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Abstract: In order to investigate the effect of fiber end on the bonding mechanical properties between
shape memory alloy (SMA) fibers and Engineered Cementitious Composites (ECC), this study de-
signed and fabricated five groups of specimens with variations in SMA fiber end shape, diameter and
depth-to-diameter ratio. Direct tensile tests were conducted on these specimens under displacement
control. The failure modes, stress–strain curves and various performance indicators were analyzed to
evaluate the bonding mechanical properties and the effects of different factors. The results revealed
that for straight-end SMA fibers, increasing the diameter and depth-to-diameter ratio both led to a
decrease in bonding strength. On the other hand, the N-shaped end provided sufficient anchorage
force for SMA fibers, resulting in a maximum pull-out stress of 926.3 MPa and a fiber strength
utilization of over 78%. Increasing the fiber diameter enhanced the maximum pull-out stress and
maximum anchorage stress for N-shaped-end SMA fibers but reduced the fiber strength utilization.
These research findings provide a solid theoretical basis and data support for achieving a synergistic
effect between SMA fibers and the ECC matrix.

Keywords: shape memory alloy fiber; engineering cementitious composites; fiber pullout behavior;
interfacial bonding performance

1. Introduction

With the continuous expansion of modern urban construction, economic losses caused
by earthquakes are increasing. The traditional seismic design concept, which aims to
ensure life safety and prevent collapse, is no longer able to meet society’s seismic require-
ments. In order to enable structures to quickly regain their functionality and minimize
economic losses after an earthquake, the concept of resilient seismic structures [1] has
received widespread attention and been a focus of research in recent years. Various systems
have been developed, including rocking structures, self-centering structures and replace-
able component structures [2–4]. Among them, research at the material level to achieve
functional recovery of structures has become a research hotspot.

Shape Memory Alloy (SMA), initially applied in precision and cutting-edge fields
such as aerospace, robotics and medicine, has seen rapid development in research and
application in civil engineering as material processing techniques and industrial production
capabilities have advanced. SMA exhibits excellent superelasticity, generating recovery
forces during loading–unloading cycles that facilitate crack closure and deformation re-
covery in structures [5]. Consequently, superelastic SMA is employed to enhance the
self-centering and energy dissipation capabilities of structures, such as in the fabrication
of dampers, supports and other energy dissipation and self-centering devices [6–8], or di-
rectly in strengthening structural components like shear walls and beams [9–11]. However,
when SMA is applied to conventional concrete structures, the limited tensile deformation
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capacity of concrete materials prevents the full utilization of the excellent performance of
SMA materials.

Engineered Cementitious Composite (ECC) is a cement-based composite material
reinforced with short fibers, known for its high strength, high ductility and strain-hardening
behavior [12–14]. The ultimate tensile strain of ECC is 300 times higher compared to
traditional cementitious materials. At the same time, the crack width of ECC is controlled to
less than 100 µm, which has excellent crack control capability [15]. ECC structures not only
exhibit excellent collapse resistance but also possess high damage tolerance, resulting in
significantly reduced residual crack widths after seismic events and consequently reducing
post-earthquake maintenance costs [16,17]. When the appropriate fiber type and size are
selected and the fiber/matrix interface is modified, ECC can achieve the required tensile
strain capacity [18].

The combination of superelastic shape memory alloy (SMA) and Engineered Ce-
mentitious Composite (ECC) forms SMA-ECC composite material, which overcomes the
drawbacks of concrete material’s brittleness under tension and significant residual strain
due to the yielding of steel reinforcement. The SMA-ECC composite exhibits advantages
such as high ductility, strong energy dissipation capability and the ability to achieve crack
closure and deformation recovery through the superelasticity of SMA [19,20]. It is par-
ticularly suitable for resilient seismic-resistant structures [21]. However, most current
SMA materials are in the form of bars, rods, or wires, which face challenges in processing,
requiring specialized fixtures or anchorage, and are prone to damage at connection points
and high costs, limiting the widespread application of SMA materials. SMA fibers, on the
other hand, offer advantages such as simple processing, no requirement for specialized
anchorage and lower costs. Moreover, uniformly distributed SMA fibers are more suitable
for ECC matrices with multiple cracks [22]. However, due to the smooth surface of the
material, the bonding between SMA fibers and the matrix material is prone to interface
debonding [23,24], leading to the underutilization of SMA’s mechanical properties and
material waste. Various methods have been explored by researchers to improve the bond-
ing performance between SMA and the matrix material [25–28], achieving some results.
However, overall, research on the bonding performance between SMA fibers and ECC is
still scarce, and effective methods to enhance the bond strength between SMA fibers and
ECC matrix are lacking. Strong bonding is essential to ensure the effective utilization of
SMA fiber’s material properties and is a primary issue to address in SMA-ECC composite
material research.

Our previous research [29,30] has shown that the presence of fiber end anchorage
can effectively enhance the bonding and anchorage strength between SMA fibers and
ECC matrices. However, the previous studies employed knotted-end shapes, which are
challenging to precisely control in terms of the end shape dimensions and involve difficult
processing, limiting their suitability for large-scale production. Therefore, in this study,
we fabricated SMA fibers with curved and N-shaped ends and investigated their bonding
performance in ECC matrices. Through direct tensile tests on individual fibers, we analyzed
the bonding failure modes, pull-out stress, shear strength, anchorage stress and fiber
strength utilization, which are key mechanical properties. We compared the effects of
SMA fiber end shapes, diameter and depth-to-diameter ratio (embedding depth/diameter)
as influencing factors. These findings provide a basis for understanding the bonding
performance between SMA fibers and ECC matrices, as well as for establishing relevant
theoretical calculation models.

