
Citation: Qaderi, S.; Adinolfi, V.;

Germano, G.; Benzoni, G.; Luciano,

R.; Fraternali, F. An Experimental and

Mechanical Study of a Two-Layer,

Bioinspired Seismic Isolator for

Multistory Buildings. Buildings 2023,

13, 2272. https://doi.org/

10.3390/buildings13092272

Academic Editor: Elena Mele

Received: 8 August 2023

Revised: 5 September 2023

Accepted: 5 September 2023

Published: 7 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

An Experimental and Mechanical Study of a Two-Layer,
Bioinspired Seismic Isolator for Multistory Buildings
Saeedeh Qaderi 1 , Valentina Adinolfi 1, Giovanni Germano 1, Gianmario Benzoni 1, Raimondo Luciano 2

and Fernando Fraternali 1,*

1 Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy; saeedeh.q90@gmail.com (S.Q.);
vadinolfi@unisa.it (V.A.); ggermano@unisa.it (G.G.); gbenzoni@unisa.it (G.B.)

2 Department of Engineering, Parthenope University, Centro Direzionale ISOLA C4, 80133 Napoli, Italy;
raimondo.luciano@uniparthenope.it

* Correspondence: f.fraternali@unisa.it

Abstract: This work illustrates a novel two-layer version of the sliding–stretching isolator recently
proposed in the literature to protect buildings and infrastructure from seismic waves. Such a device
has a biomimetic character and is formed by rigid members mimicking the role played by human
arms and legs when walking or running, and deformable membranes referred to as tendons. It tunes
the elongation and contraction of the tendons to recenter the system and to safely avoid resonance
of the system with earthquake frequencies. The paper illustrates how is possible to generalize the
mechanical model of the one-layer isolator (SSI1) formulated in previous studies to account for the
presence of the second layer (SSI2 system). The two-layer device doubles the lateral displacement
capacity of the system, while keeping the footprint of the device fixed. Shake-table tests on reduced-
scaled SSI2 prototypes are employed to derive the constitutive parameters of the proposed mechanical
model and to experimentally validate it. The given results demonstrate that SSI2 systems pave the
way to real-life applications of sliding–stretching isolators in multistory buildings.

Keywords: seismic isolation; bioinspired design; shake-table tests; multistory buildings

1. Introduction

Next-generation buildings need to integrate sustainability features as well as en-
hanced structural resilience to natural hazards like earthquakes, storm winds, floods, and
tsunamis, among others. Seismic isolation is a convenient earthquake protection technique
for civil buildings and infrastructures (see, e.g., the review paper [1] and references therein),
vibration-sensitive equipment in hospitals [2], nuclear power plants [3–5], as well as art-
works in museums [6]. In this case, a superstructure is separated from its substructure by
the insertion of compliant devices (seismic isolators) that permit relative motions of the
structural systems at the interface level. Elastomeric bearings [7–9] and friction-pendulum
(FP) isolators [10] are frequently employed nowadays to design earthquake-proof struc-
tures. With this system, the fundamental periods of vibration are designed so as to avoid
the resonance of the isolated building with seismic excitations, taking care to avoid the
displacement drift between the superstructure and the foundation (that is, the displacement
capacity of the isolation system) does not exceed suitable design limits [11]. However, the
considerably high costs and complex manufacturing processes required to install these
devices limit their use in developing countries to relevant public buildings and infras-
tructures [12,13]. Some low-cost isolators have been proposed in the literature, including,
among others, the replacement of confinement steel plates in rubber bearings with fiber-
reinforced composites [14], the use of recycled elastomers [15], nanocomposite rubber [16],
composite sand–rubber layers [17], etc. There is ongoing research into how the mechanical
properties of these systems will age [13,18].
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Seismic isolation is usually applied to low- or medium-rise multistory buildings
since its efficiency and economical convenience are inversely proportional to the (effective)
compliance of the superstructure, which typically grows with the height of the building [19].
Nevertheless, interesting applications of such a technology have been proposed in the
literature for tall buildings, by considering distributed isolation systems that permit the
segmentation of an earthquake-resistant building along its height (refer, e.g., to [20,21]
and references therein). Since the design displacement capacity of the isolation system
grows with the number of stories of the superstructure, when the first mode of vibration
dominates the seismic response of the system [22], it is important to employ isolators that
can achieve large lateral displacements for a given footprint of the isolator.

