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Abstract: Considering the current energy environment, both efficient and environmentally friendly
solutions have to be developed for building construction. Bio-based building materials offer new
perspectives through their insulating and natural humidity regulation capacities. Nevertheless,
these materials are as complex as they are promising, and grey areas still remain regarding their
behavior. Their water sorption and desorption curves recorded in experimental work demonstrate a
hysteresis phenomenon and, although plausible hypotheses have been formulated in the literature,
there is currently no consensus on its causes. Furthermore, it is important to emphasize that no
reference considers the hydrophilic nature of the resource. Yet, this is a specificity of raw material
coming from the plant world. In this context, this paper explores the microstructure and chemical
composition of plant aggregates to propose a new explanation for the hysteresis. It is based on recent
work demonstrating the existence of differentiated hydrogen bonds between the water sorption and
desorption phase in cellulose. Obviously, hysteresis also has an origin at the molecular scale. Lastly,
the hypothesis put forward here is supported by the swelling of bio-based materials that has been
observed at high relative humidity, and this study aims to identify a link between the mechanics
of bio-based materials and their hygroscopic behavior. A swelling/shrinking is macroscopically
observed. Combining the fields of chemistry, physics, and civil engineering allowed us to demonstrate
that it comes from a molecular-scale hydromechanical coupling. This is a major breakthrough in the
understanding of bio-based composites.
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1. Introduction

The study of bio-based materials is quite recent, and works on these promising materi-
als have increased over the past 20 years. This is probably due to their multiple advantages:
local availability of resources, recovery of agricultural waste, low grey energy, limited
environmental impact, and improvement of energy efficiency or even indoor air quality [1].
Today, given the energy and climate upset facing humanity, large-scale development of
these materials has become essential. Therefore, more and more authors are focusing on
the experimental characterization of these materials, considering different binders and/or
vegetal aggregates [1–6]. Those experimental data are fundamental. However, the literature
is still limited concerning reflection on the phenomena underlying the macroscopic observ-
ables. So, this study aims to focus on the phenomenon of hysteresis. Although it is widely
observed experimentally [2–6], its causes are still poorly understood. This article provides
a new consideration of the microscopic origin of the phenomenon at the molecular level.

First, some specific characteristics of bio-based materials are recalled. In particular,
experimental observations and recent results concerning these materials are highlighted. It
is also stressed that, to date, there is no consensus on how hysteresis in bio-based materials
can be understood and described. Then, the hydrogen bond is briefly defined in order to
facilitate understanding of a recently conducted study on sorption-swelling coupling in
nanoporous materials [7].
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The results of this study are then applied to bio-based building materials. The interest
and relevance of considering the hysteresis phenomenon differently are highlighted: first
at the microscopic molecular scale so that the plant aggregate’s specific nature can be
considered, and then by exploring, one by one, the macroscopic consequences found in the
literature. They are explained with the new theory put forward. This article thus proposes
a new explanation, supported by numerous arguments, of hysteresis and its consequences.

2. Focus on Bio-Based Building Materials and Their Specificities
2.1. Microstructure

Bio-based building materials are made of agricultural by-products mixed with a
binder (lime-based, metakaolin-based, clay, etc.). This leads to a microstructure that is
both complex and variable, depending on the formulation, how the plant was grown, or
even manufacturing [1,8]. A multi-scale porosity has also been underscored by several
studies [4,9–11]. Bio-based and conventional materials have comparable intrinsic binder
porosity due to the arrangement of hydrates and trapped air. However, the final porosity
values for bio-based materials also include the additional contributions of inter-particulate
and intra-particulate porosity and the porosity at the binder–aggregate interface (Figure 1).
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Figure 1. Multi-scale porosity of hemp concrete observed with SEM and Li order of magnitude [11].

Thus, this large, interconnected, and complex porosity allows the mass transfer of
water within the microstructure.