2. Materials and Methods
2.1. SMA Fibers

Direct tensile tests were conducted on nickel-titanium (NiTi) superelastic SMA fibers
with diameters of 1.0 mm, 1.2 mm and 1.5 mm. The gauge length (measuring section
length) was set at 100 mm. The stress–strain curves for the direct tensile testing of the
SMA fibers are shown in Figure 1a, and the main performance parameters are presented
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in Table 1. From Figure 1a, it can be observed that all three SMA fibers with different
diameters exhibit distinct martensitic transformation plateaus. According to Table 1, as the
diameter increases, the martensitic transformation stress and peak stress of the SMA fibers
increase, and the ultimate tensile strain decreases.
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Table 1. The main performance parameters of SMA fibers.

Diameter
(mm)

Elastic
Modulus

(GPa)

The Martensitic Phase
Transition Begins/MPa

The Martensitic Phase
Transition Ends/MPa Peak Stress a

(MPa)
Ultimate

Strain b (%)Strain (%) Stress (MPa) Strain (%) Stress (MPa)

1.0 23.0 1.8 418.14 14.5 506.92 941.9 22.4
1.2 30.3 1.6 484.65 13.2 543.78 1001.1 21.8
1.5 34.0 1.5 509.89 12.9 652.51 1126.8 20.1

a The peak stress is defined as the maximum tensile stress obtained from the stress–strain curve of the SMA
fiber under direct tensile loading. b The ultimate tensile strain refers to the maximum strain observed in the
stress–strain curve of the SMA fiber under direct tensile loading.

To verify the superelastic behavior of the SMA fiber at room temperature, a cyclic
tensile test was conducted on a 1.2 mm SMA fiber. The test employed displacement-
controlled loading with a displacement increment of 2 mm per cycle. The stress–strain
curve obtained from the test is shown in Figure 1b. From Figure 1b, it can be observed
that the SMA fiber undergoes martensitic transformation starting from the second loading
cycle and ending at the sixth cycle. In these cycles, the stress–strain curves of the SMA
fiber exhibit a distinct flag-shaped characteristic, and the strain recovery rate within each
cycle exceeds 98% [31]. Then, the fiber enters the hardening stage, and the recovery rate
decreases gradually. By the ninth cycle with a strain of 18%, the strain recovery rate of this
cycle still reaches 77%. These results indicate that the SMA fiber used in this experiment
exhibits excellent superelastic performance at room temperature.

2.2. Engineered Cementitious Composite (ECC)

In order to improve the deformability of ECC material, based on reference [32] and
through extensive trial mixes, the research group determined the mix proportions of ECC
used in the experiments, as presented in Table 2. Following the specifications of JC/T
2461-2018l [33], three identical dog-bone-shaped ECC specimens were prepared using the
mix proportions shown in Table 2. Tensile tests on the ECC specimens were conducted
using the testing apparatus depicted in Figure 2a, yielding the tensile mechanical properties
of the ECC material, as shown in Table 3. The stress–strain curve of the ECC specimens
under tension is presented in Figure 2b. The average initial cracking strength of the ECC
material was 2.59 MPa, with an elastic modulus of 9.5 GPa, a peak stress of 4.68 MPa and
an ultimate tensile strain of 5.50%. These mechanical properties of ECC are comparable to
those reported in the related literature [34].
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Table 2. Mix proportions of ECC.

Raw Materials Cement Fly Ash Sand Water Water Reducer PVA (%) *

Mix proportion 1 4 0.2 0.22 0.0079 2

* Percentage of fiber content by volume.
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Table 3. Tensile mechanical properties of ECC materials.

Number Initial Crack
Strength (MPa)

Initial Fission
Strain (%)

Tensile Modulus
of Elasticity (GPa) Peak Stress (MPa) Ultimate Tensile

Strain (%)

