule into virtual sensor networks and proved that this method had better
signal denoising performance than real sensors. Hou et al. [175] considered both uncertainty
and temperature change in sparse Bayesian learning (SBL). They established a functional
relationship between vibration characteristics, temperature, and damage, and then took the
temperature into account through a quantitative relationship. Zhang et al. [176] constructed
the likelihood function and prior probability density function of the Bayesian model based
on FFT data. The feasibility of this method for damage detection was verified in numerical
and laboratory studies. Arangio and Beck [177] proposed a two-step strategy based on
Bayesian neural networks for the damage assessment of long-span suspension bridges.
They first improved the neural network model based on the probability logic method, and
then used the framework to detect and quantify bridge damage successively.

Chen and Wang [178] developed a probabilistic fatigue damage model based on
Bayesian learning for the wind-induced fatigue damage assessment of long-span bridges.
By utilizing the wind information recorded by the SHM system, the Bayesian learning
method was applied to determine the probability of fatigue damage in local components.
The applicability of the proposed method is verified in the study of the Tsing Ma suspension
Bridge in Hong Kong. Li et al. [179] studied a model simplification technique, through
which damage detection based on SBL can be carried out under the condition that the
measured degrees of freedom were limited. Li et al. [180] reported a combination of the
Bayesian theory and perturbation methods to detect structural bearings. The posterior
probability density function of the damage parameters was obtained by using the Bayesian
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damage detection theory, and the calculation cost was saved by using the matrix perturba-
tion method. Wang et al. [181] proposed a new SBL-based approach, which was driven by
probabilistic data. Firstly, damage-sensitive frequency bands were established based on
monitoring data to construct the damage index. The predicted value of the SBL regression
reference model was then used to judge the damage and the Bayes factor was used to
quantify the damage degree. Finally, the feasibility of the proposed method was verified by
using real bridge monitoring data.

As a method of deriving sparse solutions in the context of regression and classification,
SBL takes uncertainty into account by hyper-parameters with explicit physical meaning.
The automatic updating of hyper-parameters solves the problem of regularization parame-
ter selection in sparse recovery.

In Bayesian computing methods, there is a highly important method to calculate the
expectation of a posterior distribution, namely the Markov Chain Monte Carlo (MCMC)
method. Ding et al. [182] adopted the Metropolis–Hastings (MH) sampling of the MCMC
method to solve the complex expressions in the damage assessment model. The applica-
bility of this method to damage assessment was verified in the case analysis of a bridge
hanger. Luo et al. [183] introduced the PSO algorithm into the MH sampling method, and
called it the MH–PSO hybrid MCMC sampling method. Numerical damage recognition
results showed that the method had enhanced sampling efficiency and damage recogni-
tion ability. Xu et al. [184] focused on damage detection in latticed shell structures. The
proposed damage diagnosis indexes were analyzed by the MCMC method to obtain the
frequency distribution histogram of the posterior probability. The finite element analysis
results showed that this method provided a reliable tool for damage diagnosis under the
premise of considering the uncertainty in the monitoring process. Luo et al. [185] proposed
an improved method for the MH algorithm to facilitate the rapid selection of proposal
distribution in MCMC methods and to enhance computational efficiency. The proposed
method employs an interchain communication mechanism among the simple population
and utilizes a tuning-free strategy to simplify the algorithm. The numerical and experi-
mental results demonstrate that the proposed method exhibits faster convergence than
traditional algorithms, even when the population size is relatively small.

5.5. Methods under Varying Temperature Conditions

In the BHM process, not only damage will cause changes in the dynamic characteristics
of the structure, but also environmental uncertainties, especially varying temperature.
Figure 9 illustrates the variation of natural frequency with temperature in a study. If
these effects cannot be eliminated, the accuracy of the damage assessment cannot be
guaranteed. Huang et al. [186] proposed a GA-based damage detection technique, in which
the damage parameters affected by temperature changes are variables in the numerical
model. Experiments were conducted on a three-span continuous beam and a two-span
steel grid, achieving Level 3 SDI while considering the variations in material properties and
boundary conditions with temperature changes. Bhuyan et al. [187] analyzed the sensitivity
of the parameters affected by temperature in FEM, and proposed a correction method for
modal parameters that consider the temperature field. The experimental result showed
that the SDI performance was improved after the parameters were ameliorated by this
method. In the previously mentioned PSO–CS algorithm [152], the effect of temperature
was eliminated by establishing a functional relationship between ambient temperature and
the elastic modulus of materials. Sun et al. [188] introduced a new concept, equivalent
damage load (EDL), to approximate local damage treatment. In the simulation experiment
of a two-span continuous bridge, it was proved that this method can distinguish between
the structural response caused by damage and temperature effectively. Hou et al. [175]
studied the relationship between temperature and natural frequency in SBL. To solve the
problem that it was difficult to directly establish the SDI baseline when considering the
temperature gradient, Wah et al. [189] obtained the damage reference value based on a
single temperature condition. Damage was identified by the deviation of the measured
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value from the reference value. The effectiveness of this method was verified in model and
field tests. Cai et al. [190] studied the change rule of the natural vibration frequency of RC
simply supported beams with varying temperatures, and the experimental results showed
the linear negative correlation between the natural frequency and temperature in a specific
temperature range.