A large porosity can be observed more closely at the intra-particulate scale (Figure 2).
These tubules allow the sap to circulate when the plant is growing. After drying, they

fill with air, which causes intra-particle porosity, explaining, in particular, the insulating
capacity of bio-based building materials. It is useful to note that a tubular morphology
exists in a wide range of plant aggregates.
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Figure 2. SEM cross-sectional images of (a) hemp shiv, (b) flax shiv, (c) barley straw, (d) wheat straw,
(e) I sunflower pith, (f) rape straw, (g) corn cob, (h) rice husk, and (i) miscanthus stem [12], and
longitudinal (j) and transversal (k) images of hemp shiv [4].

2.2. Hygroscopic Properties

Hygroscopic material is able to fix and store water depending on moisture conditions.
This capacity is governed by the pore size distribution [13]. According to many studies,
both binder and plant particles are hygroscopic materials [4,8,10,14–16]. This means that
they are able to adsorb excess water from the environment (in the form of vapor that
condenses under certain conditions) and desorb this water when the environment is drier.
This natural humidity regulation capacity is a major asset, as it contributes to healthier
indoor conditions. Sorption effects are widely described in the literature by Van der Waals
interactions between water and the pore walls. The type of binding that causes poly-
molecular adsorption and capillary condensation is not specified. Thus, three different
mechanisms schematically describe how water is adsorbed in the pore network of bio-based
building materials (Figure 3) [17–21].

Up to now, the nature of the solid skeleton surrounding the pores has not been
differentiated. The same fixing modes are suggested for both the organic and the mineral
parts of bio-based materials.
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2.3. Chemical Composition

Bio-aggregates are mainly composed of cellulose, hemicellulose, and lignin [22–25].
Because cellulose is the major component [26,27], it is interesting to take a closer look at
its microstructure. This bio-polymer is organized into chains of glucose. They are linked
together by hydrogen bonds (interchain or intermolecular bonds) [7,28]. The cellulose
chains are organized in the form of microfibrils, the arrangement of which determines the
deformation capacity of the plant particle [29] (Figure 4).
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In reality, cellulose chains are not always perfectly aligned (crystalline part) and
amorphous regions are present, especially in natural cellulose [30] (Figure 5). Some authors
have indicated that cellulose is mainly crystalline in agro-resources [31], whereas dosages on
hemp shiv have been shown to have very low crystallinity levels [32]. However, the sources
agree that amorphous and crystalline zones coexist within plant walls. The proportion of
each part is variable and depends on the harvesting zone, the method of extracting the
fibers from the plant, and the treatments applied [33].
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Cellulose chains have both intra- and inter-molecular hydrogen bonds. The hydroxyl
groups on the surface of the chains are more accessible for creating hydrogen bonds with
other molecules than those located inside (Figure 6).
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Thus, the reactivity of cellulose, i.e., its ability to create hydrogen bonds with its
environment (with another cellulose molecule or a different molecule), is facilitated by its
semi-crystallinity. This means that the steric hindrance is weaker in amorphous portions;
space between cellulose chains increases the possibilities of hydrogen bonds with other
potential molecules. Consequently, amorphous cellulose is a particularly favorable site for
the creation of hydrogen bonds with its environment [36]. This is not the case for mineral
or clay binders, as they do not contain cellulose [37–40].

2.4. Swelling and Shrinkage

Cracking due to plastic shrinkage of composites is well known and is explained by
mechanical stresses during drying [41,42]. Furthermore, other swelling and shrinkage
phenomena have been reported in the literature, whether at a young age or after a period of
accelerated aging [4,20,43]. This can be observed at the particulate scale under increasing
or decreasing relative humidity conditions (Figure 7). The result is a significant change in
the aggregate interface, which alters its porosity. This modification of microstructure in
bio-materials is simply attributed to the presence of plant particles by the authors and has
not been explained to date.

Swelling and shrinkage impact the porosity of bio-materials [20,44,45] and can there-
fore have effects on their thermal, hydric, and mechanical properties more or less in the
long term.
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2.5. Functional Properties with Age

According to recent studies, thermal and hygric properties of bio-based materials
change with age [46,47]. Thus, whether aging is accelerated or not, several authors have
shown that age reduces the adsorption and desorption rate and the water vapor permeabil-
ity. However, some authors have indicated an increase with age in thermal conductivity,
whereas others have shown the opposite [4,46].