1 2.43 0.27 9.0 5.12 5.24
2 2.74 0.19 11.3 4.78 5.95
3 2.59 0.32 8.1 4.33 5.32

The average 2.59 0.26 9.5 4.68 5.50

2.3. SMA-ECC Pull-Out Specimen Design

To investigate the influence of end shapes on the bonding mechanical properties
between SMA fibers and the ECC matrix, direct pull-out tests were conducted in this
experiment. Semi-dog-bone-shaped specimens consisting of SMA fibers and the ECC
matrix were designed and prepared, as shown in Figure 3a. From top to bottom in Figure 3a,
the specimens had a straight-end shape, curved-end shape and N-end shape, respectively.
Here, Le represents the embedded length of SMA fibers in the ECC matrix, and detailed
dimensions are presented in Figure 3b. The mix proportions of the ECC matrix used in the
specimens are provided in Table 2. During the specimen fabrication process, PVC plastic
boards were placed in corresponding positions of the mold to form the semi-dog-bone-
shaped mold, and the joints were sealed with hot-melt adhesive to prevent water leakage.
Then, the prepared SMA fibers were threaded through the center of the PVC plastic boards
and placed at designated positions according to the experimental grouping requirements.
Finally, the ECC matrix was poured into the mold to fabricate the pull-out specimens.
After the completion of specimen fabrication (Figure 4), the specimens were placed in
a standard curing box for 48 h, followed by demolding and continued standard curing
in a water tank for 28 days. It is worth mentioning that during the production of SMA
fiber ends, high-temperature air guns were used to heat and soften the SMA fibers, which
were then shaped into curved-end or N-end shapes before being cooled and hardened to
achieve the desired end shapes. Furthermore, to ensure that the properties of the SMA
material remained unchanged after heat treatment, the research group also conducted
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tensile mechanical tests on the SMA fibers after the high-temperature heat treatment. The
test results showed no significant differences in the mechanical properties between the
heat-treated SMA fibers and the untreated SMA fibers, which is consistent with the findings
of other researchers [35,36].
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Three types of end shapes, namely, straight, curved and N-end, were selected for the
SMA fibers. The diameters of the SMA fibers used were 1.0 mm, 1.2 mm and 1.5 mm,
respectively. The bonding lengths between the SMA fibers and the ECC matrix were set
at 30 mm, 33.3 mm, 40 mm, 50 mm and 60 mm (the lengths of curved- and N-ends were
not included in the bonding length). The depth-to-diameter ratios (embedding length of
SMA fibers in the matrix divided by the fiber diameter) were set at 25, 33.3, 41.7 and 50,
respectively. To compare the effects of different parameters, five sets of pull-out specimens
were designed, resulting in a total of 27 different types and three specimens for each type,
amounting to a total of 51 specimens. The specific grouping of specimens is presented in
Table 4.

2.4. Pull-Out Mechanical Properties

The pull-out test setup is illustrated in Figure 5, utilizing a universal testing machine
(UTM) for uniaxial tension. Load application was controlled by displacement, with a
loading rate of 1 mm/min. The initial length of the SMA fiber pull-out section was set
to 100 mm. The UTM’s built-in load and displacement sensors were employed to record
the applied load and resulting displacements, respectively. The entire test process was
controlled, and data were synchronized using a computer. The test was terminated when
the SMA fiber was completely pulled out from the matrix, fractured or when the load value
displayed by the testing machine became negative, indicating failure of the specimen. The
ECC matrix portion of the pull-out specimen was fixed using a fixture located beneath
the UTM. A specially designed fixture for the SMA fiber was employed, which involved
threading the SMA fiber through a locking mechanism in the fixture and securing the
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fiber fixture within another fixture located above the UTM. This setup prevented slippage
between the SMA fiber and the testing machine fixture.

Table 4. Specimen grouping table.

Number Number of
Test Pieces

Specimen
Number End Shape Depth-To-Diameter Ratio Diameter/mm

1
3 S-33.3-1.0

Straight
33.3 1.0

3 S-33.3-1.2 33.3 1.2
3 S-33.3-1.5 33.3 1.5

2

3 S-25-1.2

Straight

25 1.2
3 S-33.3-1.2 33.3 1.2
3 S-41.7-1.2 41.7 1.2
3 S-50-1.2 50 1.2

3
3 S-33.3-1.2 Straight

33.3 1.23 C-33.3-1.2 Curved
3 N-33.3-1.2 N-end

4
3 N-33.3-1.0

N-end 33.3
1.0

3 N-33.3-1.2 1.2
3 N-33.3-1.5 1.5

5

3 N-25-1.2

N-end

25

1.2
3 N-33.3-1.2 33.3
3 N-41.7-1.2 41.7
3 N-50-1.2 50
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3. Pull-Out Test Results
3.1. Failure Mode

In this experiment, three failure modes were observed for the specimens, namely,
pull-out failure, fracture failure and splitting failure, as shown in Figure 6. In the case
of pull-out or fracture failure, no cracks were observed on the surface of the ECC and
the matrix remained intact. However, in the case of splitting failure, significant cracking
was observed on the ECC surface, indicating severe damage to the ECC matrix. The
experimental results showed that the specimens with straight- and curved-end SMA fiber
ends primarily experienced pull-out failure. For the specimens with straight-end SMA
fiber ends, as the load increased, the bond strength between the SMA fiber and the ECC
matrix gradually diminished, resulting in fiber debonding and sliding. Once the SMA
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fiber completely debonded from the matrix, it was pulled out. In the case of specimens
with curved SMA fiber ends, the curved shape provided some anchorage force as the
linear portion of the fiber debonded and slid. However, due to stress concentration at the
fiber end, the local mechanical anchorage force of the ECC matrix on the SMA fiber was
insufficient, leading to the failure of anchorage and subsequent fiber sliding and pull-out.
Therefore, the failure mode for these specimens was also pull-out. The specimens with
N-shaped SMA fiber ends are mainly subjected to fiber breakage damage or, when the
fiber depth diameter is relatively small, to matrix splitting damage. This indicates that the
N-shaped end provided sufficient anchorage force for the SMA fiber, preventing premature
failure by preventing the fiber from sliding out of the ECC matrix. This ensured that the
stress in the SMA fiber could continue to increase, providing effective excitation for the
superelasticity of the SMA.
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3.2. SMA Fiber Pull-Out Stress-Displacement Curve

The stress level experienced by the SMA fiber during the pull-out test is an important
indicator for determining whether the SMA material can reach the stress plateau for phase
transformation and effectively exhibit superelasticity. The experimental setup allows for
the collection of load data by the computer system, and the pull-out stress of the SMA fiber
can be calculated using Equation (1).