Wang et al. [191] firstly applied PCA combined with a Gaussian mixture method
(GMM) to bridge damage detection under varying temperatures. All the damage features
were projected into both principal and non-principal component directions; then, a PCA
based method was used to extract the loss features in the non-principal component, and
GMM was used to classify the damage features and the effects of temperature in the
principal component. In addition, they found that there was not always a linear relationship
between the natural frequency of the actual bridge and the ambient temperature. Wah
et al. [192] refined the above approach to address the piecewise effects from changing
temperature conditions. They first used PCA for the observations, then applied GMM to
the first principal component and temperature conditions. The results of Z24 Bridge in
Switzerland demonstrated the validity of this method, but it was only limited to Level 1
SDI. Zhu et al. [193] combined ICA with moving principal component analysis (MPCA)
to identify structural anomalies under the influence of temperature. The blind source
separation of thermal response was realized by ICA, and then sent to MPCA for processing
to reveal abnormal changes.

Huang et al. [194] incorporated temperature change into Young’s modulus of materials
and proposed a mathematical model for damage identification considering varying tem-
peratures. They used the support vector machine (SVM) to determine temperature changes
and possible damage locations, and then used MF optimization methods to accurately
locate and quantify damage based on the established mathematical model. The feasibil-
ity of this method was verified in the application of I-40 bridge. Sharma and Sen [195]
adopted an autoassociative neural network (AANN) to isolate the damage features in the
structure when the temperature changes. The inputs of the network are frequency and
temperature, and the output is the predicted value of the normal frequency. According to
the difference between the input and the output of AANN in each damage case, an RBF
neural network was used to classify each case. Cao et al. [196] replaced the conventional
finite element in the FEM with a probabilistic finite element to consider the influence
of ambient temperature on the bridge FEM. They proposed a damage location method
based on probabilistic features and demonstrated the effectiveness of the method through
numerical simulation. Cho et al. [197] studied the change in dynamic characteristics of
an RC slab bridge and a rigid frame bridge under the influence of environmental factors.
Long-term monitoring results showed that temperature was the most important factor,
which affected the natural frequency of the bridge. Yang et al. [198] introduced a new
label for the damage characteristics caused by ambient temperature, namely, characteristics
of the narrow dimension (CND). When the damage characteristics were determined to
conform to the CND index, a method was proposed to detect the bridge damage under
the influence of the environment. Numerical results and field examples demonstrated the
effectiveness of the proposed method.

It is undeniable that temperature change is a crucial aspect among the environmental
factors that affect BHM. However, research on other environmental factors is also essential
in improving BHM. Gara et al. [199] investigated the influence of the soil–structure inter-
action (SSI) and site response on the dynamic performance of continuous viaducts. They
used FEM to detect and verify the contribution of SSI in altering the dynamic response of
continuous viaducts. Chaudhary [200] studied the extent to which SSI and pier column in-
elasticity variations affect modal parameters under different horizontal seismic excitations,
aiming to provide a higher fidelity FEM. During seismic excitation experiments conducted
on pile foundations established in five soil profiles, modal frequencies demonstrated a
sensitivity to the effects of SSI and pier column inelasticity, which was not reflected in the
mode shapes.
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The natural frequency of structure is an important parameter in SDI, which can guide
the detection and improvement of structure by reflecting its dynamic characteristics. In
general, the natural frequency is related to the stiffness, mass, and boundary constraints
of the structure. When the external environment affects these properties, the natural
frequency of the structure changes accordingly, among which the influence of temperature
is particularly significant, as shown in Figure 9. Therefore, in the process of SDI, it is
necessary to distinguish between structural property changes caused by environmental
variations and those caused by structural damage [201], so as to obtain more accurate
identification results.

5.6. Non-Destructive Testing Methods

The damage occurring on large and complex bridges is difficult to detect through
visual inspection, and in many cases, it is not feasible to conduct extensive vibration tests
during the service life of the bridge to assess its health condition. Therefore, non-destructive
testing (NDT) provides the possibility of extending the life of bridges equipped with BHM
systems. NDT is a testing and analysis procedure designed to evaluate the quality of
components, materials, or systems, and detect damage or defects in materials or structures
without causing any physical damage [202]. The working principle of NDT depends on the
measured parameters, structure type, and its physical properties [203].