2.6. Temperature Effects

The thermal conductivity of bio-based materials is temperature dependent [48]. More-
over, several studies have demonstrated the temperature dependence of sorption
curves [6,16,49,50]. Thus, the effects of temperature on the sorption process have been
promisingly modeled, but no explanation of this phenomenon has been proposed so far.

2.7. Local Kinetic Sorption

Recent work has highlighted the relevance of considering local sorption kinetics in bio-
based materials, especially when coupled with hysteresis [51,52]. This was motivated by the
observation that these materials take a long time to stabilize when the environment changes
(more or less humid). The consideration of local kinetics is very relevant to describing the
transformation of water from vapor to liquid (and vice versa). This has been experimentally
validated. Thus, the fixation of liquid water in hemp concrete would be conditioned by a
very slow diffusion of water molecules.

2.8. Sorption Hysteresis

Sorption hysteresis observed on bio-based materials is widely reported in the litera-
ture [2,6,13,20,25,51,53–58]. At a given relative humidity, the eco-material does not have
the same water content (after stabilization), depending on the sorption or desorption phase
(Figure 8).
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This fundamental point must be considered to assess the hygrothermal behavior of
bio-based walls. Thus, the following items have been experimentally demonstrated:

• The sorption mechanism is reversible since the original state is obtained at a dry
state [57].

• Hysteresis is more pronounced for plant-based concrete materials than for aggre-
gates [23,55,57,58].

• Aging reduces the rate of adsorption and desorption for hemp concrete [59].
• Temperature can influence hysteresis [6,60], or not [61].
• Swelling of the plant particles or fibers during hysteresis is irreversible [43,60].
• Hysteresis increases, whereas crystallinity decreases [60].
• Water content is always higher in the desorption than in the adsorption phase for the

same relative humidity.

Moreover, the hysteresis phenomenon can be observed on binders alone, whether
they are mineral or geo-sourced [3,13,62–64]. It can also be demonstrated on plant fibers or
aggregates (Figure 9) used both in the textile and in the building industries [21,60].

The offset between the sorption and desorption curves is commonly explained by an
ink-bottle effect (Figure 10), capillary condensation, and/or the contact angle
difference [17,20,55,57,64,65]. No distinction is made based on the nature of the mate-
rial where hysteresis is observed.

To date, the explanations remain open since there is no real consensus on this sub-
ject [54,66].
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3. From Hydrogen Bonding to Hysteresis
3.1. Hydrogen Bonding

Hydrogen and Van der Waals bonds are modelled by dipole–dipole interactions [67,68].
Although they both result from electrostatic interaction, hydrogen bonds have a higher
binding energy due to the strong polarization of the hydroxyl groups. On the other hand, a
covalent bond results from the pooling of valence electrons between two atoms. It involves
a chemical reaction that is not reversible. Consequently, the binding energies differ since
they result from different phenomena (Table 1). Finally, the greater the binding energy,
the more difficult it is to break the bond. Thus, hydrogen bonds can break or change form
easily at ambient temperature (300 K) due to their low bonding energy [67]. Nevertheless,
for the same type of bond, the binding energy may differ according to the nature of the
atoms and molecules involved.

Table 1. Order of size of different bonds [67].

Type of Bonding Bonding Energy [kJ/mol]

Covalent ≈100

Hydrogen ≈10

Van der Waals ≈1
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It should be noted that Van der Waals interactions, mentioned to explain the first
step of water fixation in bio-based materials (cf. Section 2.2), are about 10 times weaker
than hydrogen bonds. Moreover, it is well known that water, a polar molecule, forms
hydrogen bonds [69]. It establishes hydrogen bonds rather than Van der Waals bonds as far
as possible. The two interactions are different and should not be confused [68].

In addition, cellulose is a host polymer concerning hydrogen bonding due to its
hydroxyl groups [70]. Recent work highlights the potential of hydrogen bonding in porous
molecular materials [71]: They condition the spatial organization of the microstructure [72].

3.2. Microscopic Understanding of Hysteresis

A recent study demonstrated a molecular-scale coupling mechanism to explain the
sorption hysteresis and swelling of polymers such as cellulose [7]. The authors explained
that three types of hydrogen bonds coexist within cellulose:

• Intermolecular hydrogen bonds between water molecules (HBWW);
• Intermolecular hydrogen bond between water molecules and cellulose (HBCW);
• Inter-chain hydrogen bonds in cellulose (HBCC).