σf =
P

π
d f

2

4

(1)

where, df is the diameter of the SMA fiber, and P is the SMA fiber loading end of the
tensile load.

By utilizing Equation (1) to calculate the pull-out stress of the SMA fiber and its
corresponding displacement at the loading end, the stress–displacement relationship curve
of the SMA fiber during the pull-out test can be obtained. This curve provides an accurate
understanding of the stress levels and development of the SMA fiber throughout the entire
loading process. The stress–displacement curves of the specimens from different groups
are compared in Figure 7, which reveals distinct stress development processes depending
on the different shapes of SMA fiber ends.

From Figure 7a,b, it can be observed that the stress–displacement curves of SMA fibers
with straight-end configuration can be divided into two stages: the elastic stage and the
debonding stage. In the initial loading stage, the displacement at the loading end of the
SMA fiber is relatively small, and the pull-out stress increases linearly with displacement
until it reaches the peak stress, which corresponds to the elastic stage. As the displacement
increases, the pull-out stress of the SMA fiber continues to decrease until it reaches zero,
indicating the debonding stage between the fiber and the matrix. The peak stresses of these
specimens’ SMA fibers range from 251.3 MPa to 310.6 MPa, which do not reach the starting
stress of the SMA phase transformation (Table 1). Therefore, the SMA fibers in these types
of specimens do not exhibit superelastic behavior throughout the entire tensile process,
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indicating insufficient anchorage provided by the straight-end configuration. Furthermore,
from Figure 7a, it can be observed that as the diameter increases, the stress of the SMA fiber
increases at a faster rate with displacement before reaching the peak stress. However, both
the peak stress and maximum displacement decrease. This phenomenon can be attributed
to the sliding stage of the fiber, where a larger diameter leads to a smaller relative bonding
area and lower ultimate bonding strength. In the descending and residual stages, a larger
diameter results in a faster decrease in average bonding stress and relatively less sliding [37].
From Figure 7b, it can be seen that within a certain range, as the depth-to-diameter ratio
increases, the rate of stress increase with displacement before reaching the peak stress
slows down, whereas both the peak stress and maximum displacement increase. This can
be attributed to the increase in relative bonding area and the corresponding increase in
ultimate bonding strength due to the larger depth-to-diameter ratio [38].
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From Figure 7c,d, it can be observed that the stress–displacement curves of SMA fibers
with N-shaped ends can be divided into three stages: the elastic stage, the martensitic phase
transformation stage and the martensitic hardening stage. In the initial loading stage, the
specimens undergo an elastic stage similar to that of the SMA fibers with a straight-end
configuration. As the displacement at the loading end of the SMA fiber increases, a stress
plateau appears, which corresponds to the martensitic phase transformation stage. When
the displacement at the loading end continues to increase, the pull-out stress of the SMA
fiber significantly rises until failure, indicating the martensitic hardening stage. The peak
stress of the SMA fiber in these specimens is 936.2 MPa, significantly exceeding the stress re-
quired for the SMA phase transformation. The SMA fiber undergoes a complete martensitic
phase transformation and enters the martensitic hardening stage, effectively activating its
superelastic behavior. From Figure 7c, it can be observed that as the diameter increases, the
peak stress slightly increases. This can be attributed to the fact that the bonding strength of
the N-shaped-end specimens mainly comes from the end anchorage. With a larger diameter,
the fiber stiffness increases, leading to a greater mechanical anchorage force between the
fiber and the matrix, resulting in higher pull-out stress [39]. From Figure 7d, it can be seen
that with an increase in the depth-to-diameter ratio, the duration of the martensitic phase
transformation stage slightly increases and the peak stress increases. This is because the
increased effective bonding length brings higher frictional force, thereby enhancing the
bonding strength of the specimens [40].

From Figure 7e, it can be observed that the SMA fibers with a curved end can reach the
stress required for phase transformation. However, as the plastic deformation of the fiber at
the curved end increases due to the phase transformation, the mechanical anchorage force
between the curved end and the matrix decreases, leading to the failure of end anchorage.
Consequently, the fiber is unable to complete the phase transformation and enter the
martensitic hardening stage. On the other hand, the straight-end fibers cannot undergo
the SMA phase transformation, whereas the N-shaped-end fibers can enter the martensitic
hardening stage, which is consistent with the phenomena described earlier.

4. The Bonding Mechanical Property Indexes and Influencing Factors
4.1. Calculation of the Bonding Mechanical Property Indexes
4.1.1. SMA Strength Utilization

The bonding force between SMA fibers and the ECC matrix includes the interfacial
shear force V (comprising adhesive force and frictional force) and the end anchorage force.
The pull-out load P is equal to the sum of the interfacial shear force and the end anchorage
force, as shown in Equation (2). The force diagram is illustrated in Figure 8.

P = V + Fa (2)
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For SMA fibers with a straight end, the bonding force is solely the interfacial shear force
V. Therefore, the average interfacial shear stress τmax can be calculated using Equation (3).