This study builds on recent research dealing with innovative and bioinspired seismic
isolators, which combine sliding–stretching energy dissipation mechanisms to protect a
structure from seismic waves [23,24]. The main goal of this line of research is to show that
it is possible to build cost-effective and easily tunable seismic isolation devices that can be
designed using a bioinspired approach and can be assembled from environmentally sus-
tainable components, using ordinary 3D printers and biobased and/or recycled materials to
build the non-structural parts (see, e.g., the Nature article [24]). The mechanical properties
of these devices can be tuned by optimizing the internal architecture of the unit cell, the
friction mechanisms at the interface between the terminal plates and the sliding posts, as
well as by adjusting the pretension and the material of the tendons [23]. This research
is aimed at overcoming the main limitations of currently available commercial isolators,
namely the employment of heavy industry for their manufacture, their limited tunability,
and the inherent costs, as already observed. The bioinspiration for this study comes from
animals in motion, as it has been discovered that animals tend to achieve a resonance
condition between the frequency of the force produced by muscle contraction and their
natural vibration frequencies, thus minimizing energy consumption [25]. Leg and arm
bones, when bent by their muscles, act like pendulums, while the presence of tendons con-
fers a shock-absorption capacity to the locomotion system [26,27]. By tessellating unit cells
with various architectures, the research presented in [23] is aimed at designing bioinspired
seismic “metaisolators” that are able to inverse this function: they avoid resonance between
the (effective) natural frequency of the system and the excitation frequencies of earthquakes
by suitably deforming the tendons in the large deformation regime. The present paper
builds on the research illustrated in [23], to show that a two-layer version of the seismic
isolator formulated in the aforementioned study is able to double the displacement capacity
of the device for a given footprint. Such a key result is crucial to permit the application
of sliding-stretching isolators (SSI) to medium- and high-rise buildings. The structure of
this paper is as follows. Section 2 presents the adopted mechanical model of the two-layer
sliding–stretching isolator (hereafter referred to as SSI2), which is obtained by suitably
generalizing the one formulated in [23] for the one-layer system (SSI1). The given model
accounts for the fact that the SSI2 system is formed by two superimposed SSI1 systems that
move in opposite directions. Section 3 illustrates the results of experimental tests run on
reduced-scale samples of such a device, using a dedicated shake-table setup available at
the Laboratory of Structural Engineering of the University of Salerno. The fitting of the
theoretical model given in Section 2 to experimentally record the lateral force vs. lateral
displacement responses is presented in Section 4. We end in Section 5 with concluding
remarks and directions for future research.

2. Mechanical Model of the SSI2

The single-layer SSI is formed by a central post that translates in solidarity with a
top plate and is free to slide against a bottom plate. The top plate transmits the vertical
load P applied by the superstructure, while the bottom plate is attached to the foundation
(Figure 1A). The central post is connected to four fixed corner posts through rigid and
articulated “limb” members and stretchable tendons. The limbs of the device drive the
motion of the central post and are connected to each other through vertical hinges (elbow
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and knee joints). The deformable tendons play a recentering role and dissipate energy
through hysteretic pseudo-elasticity. A cap covers the central post and permits the relative
rotation between the post and the top plate (the reader is referred to Ref. [23] for further
details about the SSI1 system).
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This work examines a two-layer version of the SSI, which is obtained by superimposing
two SSI1 unit cells, with the upper cell flipped upside down with respect to the lower
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cell. The central posts of such layers form a unique member, which exhibits a first sliding
displacement u1 with respect to the bottom plate, and a second sliding displacement
u2 with respect to the top plate. These displacements are equal in magnitude and have
opposite directions, which implies that the SSI2 has a doubled displacement capacity over
an SSI1 with the same footprint. Said u = u1 + u2, the drift between the terminal plates of
the SSI2, Figure 1A,B highlights the transfer mechanisms of the P− u moments induced
by the relative motion of the terminal plates to the foundation and the superstructure.
One observes that the P − u moment is fully transferred to the foundation in the SSI1
(Figure 1A), and applied half to the superstructure, and half to the foundation in the SSI2
(Figure 1B), which marks an analogy with double-dish FP sliders [28]. In the SSI2 system,
the corner posts of the two layers transmit two equal and opposite forces F1 = Fr1 + Ff 1
and F2 = Fr2 + Ff 2 to the terminal plates. Here, Fr1 and Fr2 denote the restoring forces
transmitted by the tendons of the bottom and top layers, respectively. Similarly, Ff 1 and
Ff 2, respectively, denote the friction forces acting at the interfaces between the central post
and the bottom and top plates (Figure 1B). As a result, one of the two layers of the SSI2
transmits the same forces as those transmitted by an SSI1 to the superstructure and the
foundation but allows a double drift between the terminal plates, as already described. It is
also worth noting that the deformed configurations of each layer of the SSI2 replicate the
shape of a human body with bent arms and legs (Figure 1B).