The sequence of creation/breakage of these hydrogen bonds is conditioned by the
phase observed: sorption or desorption.

Water is first physisorbed (through HBCW) in the sorption phase (to the cellulose
chains. The cellulose swells and the number of HBCC decreases with increasing water
content. Consequently, the intermolecular bonds in cellulose (HBCC) break: More and
more hydroxyl groups are accessible to form HBCW. Simultaneously, the number of
HBWW increases, reflecting the formation of water clusters within the polymer pore space
(Figure 11).

Buildings 2023, 13, x FOR PEER REVIEW 9 of 19 
 

Table 1. Order of size of different bonds [67]. 

Type of Bonding Bonding Energy [kJ/mol] 
Covalent ≈100 

Hydrogen ≈10 
Van der Waals ≈1 

It should be noted that Van der Waals interactions, mentioned to explain the first step 
of water fixation in bio-based materials (cf. Section 2.2), are about 10 times weaker than 
hydrogen bonds. Moreover, it is well known that water, a polar molecule, forms hydrogen 
bonds [69]. It establishes hydrogen bonds rather than Van der Waals bonds as far as pos-
sible. The two interactions are different and should not be confused [68]. 

In addition, cellulose is a host polymer concerning hydrogen bonding due to its hy-
droxyl groups [70]. Recent work highlights the potential of hydrogen bonding in porous 
molecular materials [71]: They condition the spatial organization of the microstructure 
[72].  

3.2. Microscopic Understanding of Hysteresis 
A recent study demonstrated a molecular-scale coupling mechanism to explain the 

sorption hysteresis and swelling of polymers such as cellulose [7]. The authors explained 
that three types of hydrogen bonds coexist within cellulose: 
• Intermolecular hydrogen bonds between water molecules (HBWW); 
• Intermolecular hydrogen bond between water molecules and cellulose (HBCW); 
• Inter-chain hydrogen bonds in cellulose (HBCC). 

The sequence of creation/breakage of these hydrogen bonds is conditioned by the 
phase observed: sorption or desorption.  

Water is first physisorbed (through HBCW) in the sorption phase (to the cellulose 
chains. The cellulose swells and the number of HBCC decreases with increasing water con-
tent. Consequently, the intermolecular bonds in cellulose (HBCC) break: More and more 
hydroxyl groups are accessible to form HBCW. Simultaneously, the number of HBWW in-
creases, reflecting the formation of water clusters within the polymer pore space (Figure 
11).  

 
Figure 11. Number of HBCC (on the left)/HBWW and HBCW versus moisture content (m) from Chen et 
al. [7]. 

In the desorption phase, lower energy bonds break first. As HBCW is stronger than 
HBWW, water molecules are first removed from pore water clusters. Thus, there are more 

Figure 11. Number of HBCC (on the left)/HBWW and HBCW versus moisture content (m) from
Chen et al. [7].

In the desorption phase, lower energy bonds break first. As HBCW is stronger than
HBWW, water molecules are first removed from pore water clusters. Thus, there are more
HBCW in the desorption than in the sorption phase for the same relative humidity since
more “host sites” are accessible in the polymer. This microscopic phenomenon leads to an
observable hysteresis in the sorption-induced swelling of cellulose (Figure 12).
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The existence of differentiated hydrogen bonds between the water sorption and desorp-
tion phases in amorphous cellulose has been clearly demonstrated. It causes macroscopic
hysteresis within the polymer. This leads us to consider these results while analyzing the
behavior of bio-based materials.

In addition, Chen et al. pointed out that the moisture content first increases rapidly
(low relative humidity) and then less rapidly (higher relative humidity). This inflection
point in the adsorption isotherm can be explained by an initial rapid and easy adsorption
of water molecules into the initially available host sites of cellulose. Subsequently, the
cellulose chains open up and more water molecules are adsorbed, but the process is slower.
Finally, the authors indicated that the pore size prevents the phenomenon of capillary
hysteresis in nanoporous media (with pores smaller than 2 nm). Thus, in cellulose, where
the pores are smaller than 1 nm, capillary hysteresis cannot take place.