τ =
P

πd f Le
(3)

where df represents the diameter of the SMA fiber, and Le represents the length of the
SMA fiber embedded in the matrix. When the load reaches its maximum value Pmax, the
corresponding average shear stress τmax is regarded as the average shear strength.

4.1.2. Anchorage Stress

For SMA fibers with non-straight ends (curved and N ends), the bonding force includes
both interface shear force V and end anchorage force Fa. The end anchorage force Fa can
be approximately calculated as the increase in bonding force for non-straight-end fibers
compared to straight-end fibers under same conditions, such as the same fiber diameter
and same embedding length, as shown in Equation (4). The pull-out stress of the SMA
fiber resulting from the end anchorage force is called anchorage stress f a, which can be
calculated using Equation (5).

Fa = PE
max − Pmax (4)

fa =
4
(

PE
max − Pmax

)
πd f

2 (5)

where PE
max is the maximum pull-out load of the specimen with a non-straight-end

SMA fiber, and Pmax is that of the specimen with a straight-end SMA fiber under the
same condition.

4.1.3. SMA Strength Utilization

In order to assess the utilization of material strength in SMA fibers, the fiber strength
utilization ratio uf is introduced, which is the ratio of the maximum pull-out stress in the
fiber to its tensile strength, as shown in Equation (6).

u f = (σf ,max / fy) · 100% (6)

where σf,max is the maximum pull-out stress of the SMA fiber, and f y is the ultimate tensile
strength of the SMA fiber.

The improvement in fiber strength utilization due to the fiber end anchorage is repre-
sented by the fiber utilization rate difference ∆uf, as shown in Equation (7).

∆u f =
(

fa / fy
)
· 100% (7)

4.1.4. Calculation Results of the Bonding Mechanical Property Indexes

Based on the tensile strength of SMA fiber (Table 1) and Equations (2) to (7), the
bonding mechanical property indexes of SMA fiber in the pull-out test at the ultimate state
can be calculated. The calculation results are presented in Table 5.

Table 5. SMA fiber bonding academic performance index.

Group Specimen
Number Pmax/N τ/MPa fy/MPa σf,max/MPa fa/MPa uf/% ∆uf/%

Failure
Mode

1

S-33.3-1.0 241.2 2.3 941.9 307.2 ---- 32.6 ---- Pull-out
failure

S-33.3-1.2 328.4 2.2 1001.1 290.5 ---- 29.0 ---- Pull-out
failure

S-33.3-1.5 486.4 2.1 1120.4 275.4 ---- 24.6 ---- Pull-out
failure
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Table 5. Cont.

Group Specimen
Number Pmax/N τ/MPa fy/MPa σf,max/MPa fa/MPa uf/% ∆uf/%

Failure
Mode

2

S-25-1.2 284.1 2.5 1001.1 251.3 ---- 25.1 ---- Pull-out
failure

S-33.3-1.2 328.4 2.2 1001.1 290.5 ---- 29.0 ---- Pull-out
failure

S-41.7-1.2 339.3 1.8 1001.1 300.2 ---- 30.0 ---- Pull-out
failure

S-50-1.2 351.1 1.6 1001.1 310.6 ---- 31.0 ---- Pull-out
failure

3

S-33.3-1.2 328.4 2.2 1001.1 290.5 ---- 29.0 ---- Pull-out
failure

C-33.3-1.2 525.7 ---- 1001.1 465.1 174.6 46.5 17.4 Pull-out
failure

N-33.3-1.2 990.1 ---- 1001.1 875.9 585.4 87.5 58.5 Fracture
failure

4

N-33.3-1.0 668.1 ---- 941.9 851.1 543.9 90.4 57.7 Fracture
failure

N-33.3-1.2 990.1 ---- 1001.1 875.9 585.4 87.5 58.5 Fracture
failure

N-33.3-1.5 1598.6 ---- 1120.4 905.1 629.7 80.8 56.2 Splitting
failure

N-25-1.2 884.0 ---- 1001.1 782.2 491.7 78.1 49.1 Splitting
failure

N-33.3-1.2 990.1 ---- 1001.1 875.9 585.4 87.5 58.5 Fracture
failure

N-41.7-1.2 1025.2 ---- 1001.1 906.9 616.4 90.6 61.6 Fracture
failure

N-50-1.2 1047.1 ---- 1001.1 926.3 615.7 92.5 61.5 Fracture
failure

4.2. Influencing Factors of Bonding Mechanical Property Indexes
4.2.1. Straight-End SMA Fiber

(1) Effect of diameter on the bonding mechanical properties

To investigate the influence of different diameters of straight-end SMA fibers on
bonding mechanical property indexes, three groups of specimens with different diameters,
namely, S-33.3-1.0, S-33.3-1.2 and S-33.3-1.5, were selected for comparison.

According to Table 5 and Figure 9a, the peak stresses of the mentioned specimens are
307.2 MPa, 290.5 MPa and 275.4 MPa, with fiber strength utilizations of 32.6%, 29% and
24.6%, respectively. This indicates that as the diameter increases, both the peak stress and
fiber strength utilization of the SMA fiber gradually decrease. This phenomenon can be
attributed to the Poisson effect that occurs in SMA fibers under stress. As the fiber diameter
increases, the transverse contraction strain also increases, resulting in a faster reduction in
frictional force between the SMA fiber and the matrix, accelerating the failure of chemical
bonding strength. Consequently, the peak stress of the SMA fiber decreases with increasing
diameter [41]. Additionally, according to Table 1, the tensile strength of the SMA fiber
increases with diameter. As a result, based on Equation (6), the pull-out stress is directly
proportional to the fiber strength utilization, therefore, when the peak pull-out stress of the
fiber decreases, the fiber strength utilization decreases.