Let a1 and a2 denote the lengths of the two members forming each limb of the generic
layer, and α1, α2; β1, β2; γ1, γ2; δ1, δ2 the angles formed by such members with the axes
of Cartesian fame x, y, as shown in Figure 2. The deformed positions of the elbow/knee
joints are obtained by intersecting a circle with a radius a1 centered at a corner post and a
circle with a radius a2 centered at the deformed position of the central post. The latter is
obtained by giving to such a post a displacement with magnitude η (η = u1 in the bottom
layer; η = u2 in the top layer), along a direction inclined at an arbitrary angle α with the
x-axis (Figure 2).
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Said (xi, yi) the deformed positions of all the joints forming the current layer (i = 1, . . . , 9,
see Figure 2), the rotation angles of the limb members are obtained by solving the following
compatibility equations:

x8 = x9 + a1 sin(α1) = x5 + η cos(α)− a2 cos(α2)
y8 = y9 + a1 cos(α1) = y5 + η sin(α)− a2 sin(α2)
x6 = x3 − a1 cos(β1) = x5 + η cos(α)− a2 cos(β2)
y6 = y3 + a1 sin(β1) = y5 + η sin(α)− a2 cos(β2)
x2 = x1 + a1 sin(γ1) = x5 + η cos(α) + a2 cos(γ2)
y2 = y1 − a1 cos(γ1) = y5 + η sin(α)− a2 sin(γ2)
x4 = x7 + a1 cos(δ1) = x5 + η cos(α)− a2 sin(δ2)
y4 = y7 + a1 sin(δ1) = y5 + η sin(α) + a2 cos(δ2)

(1)

The solution to Equation (1) can be obtained numerically [23]. Once one of the rotation
angles of the limb members α1, α2, . . ., δ1, δ2 has been computed from such equations, one
obtains the deformed positions of all the free nodes of each layer, for any couple (η, α)
(Figure 2).

We now pass on to derive the constitutive response F vs. u response of the SSI2, with
F = Fr + Ff ; F equal to either F1 or F2; Fr equal to either Fr1 or Fr2; and Ff equal to either
Ff 1 or Ff 2 (Figure 1B). By summing up the restoring forces carried out by all the tendons
attached to the central post of the generic layer, we obtain

Fr = At

(
∑

j
(1 + ψ) σ̂

(
λj
)
k̂j

)
·k̂u

(2)

where the index j runs on all the tendons (j = 1, . . . , 4); σ̂
(
ε j
)

indicates the “pseudo-elastic”
stress (σ̂) vs. stretch ratio (λj) model of the generic tendon (see Section 4); ψ indicates a
strain rate parameter; and it results in k̂u

= (cos(α), sin(α), 0) (see [23] and Section 4). The
constitutive model of the friction force is as follows

Ff = µ P sign(v) (3)

where P is the vertical load; v =
.
u is the sliding velocity (having employed the superim-

posed dot to denote time derivatives); and µ is a friction coefficient that depends on the
current values of P and v through

µ = µs0 e
− P

Pre f

(
γ + (1− γ) e

− |v|
vre f

)
(4)

In Equation (4), Pre f and vre f denote reference values of the vertical load and the sliding
velocity, respectively, while µs0 and γ indicate additional constitutive parameters [10]. The
experimental results presented in [23] and those given in Section 4 of the present manuscript
show that the adopted model (Figure 3) adequately captures the recentering action of the
tendons on the central post, and the friction effects acting at the interfaces between the
sliders placed at the extremities of the central post and the terminal plates.