4. Discussion: New Insights into Hysteresis in Bio-Sourced Materials
4.1. A Necessary New Approach

The explanations for hysteresis provided in the literature are open to criticism. First,
SEM images show that the plant aggregates have a tubular morphology. No pronounced
narrowing or widening is visible. The hypothesis of ink-bottle-shaped pores is not justified
at this scale. It is more relevant at the scale of the material due to a multi-scale complex and
tortuous porosity. However, in the case of plant aggregates, the pore size is measured in
tens of micrometers [73], so capillary hysteresis is founded.

Furthermore, covalent bonds cannot explain the sorption mechanism, since sorption
is reversible. In contrast, it seems appropriate to regard weaker bonds as Van der Waals or
hydrogen bonds to explain water sorption and desorption.

In addition, whether it is through the ink-bottle effect, the capillary condensation,
and/or the contact angle difference, the hypotheses mentioned assume that the condensed
state of the water is reached. However, capillary condensation occurs from 80% RH
(cf. Figure 3). The sorption and desorption curves do not overlap, even at low relative
humidity. Moreover, although the smallest pores can contain liquid water, they probably
cannot account for the entire shift between the curves at low humidity values. Finally, no
assumption made so far can explain other observables such as swelling, sorption kinetics,
and temperature effects.

4.2. Hysteresis: From the Aggregate Scale to the Material One

(i) A new water fixation mechanism
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It is now possible to differentiate the modes of water fixation between the pore network
of the plant aggregate and that of the material (vegetal concrete or lightened earth). This
means that the plant aggregate’s lignocellulosic nature is considered. Nevertheless, as
most sorption sites for hydrogen bonds have been found in the hemicellulose, followed
by cellulose and lignin [74], this study does not consider the nature of the polymers in the
plant aggregate. Only the scale of the plant particle and the material are differentiated. A
new water fixation mechanism is thus proposed (Figure 13).
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The bonds involved in the process are likely to be hydrogen bonds, although Van
Der Waals bonds (induced dipole) may occur at the margin. Only hydrogen bonds are
considered here. Thus, different regions of the curve and the corresponding slopes show
the existence of three processes with different kinetics:

• Area 1: Water fixation on a pore surface is relatively fast because the host sites are
easily accessible: HBCW bonds form on polymer surface chains or in pores of an
amorphous region, and then HBWW form easily until the initial pores are filled.

• Area 2: Polymer chains open up, freeing new host sites to create HBCW bonds. In
parallel, HBCC bonds break.

• Area 3: At high relative humidity, hydrogen bonds mostly form between water
molecules because many host sites are occupied on polymer chains. This leads to
water clusters in the new pore spaces created by the swelling of the polymer chains.
Because host sites are very accessible, the associated kinetics are quite fast, as in area 1.

(ii) A new description of hysteresis

Furthermore, from the results presented in Section 2.2, it is assumed that, when plant
aggregate is subjected to an increase in relative humidity, more and more new “host sites”
become available to create HBCW bonds. Those bonds are not broken at the same relative
humidity level during the desorption phase. This is assumed to be the only cause of
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hysteresis at the particulate scale up to 80% RH. First, this phenomenon has been proven,
and second, the microstructure of the plant aggregates is inconsistent with the other
assumptions made in the literature so far.

In addition, the richer the plant aggregate is in amorphous polymers (cellulose, hemi-
cellulose, and lignin), the likelier it is that the mechanism will occur.

In contrast, at the material level, the ink-bottle effect, capillary condensation, and/or
the contact angle difference probably coexist—especially at high humidity when water is
mostly liquid. Consequently, a new description of hysteresis in bio-based building material
can be proposed (Figure 14).

Buildings 2023, 13, x FOR PEER REVIEW 12 of 19 
 

• Area 3: At high relative humidity, hydrogen bonds mostly form between water mol-
ecules because many host sites are occupied on polymer chains. This leads to water 
clusters in the new pore spaces created by the swelling of the polymer chains. Be-
cause host sites are very accessible, the associated kinetics are quite fast, as in area 1. 