According to Table 5 and Figure 9b, the average shear strengths are 2.3 MPa, 2.2 MPa
and 2.1 MPa for the respective specimens. Based on the analysis of peak stress mentioned
above, as the diameter increases, the transverse contraction strain also increases, so the
Poisson effect causes a decrease in both the frictional force and bonding strength between
the SMA fiber and the matrix. Consequently, this leads to a reduction in shear strength.
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(2) Effect of depth-to-diameter ratio on the bonding mechanical properties

To investigate the influence of different depth-to-diameter ratios on the bonding
mechanical properties of straight-end SMA fibers, four sets of specimens with varying
depth-to-diameter ratios, namely, S-25-1.2, S-33.3-1.2, S-41.7-1.2 and S-50-1.2, were selected
for comparison.

According to Table 5 and Figure 10a, the peak stresses of the aforementioned specimens
are 251.3 MPa, 290.5 MPa, 300.2 MPa and 310.6 MPa, with fiber strength utilization ratios
of 25.1%, 29.0%, 30.0% and 31.0%, respectively. This indicates that as the depth-to-diameter
ratio increases, both the peak stress and fiber strength utilization ratio also increase. This
can be attributed to the fact that for SMA fibers with the same diameter, as the embedment
depth in the matrix increases, the contact area between the SMA fiber and the matrix
increases. Consequently, the available bonding forces, including both interfacial adhesion
and frictional forces, increase, leading to an increase in peak stress. Additionally, because
the ultimate tensile strength of the SMA fiber remains constant for fibers with the same
diameter, according to Equation (6), the fiber strength utilization ratio increases with the
increase in peak stress.

Buildings 2023, 13, x FOR PEER REVIEW 13 of 18 
 

  
(a) Pull-out stress, fiber strength and fiber utilization efficiency (b) Average shear strength 

Figure 10. Effect of different depth-to-diameter ratio on the bonding properties of straight-end SMA 
fibers. 

According to Table 5 and Figure 10b, the average shear strengths of the aforemen-
tioned specimens are 2.5 MPa, 2.2 MPa, 1.8 MPa and 1.6 MPa, respectively. This indicates 
that as the depth-to-diameter ratio increases, the shear strength between the interfaces of 
the specimens decreases. This phenomenon can be attributed to the stress arching effect 
within the specimens, resulting in an uneven distribution of shear stress and the formation 
of stress concentration peaks. As the depth-to-diameter ratio increases, i.e., when the em-
bedment depth of the SMA fiber increases, the proportion of the effective stress region 
decreases. Consequently, the concentration of stress at the interface decreases, leading to 
a reduction in interfacial shear strength [42]. 

4.2.2. Non-Straight-End SMA Fiber 
(1) Effect of end shape on the bonding mechanical properties 

In order to investigate the influence of different end configurations of SMA fibers on 
bonding mechanical properties, three groups of specimens with different end configura-
tions, namely, S-33.3-1.2, C-33.3-1.2 and N-33.3-1.2, were selected for comparison. 

From Figure 11a and Table 5, it can be observed that the peak stress values for the 
straight-, curved- and N-shaped-end specimens of SMA fibers are 290.5 MPa, 465.1 MPa 
and 875.9 MPa, respectively. The anchorage stress values for the curved- and N-shaped-
end specimens are 174.6 MPa and 585.4 MPa, respectively. The failure mode for the 
straight- and curved-end specimens is pull-out failure, whereas the failure mode for the 
N-shaped-end specimens is fracture failure. The peak stress of the N-shaped-end speci-
mens is 1.9 times higher than that of the curved-end specimens and 3.0 times higher than 
that of the straight-end specimens, indicating that the N-shaped end significantly im-
proves the bonding strength between SMA fibers and the ECC matrix. 

Figure 10. Effect of different depth-to-diameter ratio on the bonding properties of straight-end
SMA fibers.

According to Table 5 and Figure 10b, the average shear strengths of the aforementioned
specimens are 2.5 MPa, 2.2 MPa, 1.8 MPa and 1.6 MPa, respectively. This indicates that
as the depth-to-diameter ratio increases, the shear strength between the interfaces of the
specimens decreases. This phenomenon can be attributed to the stress arching effect within
the specimens, resulting in an uneven distribution of shear stress and the formation of stress
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concentration peaks. As the depth-to-diameter ratio increases, i.e., when the embedment
depth of the SMA fiber increases, the proportion of the effective stress region decreases.
Consequently, the concentration of stress at the interface decreases, leading to a reduction
in interfacial shear strength [42].

4.2.2. Non-Straight-End SMA Fiber

(1) Effect of end shape on the bonding mechanical properties

In order to investigate the influence of different end configurations of SMA fibers on
bonding mechanical properties, three groups of specimens with different end configura-
tions, namely, S-33.3-1.2, C-33.3-1.2 and N-33.3-1.2, were selected for comparison.