Buildings 2023, 13, 2272 6 of 13
Buildings 2023, 13, x FOR PEER REVIEW 6 of 13 
 

 
Figure 3. Overall theoretical model of the constitutive response 𝐹 vs. 𝑢 of the SSI2, in association 
with plots of the recentering (𝐹) and friction (𝐹) components. 

3. Experimental Tests on Physical Samples 
Experimental tests were run on two physical models of the SSI2 by following the 

recommendations of the European Standard EN 15129 Anti-seismic devices [29], for what 
concerns both the general design rules and the testing requirements. The examined spec-
imens are graphically illustrated in Figures 4 and 5. They feature two identical superim-
posed layers exhibiting the following geometrical properties: limb lengths 𝑎ଵ= 97.0 mm, 𝑎ଶ = 100.5 mm (Figure 2); central post made of S235 steel (235 MPa yield strength; 360 MPa 
ultimate strength; 210 GPa Young modulus, 7.85 g/cm3 mass density [30]) with a cylindri-
cal core with a 25 mm diameter, fitted with a 70 mm diameter cap, for a total height (in-
cluding the cap and the slider) of 65 mm; sliders consisting of circular discs with 30 mm 
diameters and 5 mm thickness made of polytetrafluoroethylene (PTFE: properties given 
in [23,31,32]); S235 steel corner posts exhibiting a 10 mm diameter cylindrical core, a 26 
mm diameter base enlargement with a 6 mm height, and a total height of 50 mm. The 
prototypes are confined between two square plates made of an Aluminum 7075-T651 alloy 
(Ergal) with a 250 mm edge and a 15 mm thickness (572 MPa yield strength; 503 MPa 
ultimate strength; 71.7 GPa Young modulus, 2.81 g/cm3 mass density). 

The tendons have a prismatic central region with a 31.6 mm height and thickness 𝑡 
variable from 4.0 mm (sample #1) down to 1.9 mm (sample #2). These elements are 3D 
printed, making use of a filament of thermoplastic polyurethane (TPU) for fused deposi-
tion modeling (FDM). They terminate with cylindrical rods that are inserted into rings 
attached to the corner posts and have encased steel bolts acting as stiffeners. The non-
structural parts of the analyzed SSI2 prototypes (e.g., the limb members) are instead 3D 
printed using an eco-friendly polylactic acid (PLA) filament for FDM, with a mass density 
of 1.24 g/cm3, tensile strength at yield of 50 MPa, and a tensile elastic modulus of 3.60 GPa. 
Each of the two layers forming these systems has the same geometry as the single layer 
used by the SSI1 studied in [23], to which the reader is referred for further details about 
the geometry of the device and the rapid prototyping techniques used for its fabrication. 
The dimensions of the analyzed samples correspond to small-scale isolation devices of the 
kind used, e.g., for the seismic protection of artworks in museums [6]. 

Figure 3. Overall theoretical model of the constitutive response F vs. u of the SSI2, in association
with plots of the recentering (Fr) and friction (Ff ) components.

3. Experimental Tests on Physical Samples

Experimental tests were run on two physical models of the SSI2 by following the
recommendations of the European Standard EN 15129 Anti-seismic devices [29], for what
concerns both the general design rules and the testing requirements. The examined speci-
mens are graphically illustrated in Figures 4 and 5. They feature two identical superimposed
layers exhibiting the following geometrical properties: limb lengths a1= 97.0 mm, a2 = 100.5
mm (Figure 2); central post made of S235 steel (235 MPa yield strength; 360 MPa ultimate
strength; 210 GPa Young modulus, 7.85 g/cm3 mass density [30]) with a cylindrical core
with a 25 mm diameter, fitted with a 70 mm diameter cap, for a total height (including the
cap and the slider) of 65 mm; sliders consisting of circular discs with 30 mm diameters
and 5 mm thickness made of polytetrafluoroethylene (PTFE: properties given in [23,31,32]);
S235 steel corner posts exhibiting a 10 mm diameter cylindrical core, a 26 mm diameter
base enlargement with a 6 mm height, and a total height of 50 mm. The prototypes are
confined between two square plates made of an Aluminum 7075-T651 alloy (Ergal) with a
250 mm edge and a 15 mm thickness (572 MPa yield strength; 503 MPa ultimate strength;
71.7 GPa Young modulus, 2.81 g/cm3 mass density).