Hafiz et al. [204] proposed a self-referencing NDT method based on pulse response test-
ing for detecting and estimating the damage degree of RC bridge decks. Ultra-high-pressure
hydro-blasting was performed on the deck, and infrared data analysis was conducted to
observe potential damage. Takamine et al. [205] developed an acoustic emission monitor-
ing method for detecting RC bridge decks, and they used the method to study acoustic
emission signals caused by heavy rain, which revealed severe cracking deep inside the deck,
indicating the effectiveness of the proposed method. Maric et al. [206] proposed a bridge
maintenance method that combines visual inspection and NDT. In tests on six bridges in
Croatia, the proposed method accurately detected steel corrosion on structural elements.
Ali and Cha [207] studied a damage detection method for steel components on steel bridges.
They used the DL method to identify the results of infrared thermography imaging of
bridges, and the proposed method accurately identified corrosion and delamination on
the steel surface in 200 thermal images. Ni et al. [208] studied the application of NDT
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methods in detecting cable defects on bridges. They developed a quantitative identifica-
tion method based on magnetic flux detection and validated and evaluated the proposed
method on FEM and laboratory models. NDT appears to be the best choice for detecting
ancient bridges with preservation value. Chen et al. [209] conducted damage detection
research on the underwater foundation of ancient stone arch bridges in China using sonar-
based technology. They first measured the riverbed terrain with a multibeam echosounder
to analyze the scouring condition of the underwater foundation and then scanned it
using sonar imaging technology. The results clearly showed the damage to the bridge
structure underwater.

As the service life of large bridges that are already constructed continues to increase,
higher demands will be placed on NDT techniques in the future. Updating existing
detection methods and instruments is crucial for the development of NDT technology. The
NDT methods mentioned above are listed in Table 6.

Table 6. Non-destructive testing methods.

Authors Methods and/or Tools Research Object

Hafiz et al. [204] Impulse response RC bridge decks
Takamine et al. [205] Acoustic emission signal RC bridge decks

Maric et al. [206] Combine visual inspection with NDT Steel bars on bridges in Croatia
Ali and Cha [207] Thermal infrared imager and DL method Steel bars on bridges

Ni et al. [208] Magnetic flux detection Bridge cable

Chen et al. [209] Multibeam echosounder and sonar imaging technology Underwater foundation of ancient stone arch
bridges in China

6. Conclusions

In this paper, we reviewed some noteworthy research in the field of BHM in the last
five years, covering various aspects of BHM systems, especially SDI. The contributions of
the various methods mentioned in this paper have been demonstrated in laboratory and
practical bridge applications. However, some methods are inevitably flawed. Our main
conclusions are as follows:

(1) Compared with conventional sensors, DFOS has outstanding advantages. It can
continuously measure various physical quantities (strain, temperature, cracks, etc.)
of the bridge along the entire length of the fiber and monitor vehicle movement
information in real-time. However, two problems should be noted when using FOS.
On the one hand, during on-site installation, using bare fiber will greatly reduce
its service life, while on the other hand, using protective coated fiber will affect the
monitoring accuracy of certain physical quantities and result in high costs. Therefore,
future research may need to focus on how to improve the durability of FOS while
minimizing costs. Although WSN is a good solution to the challenges of wired sensing
systems, more practical problems will be encountered when choosing the best layout
due to its wireless nature. Additionally, more research is expected in the future to
maximize the lifespan of WSN usage.

(2) For data preprocessing, effective compression methods and data augmentation meth-
ods have been developed for large amounts of data in the current research. In terms of
the data noise reduction method, the introduction of ERS in railway transit has been
proven to effectively reduce bridge vibration and noise problems, with promising
applications. Secondly, discrete wavelet transform is more suitable for BHM than
continuous wavelet transform due to the discreteness and limited nature of the actual
monitoring data. Wavelet threshold denoising methods have also received attention,
achieving good denoising effects by selecting the best wavelet basis and optimizing
the threshold. In terms of data reconstruction, methods based on deep learning,
especially those based on CNN and GAN, have high retrieval accuracy. However,
research on the combination of CNN and GAN is still limited, and there is potential
to develop better-performing data recovery models.
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(3) Most research on early warning measures for bridge health is based on the dynamic
response of structures. However, two case studies from Canada and England, re-
spectively, which consider visualizing warning systems, suggest that using satellite
technologies, such as InSAR, for bridge risk assessment and developing visualization
platforms has great potential for application.

(4) In the decades of the development of bridge damage identification methods, many
systematic solutions have been proposed, such as DL-based methods, FEMU-based
methods, and Bayesian inference-based methods. The increasing number of DL
models make BHM more intelligent. However, to improve the accuracy of SDI, it is
advisable to combine multiple methods or avoid relying solely on monitoring data. In
the FEMU method, damage identification is usually achieved by observing changes
in model parameters before and after damage using the established FEM. However,
when modeling errors and other uncertainties exist, the changes in modal parameters
may not necessarily be caused by damage. GP has been proven to be a practical model
for considering various uncertainties.

(5) Intelligent optimization algorithms transform the SDI problem into a problem of
minimizing the objective function. Objective functions based on different parameters
can be combined with different optimization algorithms to produce various SDI
methods. Therefore, the improvement of the objective function and algorithm is a
major research direction.

(6) Essentially, most existing SDI methods are based on structural vibration effects. In
fact, non-destructive testing also performs well in quantifying damage and needs
to be further developed and applied in the future. In addition, there is currently no
universally applicable method for Level 4 SDI.

(7) Existing research has shown that temperature changes can affect structural charac-
teristics, particularly natural frequency, which has an impact on multiple aspects
of BHM. Therefore, temperature effect is a non-negligible environmental factor in
future research.
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