From Figure 11a and Table 5, it can be observed that the peak stress values for the
straight-, curved- and N-shaped-end specimens of SMA fibers are 290.5 MPa, 465.1 MPa
and 875.9 MPa, respectively. The anchorage stress values for the curved- and N-shaped-end
specimens are 174.6 MPa and 585.4 MPa, respectively. The failure mode for the straight-
and curved-end specimens is pull-out failure, whereas the failure mode for the N-shaped-
end specimens is fracture failure. The peak stress of the N-shaped-end specimens is
1.9 times higher than that of the curved-end specimens and 3.0 times higher than that of
the straight-end specimens, indicating that the N-shaped end significantly improves the
bonding strength between SMA fibers and the ECC matrix.
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This can be attributed to the fact that the bonding performance of the straight-end spec-
imens is limited because they rely solely on interfacial shear force to resist pull-out loads.
Although the curved-end specimens can provide some anchorage force, stress concentra-
tion and deformation at the end of the fiber occur during the anchorage process, leading
to a continuous reduction in mechanical interlocking force and premature anchorage fail-
ure [43]. On the other hand, the N-shaped end exhibits prominent mechanical interlocking,
which can provide sufficient anchorage force. Hence, the peak stress of the N-shaped-end
specimens is significantly higher than that of the straight- and curved-end specimens.

According to Table 5, the fiber strength utilization rate of the N-shaped-end specimens
is increased by 58.5% compared to the straight-end specimens. This indicates that the
anchorage force of the N-shaped end can significantly enhance the fiber strength utilization
rate of SMA fibers, surpassing that of the curved- and straight-end specimens, which is
consistent with the stress analysis conclusion presented above.

(2) Effect of fiber diameter on the bonding mechanical properties

To investigate the influence of fiber diameter on the bonding mechanical properties of
N-shaped-end SMA fibers, three groups of specimens with different diameters, N-33.3-1.0,
N-33.3-1.2 and N-33.3-1.5, were selected for comparison.
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According to Table 5, the failure mode of SMA fibers with diameters of 1.0 mm and
1.2 mm is pull-out failure, whereas the failure mode of the fiber with a diameter of 1.5 mm is
splitting failure. This phenomenon indicates that as the diameter of the SMA fiber increases,
the mechanical anchorage force provided by the end becomes greater. When the anchorage
force at the fiber end exceeds the shear carrying capacity of the matrix, insufficient shear
resistance of the matrix occurs as the pull-out load increases, leading to splitting failure in
the specimen [44]. This observation further confirms the excellent mechanical interlocking
effect of the N-shaped end.

Moreover, as shown in Figure 12a, the anchorage stress of N-shaped-end specimens
with diameters of 1.0 mm, 1.2 mm and 1.5 mm are 543.9 MPa, 585.4 MPa and 629.7 MPa,
respectively. This indicates that the anchorage stress of the N-shaped end increases ap-
proximately linearly with the diameter. This phenomenon can be attributed to the fact
that, under the condition of sufficient anchorage at the end, the resistance to pull-out of
N-shaped-end SMA fibers mainly relies on the anchorage force at the end. As the diameter
of the SMA fiber increases, the fiber’s tensile strength and stiffness increase, resulting in
greater mechanical anchorage force. Therefore, larger SMA fiber diameters result in higher
anchorage stresses.
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SMA fibers and ECC matrix.

The fiber utilization rates of the N-shaped-end specimens with the three different
diameters increased by 90.4%, 87.5% and 80.8%, respectively. Considering the occurrence of
split failure in the 1.5 mm SMA fiber, it can be inferred that the decrease in fiber utilization
rate is mainly attributed to the limited strength of the matrix, which cannot withstand the
decreasing capacity to withstand the anchorage stress at the fiber end. This observation
aligns with the conclusion reported in reference [45].

(3) Effect of depth-to-diameter ratio on the bonding mechanical properties

To investigate the influence of the depth-to-diameter ratio on the bond mechani-
cal properties of N-shaped-end SMA fibers, four sets of specimens with different depth-
to-diameter ratios, namely, N-25-1.2, N-33.3-1.2, N-41.7-1.2 and N-50-1.2, were selected
for comparison.

According to Table 5, the SMA fiber with a depth-to-diameter ratio of 25 exhibited a
splitting failure mode, indicating insufficient embedding length of the SMA fiber within
the matrix. However, as the depth-to-diameter ratio increased, all specimens experienced a
fracture failure mode, indicating that the embedding length of the SMA fiber in the matrix
was sufficient to achieve adequate anchorage at the ends.

Furthermore, as shown in Figure 13a, the aforementioned specimens exhibited anchor-
age stresses of 491.7 MPa, 585.4 MPa, 616.4 MPa and 615.7 MPa, respectively. This indicates
that with an increase in the depth-to-diameter ratio, the anchorage stress initially rises and
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then stabilizes. This behavior can be attributed to the fact that, under conditions where
the fiber end is sufficiently anchored and the matrix has adequate shear resistance, the
load-carrying capacity of the N-shaped-end SMA fiber primarily relies on the anchorage
force at the end, but the depth of fiber embedding in the matrix has a relatively minor
effect [46].

Buildings 2023, 13, x FOR PEER REVIEW 16 of 18 
 

  
(a) Anchorage stress (b) Fiber strength utilization 

Figure 13. Effect of different depth-to-diameter ratio on the bonding properties between SMA fibers 
and ECC matrix. 