The tendons have a prismatic central region with a 31.6 mm height and thickness t
variable from 4.0 mm (sample #1) down to 1.9 mm (sample #2). These elements are 3D
printed, making use of a filament of thermoplastic polyurethane (TPU) for fused deposition
modeling (FDM). They terminate with cylindrical rods that are inserted into rings attached
to the corner posts and have encased steel bolts acting as stiffeners. The non-structural
parts of the analyzed SSI2 prototypes (e.g., the limb members) are instead 3D printed using
an eco-friendly polylactic acid (PLA) filament for FDM, with a mass density of 1.24 g/cm3,
tensile strength at yield of 50 MPa, and a tensile elastic modulus of 3.60 GPa. Each of the
two layers forming these systems has the same geometry as the single layer used by the
SSI1 studied in [23], to which the reader is referred for further details about the geometry
of the device and the rapid prototyping techniques used for its fabrication. The dimensions
of the analyzed samples correspond to small-scale isolation devices of the kind used, e.g.,
for the seismic protection of artworks in museums [6].
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Experimental characterization of the analyzed SSI2 samples was carried out using a
shake-table setup for the testing of small- and medium-scale prototypes of seismic isolators
available at the Laboratory of Structural Engineering of the University of Salerno. The key
properties of this setup, which is diffusely illustrated in Ref. [33], are described in Table 1.
We applied two values of the vertical load, namely P = 5 kN and P = 10 kN, in association
with sinusoidal displacement histories of each layer of the samples under testing, which
show 0.4 Hz frequency, ±25 mm amplitude, and are composed of a number of training
cycles variable between 2 and 4 and 3 additional loading cycles. The overall displacement
capacity (displacement drift) of the tested specimen is ±50 mm. The load cells and the
laser sensors illustrated in [33] were used to measure vertical and horizontal forces and
horizontal displacements, respectively.

Table 1. Key properties of the employed shake-table setup.

Weight 2.94 kN

Total Length ×Width × Height 2570 mm × 1200 mm × 1000 mm
Terminal plates dimensions 700 mm × 700 mm

Vertical distance between terminal plates variable: 20–550 mm
Maximum horizontal force 3 kN

Maximum vertical load 30 kN
Maximum displacement of the base plate ±200 mm

Maximum frequency 20 Hz
Maximum velocity 1 m/s

Maximum acceleration 3 m
s2

The matrix of the examined tests is presented in Table 2. It is worth noting that the
couples of tests 5,6; 6,8; 9,11; and 10–12 provide repetitions of identical loading conditions.
Viky Grease n. 51A by Viky® (https://viky.viky.it/, accessed on 4 September 2023) was
employed as a lubricant in correspondence to the sliders of each layer. Additional tests
were run to perform the preconditioning of the tendons [23] and for calibration purposes.

Table 2. Test matrix.

Test Number Tested Sample P (kN)

5, 6 sample #1 (t = 4.0 mm) 5

6, 8 sample #1 (t = 4.0 mm) 10

9, 11 sample #2 (t = 1.9 mm) 5

10, 12 sample #2 (t = 1.9 mm) 10

Figure 6 shows the F vs. u responses of the tested samples (after the training cycles),
which highlight the achievement of the maximum (absolute) lateral force in correspondence
to sample #1 with 4.0 mm thickness of the tendons–membranes under P = 10 kN (test #8),
and the minimum (absolute) lateral force in correspondence to sample #2 with 1.9 mm
thickness of the tendons under P = 5 kN (test #11). One also observes from the results in
Figure 6 that the samples equipped with 4.0 mm tendons exhibit more marked recentering
components of the F-u laws (tests #7,8), as compared to the samples exhibiting 1.9 mm
tendons (tests #11,12). The F-u curves recorded for tests #7,8 indeed exhibit loading and
unloading branches with slightly larger slopes, over the F-u curves recorded for tests #11,12.
The latter instead shows a more pronounced oval profile, which indicates the prevalence of
the friction component on the overall F-u response (cf. Figure 3). The effective properties
of the examined samples are discussed in the following section. Illustrative movies of the
examined tests are provided as Supplementary Materials (Movies S1–S4).