(ii) A new description of hysteresis 
Furthermore, from the results presented in Section 2.2, it is assumed that, when plant 

aggregate is subjected to an increase in relative humidity, more and more new “host sites” 
become available to create HBCW bonds. Those bonds are not broken at the same relative 
humidity level during the desorption phase. This is assumed to be the only cause of hys-
teresis at the particulate scale up to 80% RH. First, this phenomenon has been proven, and 
second, the microstructure of the plant aggregates is inconsistent with the other assump-
tions made in the literature so far. 

In addition, the richer the plant aggregate is in amorphous polymers (cellulose, hem-
icellulose, and lignin), the likelier it is that the mechanism will occur.  

In contrast, at the material level, the ink-bottle effect, capillary condensation, and/or 
the contact angle difference probably coexist—especially at high humidity when water is 
mostly liquid. Consequently, a new description of hysteresis in bio-based building mate-
rial can be proposed (Figure 14). 

 
Figure 14. Hysteresis mechanism in bio-based building materials explained thanks to differentiated 
hydrogen bonds in plant particles. 

  

Figure 14. Hysteresis mechanism in bio-based building materials explained thanks to differentiated
hydrogen bonds in plant particles.

4.3. Experimental Measurments

(i) Protocol

Sunflower pith panels manufactured without binder were dried in an oven (under
60 ◦C) until stabilization of mass to ensure no adsorbed water remained in the aggregate.
The dimensions of the particleboards were measured with a caliper in the dry state. The
particleboards were then placed in an enclosure under 80% relative humidity until sta-
bilization. The dimensions of the particleboards were measured again with a caliper in
this humid state. This allowed the volumes of the panels to be compared in their dry and
wet states.

(ii) Dimension comparison

The results of the dry and wet measurements are presented in Table 2.
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Table 2. Comparison of particleboard dimensions (without binder) in dry and wet conditions.

Volume V of Particleboard (cm3)

Panel 1 Panel 2 Panel 3 Panel 4

Dry state 3123.1 2983.8 2433.93 2607.23

80% 3347.1 3264.1 2578.7 2707.3

Volume increase
∆V (%) 6.7 8.6 5.6 3.7

Both observation and experimental measurements showed significant swelling of the
sunflower pith panels. From the dry to wet state, the swelling observed was on average
6%. As these particleboards were made up entirely of particles, the swelling observed was
clearly a process that took place in the sunflower pith. It was a macroscopic demonstration
of the microscopic hydro-mechanical coupling within the aggregate. It is worth noticing
that sunflower pith, as a bio-aggregate, is mainly composed of cellulose (cf. Section 2.3).
The experimental measurements support the theory defended in this study.

4.4. Macroscopic Effects

The theory put forward in the previous section is supported by a wide range of
macroscopic observations. Thus, it is possible to connect and explain all of these points—
raised in Section 2—through sorption–swelling coupling (Table 3).

All of these elements allow us to establish the relevance of taking this recently demon-
strated sorption–swelling coupling effect into account. It improves our understanding and
description of hysteresis and its consequences in bio-based building materials.

In view of all of the elements discussed above, a new multi-scale schematization of
bio-based material behavior is proposed (Figure 15).
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Table 3. Macroscopic observations of sorption–swelling coupling that causes hysteresis in bio-based
building materials.

Observation Origin Explanation

Sorption mechanism is reversible.

Sorption–swelling
coupling at the molecular scale in

vegetal aggregate

Hydrogen bonds form and break easily, even at
ambient temperature, due to their low

binding energy.

Hysteresis is more pronounced for
plant-based concrete materials than

for aggregates.

Because of additional origins of hysteresis in
material than in aggregate, the effects

are cumulative.

Aging reduces the rate of adsorption
and desorption.

Residual water masks “host sites“: They are no
longer accessible, as inhibited by the first

sorption phase.

Swelling of the plant particles or fibers
during hysteresis is irreversible.

Returning to a dry state allows the last
physisorbed water to be extracted. The

intercellulosic chains seem to return to their
original state. In any case, there is no (or

negligible) macroscopic manifestation of swelling.

Hysteresis increases, whereas
crystallinity decreases.