5. Conclusions 
To investigate the effect of fiber end on the bonding mechanical properties between 

SMA fibers and the ECC matrix, direct pull-out tests were conducted in this study. Pa-
rameters such as pull-out stress, average shear strength, anchorage stress and fiber utili-
zation ratio were analyzed. The effects of SMA fiber end shape, diameter, and depth-to-
diameter ratio were compared. The main research findings are summarized as follows: 
1. The shear strength at the interface decreases as the depth-to-diameter ratio or diam-

eter increases for SMA fibers with a straight end. The peak stress of SMA fibers with 
a straight end is 310.6 MPa, which is significantly lower than the stress level required 
for the martensitic transformation of SMA fibers. Consequently, the fibers do not un-
dergo superelastic behavior, resulting in a low fiber utilization ratio. 

2. Compared to the straight-end fibers, the peak stress of SMA fibers with a curved end 
is higher, at 465.1 MPa, which can reach the stress level required for martensitic trans-
formation. However, during the anchorage process, the stress concentration and de-
formation at the curved end leads to a continuous reduction in mechanical interlock-
ing force and premature anchorage failure, thereby preventing the full development 
of superelasticity. 

3. The N-shaped end provides sufficient anchorage capacity for SMA fibers, signifi-
cantly enhancing the bond strength between SMA fibers and the ECC matrix. The 
peak stress of SMA fibers can reach 875.9 MPa, which is 1.9 times and 3.0 times higher 
than that of curved-end and straight-end SMA fibers, respectively. This enables the 
stress in SMA fibers to reach the martensitic hardening stage until fiber fracture, 
thereby providing ample support for the full utilization of superelasticity in SMA 
fibers embedded in the ECC matrix. 

4. Under the full anchorage condition, as the fiber diameter increases, the anchorage 
stress at the N-shaped end increases and the enhanced fiber strength utilization de-
creases. With an increase in the depth-to-diameter ratio, both the anchorage stress 
and the enhanced fiber strength utilization initially increase and then stabilize. When 
the depth-to-diameter ratio is 41.7, the anchorage stress and the enhanced fiber 
strength utilization reach their maximum values, namely, 616.4 MPa and 61.6%, re-
spectively. 
This study focused solely on experimental research, and further investigations are 

needed to explore relevant bonding mechanics models. Additionally, in future research, 
exploring the combination of surface treatments of SMA fibers and the implementation of 

Figure 13. Effect of different depth-to-diameter ratio on the bonding properties between SMA fibers
and ECC matrix.

The fiber utilization ratios of N-shaped-end SMA fibers with different depth-to-
diameter ratios increased by 49.1%, 58.5%, 61.6% and 61.5%, respectively. This also indicates
that, under conditions of sufficient fiber anchorage at the end and adequate shear resistance
of the matrix, the depth of fiber embedding has a minor effect on the fiber utilization ratio.

5. Conclusions

To investigate the effect of fiber end on the bonding mechanical properties between
SMA fibers and the ECC matrix, direct pull-out tests were conducted in this study. Parame-
ters such as pull-out stress, average shear strength, anchorage stress and fiber utilization
ratio were analyzed. The effects of SMA fiber end shape, diameter, and depth-to-diameter
ratio were compared. The main research findings are summarized as follows:

1. The shear strength at the interface decreases as the depth-to-diameter ratio or diameter
increases for SMA fibers with a straight end. The peak stress of SMA fibers with a
straight end is 310.6 MPa, which is significantly lower than the stress level required
for the martensitic transformation of SMA fibers. Consequently, the fibers do not
undergo superelastic behavior, resulting in a low fiber utilization ratio.

2. Compared to the straight-end fibers, the peak stress of SMA fibers with a curved
end is higher, at 465.1 MPa, which can reach the stress level required for martensitic
transformation. However, during the anchorage process, the stress concentration and
deformation at the curved end leads to a continuous reduction in mechanical interlock-
ing force and premature anchorage failure, thereby preventing the full development
of superelasticity.

3. The N-shaped end provides sufficient anchorage capacity for SMA fibers, significantly
enhancing the bond strength between SMA fibers and the ECC matrix. The peak stress
of SMA fibers can reach 875.9 MPa, which is 1.9 times and 3.0 times higher than that of
curved-end and straight-end SMA fibers, respectively. This enables the stress in SMA
fibers to reach the martensitic hardening stage until fiber fracture, thereby providing
ample support for the full utilization of superelasticity in SMA fibers embedded in
the ECC matrix.

4. Under the full anchorage condition, as the fiber diameter increases, the anchorage
stress at the N-shaped end increases and the enhanced fiber strength utilization de-
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creases. With an increase in the depth-to-diameter ratio, both the anchorage stress and
the enhanced fiber strength utilization initially increase and then stabilize. When the
depth-to-diameter ratio is 41.7, the anchorage stress and the enhanced fiber strength
utilization reach their maximum values, namely, 616.4 MPa and 61.6%, respectively.

This study focused solely on experimental research, and further investigations are
needed to explore relevant bonding mechanics models. Additionally, in future research,
exploring the combination of surface treatments of SMA fibers and the implementation of
end anchorage techniques could potentially enhance the bonding strength between SMA
fibers and the ECC matrix.
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