https://viky.viky.it/
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4. Fitting of the Theoretical Model to the Experimental Results

We fitted the mechanical model of Section 2 to the experimental results presented in
the previous section. For what concerns the constitutive model of the tendons, we make
use of the pseudo-elastic stress–strain law formulated in [23] in the absence of permanent
strains, assuming that the preconditioning of these members reduces such deformations
nearly to zero [31]. We hereafter summarize the above model, which contemplates different
shapes of the relationship between the nominal stress σ̂ and the stretch ratio λ along the
loading and unloading branches, as shown in Figure 7. The loading branch is described by
the equation

σ̂(l) =
dŴ(λ)

dλ
(5)

where Ŵ(λ) is the Yeoh hyperelastic strain energy function defined as

Ŵ =

(
λ3 − 3λ+ 2

)
λ3

(
λ
(

c1λ + c2

(
λ3 − 3λ+ 2

))
+ c3(λ + 2)2(λ− 1)4

)
(6)

Using the results of experimental tests on 3D-printed TPU membranes presented
in [23], we assume c1 = 4.19579 MPa, c2 = 4.85976 MPa, and c3 = 9.67521 MPa. The
unloading branch is instead defined through the following softening model [34]

σ̂(u) = σ̂(l)

(
1− 1

r
tan h

(
Wm − Ŵ(λ)

m

))
(7)

where r and m are constitutive parameters and Wm denotes the value of the strain energy
function Ŵ(λ) in correspondence to the maximum stretch ratio λm reached during the load-
ing phase (Figure 7). Following [23], we hereafter use r = 1.37159 and m = 0.63206 MPa.
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Figure 7. Hysteretic model of the tendons relating to the nominal stress σ̂ to the stretch ratio λ̂.

The overall fitting of the mechanical model to the experimental results of the previous
section is completed by introducing different assumptions for sample #1 and sample #2.
Going into detail for sample #1, we assume the strain rate factor ψ = 1.0, along both
the loading and unloading branches, and the friction law parameters Pre f = 42.352 kN;
vre f = 10.285 m/s; µs0 = 1.688%; and γ = 4.0. For sample #2, we instead assume ψ = 1.19
along the loading branch; ψ = 1.0 along the unloading branch (as in [23]); Pre f = 42.352 kN;
vre f = 41.774 m/s; µs0 = 1.899%; and γ = 4.0. The reason for such different constitutive
parameter choices is that we observed more pronounced rate-sensitivity effects in the
force-displacement response of the sample with thinner tendons (sample #2, t = 1.9 mm),
for both recentering and friction components, as compared to the response of the sample
equipped with thicker tendons (sample #1, t = 4.0 mm). Figure 8 shows a comparison
between the force–displacement responses predicted by the adopted mechanical models
and the experimentally recorded responses. A rather good matching between theoretical
predictions and experimental results is observed.

We now move on to compute the effective vibration period Te f f and the effective
damping coefficient ξe f f associated with the theoretical model, defined as follows [23,29]

Te f f = 2 π

√
M

Fd/d
; ξe f f =

EDC
2 π Fd d

(8)

Here, EDC is the energy dissipated per cycle; M = P/g (g denoting the gravitational
acceleration); d is the displacement capacity (d = 50 mm in the examined tests); and Fd is
the lateral force exhibited by the device for u = d. Table 3 shows the values of the effective
dynamic parameters Te f f and ξe f f , estimated for the examined tests. One observes that the
values of both Te f f and ξe f f grow with increasing values of the vertical load, for a given
value of the thickness of the tendons, and also by increasing the thickness of the members,
for a given value of the vertical load. Considerably large values of the effective ξe f f (that
are appreciably greater than 30%) were recorded in all the examined tests.
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Table 3. Effective dynamic parameters of the fitted models.