The more amorphous the cellulose is, the more
important the sorption–swelling coupling is.

Interchain bonds cannot open in crystalline regions
due to high stability.

Swelling and shrinkage is observed at a
young age or after a period of

accelerated aging.

Swelling and shrinkage are possible as soon as
HBCW replaces HBCC. This potential decreases
with age (inhibited sites) but remains possible

given the large number of host sites in the
plant aggregate.

There is temperature dependence of
sorption curves. Hydrogen bonding is temperature dependent.

Relevance of considering local sorption
kinetics in bio-based materials,
especially when coupled with

hysteresis.

The opening/closing of the cellulose chains is
probably a rather slow process that needs a kinetic
factor to be taken into account in both the sorption

and desorption phases.

Swelling is observed between the dry
state and 80% RH.

The opening of the cellulose occurs from 5–10% to
80 % RH (cf. Figure 13).

Water content is always higher in the
desorption than in the sorption phase

for the same relative humidity.

More water molecules are physisorbed during
desorption because they do not have the same

chemical potential.

This demonstrates the link between molecular-scale phenomena and their conse-
quences at the macroscopic scale. It thus highlights the hydro-mechanical multi-scale
coupling of these materials.

5. Conclusions

This study demonstrates the need to reconsider the description of water sorption in
bio-based building materials. The explanations put forward in the literature are not to
be totally discarded but are not sufficient. Indeed, recent work has shown how water
adsorbed at the cellulose scale can induce both hysteresis and swelling of cellulose chains.
The lignocellulosic nature of the plant aggregates incorporated should therefore be taken
into account.

Thus, a new description of sorption hysteresis in the case of bio-based materials is
proposed. It is based on the existence of hydrogen bonds that are differentiated between
the water sorption and desorption phases in cellulose. These bonds are stronger than the
Van der Waals bonds that have commonly been reported in the literature until now.
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It is thus possible to better understand the hysteresis phenomenon widely observed
in the literature for bio-based materials. A new scale of porosity that has been ignored so
far is to be considered: nanoporosity (in the amorphous polymers constituting the plant
aggregate). This molecular-scale hydro-mechanical coupling explains many observations
at the macroscopic scale. We matched this new consideration with a set of macroscopic
observables widely reported in the literature. The results were also confirmed by our own
experimental measurements. This lends support to the new hypothesis suggested and
shows how it is relevant.

Finally, this study opens up new perspectives:
(i) A better understanding of macroscopic swelling makes it possible to anticipate and

to predict. It is important to leave a corresponding gap in the wall to avoid any disorder. In
addition, swelling affects impact the porosity of the material and therefore probably affects
its mechanical properties and durability.

(ii) It would be interesting to investigate whether, as in the case of hysteresis in
electromagnetism, the area of the hysteresis curve provides additional information about
the sorption/desorption phenomenon.

This article is the fruit of in-depth and well-argued reflection. It is based on exper-
imental results as well as the collection and analysis of results coming from different
scientific fields. It leads to a new theory being proposed to understand the hysteresis
mechanism observed in bio-sourced materials. The experiment carried out on aggregate
panels demonstrated that the theories put forward in literature are not sufficient to explain
what is happening within the material. The ink-bottle effect is not very probable given the
microstructural morphology of plant aggregates (cf. Section 4.1). A new theory considering
the microscopic scale is necessary to describe hysteresis. The hydro-mechanical coupling
taking place within cellulose chains has been exploited to propose a new vision. New
schemes (cf. Figures 13–15) of the water sorption and desorption phases within bio-sourced
materials are provided. To date, plant aggregates were considered inert with respect to
water absorption in the same way as conventional materials. This work therefore represents
a significant advancement in the field of bio-sourced materials, since for the first time the
lignocellulosic nature of the aggregate is taken into account. This means that new specific
physicochemical phenomena need to be considered.

To conclude, this work combines the fields of chemistry, civil engineering, and applied
physics in order to open new perspectives. This allowed for the removal of some grey areas
in the hysteresis phenomenon, which remains a key factor when considering bio-based
building materials. Our work underlines the interest of conducting interdisciplinary studies
to understand the full complexity of bio-based materials.
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