Test Number Teff (s) ξeff (%)

7 1.19 32.45
8 1.46 39.87
11 1.32 35.62
12 1.60 42.18

5. Concluding Remarks

We have experimentally and theoretically studied a two-layer version of a bioinspired
seismic metaisolator that is able to protect multistory buildings from earthquakes by repli-
cating the mechanics of the human body and animal locomotion through the combination
of sliding–stretching mechanisms (SSI2 system). This study has achieved the following key
innovative results, as compared to the pioneering study on single-layer, sliding–stretching
isolators presented in [23] (SSI1 systems): (i) the generalization of the mechanical model
presented in [23] to account for the presence of two superimposed layers that move along
opposite directions; (ii) the possibility to double the displacement capacity of the system,
with respect to a single-layer system with the same footprint; (iii) the experimental vali-
dation of the proposed mechanical model of the SSI2 against shake-table tests on scaled
prototypes; and (iv) the variation of the mechanical response of the device with the size
of the tendons. Due to its peculiar mechanics, the SSI2 is a good candidate for the seis-
mic isolation of multistoried buildings, as well as for all the applications that require a
considerably large displacement capacity in combination with a reduced footprint.

The analyzed metaisolator can be assembled from environmentally sustainable compo-
nents, without heavy industry, being partially or fully achievable with ordinary 3D printers
and biobased and/or recycled materials. The metallic parts can be manufactured using
standard lathe machines, purchased from online metal parts suppliers, and/or fabricated
with a desktop metal 3D printer. We have shown that the effective mechanical properties of
the examined device can be suitably tuned by varying the size of the tendons, which makes
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the system easily adjustable to the structure being protected. It is also possible to distribute
the vertical load among multiple posts, by tessellating the SSI2 unit cells in the horizontal
plane [23]. Future work will be devoted to the experimental analysis of a large variety of
SSI systems and load conditions, as well as to the optimal design of the geometry, topol-
ogy, and stacking sequence of the layers of the device, by employing soft-computing [35],
probabilistic methods [36], and/or artificial intelligence techniques [37].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/buildings13092272/s1, Movie S1: video recording of Test #7;
Movie S2: video recording of Test #8; Movie S3: video recording of Test #11; Movie S4: video recording
of Test #12.
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35. Salaas, B.; Bekdaş, G.; Ibrahim, Y.E.; Nigdeli, S.M.; Ezzat, M.; Nawar, M.; Kayabekir, A.E. Design optimization of a hybrid

vibration control system for buildings. Buildings 2023, 13, 934. [CrossRef]
36. AlHamaydeh, M.; Maky, A.; ElKafrawy, M. Probabilistic incremental dynamic analysis for seismic isolation systems through

integration with the NHERI-SimCenter performance-based engineering application. Buildings 2023, 13, 1413. [CrossRef]
37. Nguyen Hoang, D.; Dao, N.D.; Shin, M. Machine learning-based prediction for maximum displacement of seismic isolation

systems. J. Build. Eng. 2022, 51, 104251. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.engstruct.2019.04.076
https://doi.org/10.1002/eqe.2665
https://doi.org/10.1016/j.engstruct.2014.07.001
https://doi.org/10.1002/pc.20803
https://doi.org/10.1016/j.soildyn.2019.105731
https://doi.org/10.3390/buildings13020360
https://doi.org/10.1002/eqe.4290231204
https://doi.org/10.1016/j.engstruct.2020.110533
https://doi.org/10.1007/s41062-018-0163-2
https://doi.org/10.1016/j.jobe.2021.103684
https://doi.org/10.1007/s11071-021-06980-5
https://doi.org/10.1038/d41586-021-03506-2
https://doi.org/10.1016/j.zool.2005.11.001
https://doi.org/10.1016/j.ymssp.2019.02.001
https://doi.org/10.1007/s00707-022-03447-5
https://doi.org/10.1016/S0020-7683(03)00089-1
https://doi.org/10.3390/buildings13040934
https://doi.org/10.3390/buildings13061413
https://doi.org/10.1016/j.jobe.2022.104251

	Introduction 
	Mechanical Model of the SSI2 
	Experimental Tests on Physical Samples 
	Fitting of the Theoretical Model to the Experimental Results 
	Concluding Remarks 
	References

